//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes // Other libraries and framework includes #include "llvm/ADT/StringRef.h" // Project includes #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" #include "lldb/Core/ArchSpec.h" #include "lldb/Core/DataBuffer.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Error.h" #include "lldb/Core/FileSpecList.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RangeMap.h" #include "lldb/Core/Section.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/Timer.h" #include "lldb/Core/UUID.h" #include "lldb/Host/FileSpec.h" #include "lldb/Host/Host.h" #include "lldb/Symbol/DWARFCallFrameInfo.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/DynamicLoader.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/Platform.h" #include "lldb/Target/Process.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadList.h" #include "lldb/Utility/SafeMachO.h" #include "ObjectFileMachO.h" #if defined(__APPLE__) && \ (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) // GetLLDBSharedCacheUUID() needs to call dlsym() #include #endif #ifndef __APPLE__ #include "Utility/UuidCompatibility.h" #endif #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull using namespace lldb; using namespace lldb_private; using namespace llvm::MachO; // Some structure definitions needed for parsing the dyld shared cache files // found on iOS devices. struct lldb_copy_dyld_cache_header_v1 { char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info uint32_t mappingCount; // number of dyld_cache_mapping_info entries uint32_t imagesOffset; uint32_t imagesCount; uint64_t dyldBaseAddress; uint64_t codeSignatureOffset; uint64_t codeSignatureSize; uint64_t slideInfoOffset; uint64_t slideInfoSize; uint64_t localSymbolsOffset; uint64_t localSymbolsSize; uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 // and later }; struct lldb_copy_dyld_cache_mapping_info { uint64_t address; uint64_t size; uint64_t fileOffset; uint32_t maxProt; uint32_t initProt; }; struct lldb_copy_dyld_cache_local_symbols_info { uint32_t nlistOffset; uint32_t nlistCount; uint32_t stringsOffset; uint32_t stringsSize; uint32_t entriesOffset; uint32_t entriesCount; }; struct lldb_copy_dyld_cache_local_symbols_entry { uint32_t dylibOffset; uint32_t nlistStartIndex; uint32_t nlistCount; }; class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { public: RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_x86_64(thread, 0) { SetRegisterDataFrom_LC_THREAD(data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { lldb::offset_t offset = 0; SetError(GPRRegSet, Read, -1); SetError(FPURegSet, Read, -1); SetError(EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32(&offset); if (flavor == 0) done = true; else { uint32_t i; uint32_t count = data.GetU32(&offset); switch (flavor) { case GPRRegSet: for (i = 0; i < count; ++i) (&gpr.rax)[i] = data.GetU64(&offset); SetError(GPRRegSet, Read, 0); done = true; break; case FPURegSet: // TODO: fill in FPU regs.... // SetError (FPURegSet, Read, -1); done = true; break; case EXCRegSet: exc.trapno = data.GetU32(&offset); exc.err = data.GetU32(&offset); exc.faultvaddr = data.GetU64(&offset); SetError(EXCRegSet, Read, 0); done = true; break; case 7: case 8: case 9: // fancy flavors that encapsulate of the above // flavors... break; default: done = true; break; } } } } static size_t WriteRegister(RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) data.PutChar(0); } return reg_byte_size; } } // Just write zeros if all else fails for (size_t i = 0; i < reg_byte_size; ++i) data.PutChar(0); return reg_byte_size; } static bool Create_LC_THREAD(Thread *thread, Stream &data) { RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); WriteRegister(reg_ctx, "rax", NULL, 8, data); WriteRegister(reg_ctx, "rbx", NULL, 8, data); WriteRegister(reg_ctx, "rcx", NULL, 8, data); WriteRegister(reg_ctx, "rdx", NULL, 8, data); WriteRegister(reg_ctx, "rdi", NULL, 8, data); WriteRegister(reg_ctx, "rsi", NULL, 8, data); WriteRegister(reg_ctx, "rbp", NULL, 8, data); WriteRegister(reg_ctx, "rsp", NULL, 8, data); WriteRegister(reg_ctx, "r8", NULL, 8, data); WriteRegister(reg_ctx, "r9", NULL, 8, data); WriteRegister(reg_ctx, "r10", NULL, 8, data); WriteRegister(reg_ctx, "r11", NULL, 8, data); WriteRegister(reg_ctx, "r12", NULL, 8, data); WriteRegister(reg_ctx, "r13", NULL, 8, data); WriteRegister(reg_ctx, "r14", NULL, 8, data); WriteRegister(reg_ctx, "r15", NULL, 8, data); WriteRegister(reg_ctx, "rip", NULL, 8, data); WriteRegister(reg_ctx, "rflags", NULL, 8, data); WriteRegister(reg_ctx, "cs", NULL, 8, data); WriteRegister(reg_ctx, "fs", NULL, 8, data); WriteRegister(reg_ctx, "gs", NULL, 8, data); // // Write out the FPU registers // const size_t fpu_byte_size = sizeof(FPU); // size_t bytes_written = 0; // data.PutHex32 (FPURegSet); // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); // bytes_written += data.PutHex32(0); // uint32_t pad[0] // bytes_written += data.PutHex32(0); // uint32_t pad[1] // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, // data); // uint16_t fcw; // "fctrl" // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, // data); // uint16_t fsw; // "fstat" // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, // data); // uint8_t ftw; // "ftag" // bytes_written += data.PutHex8 (0); // uint8_t pad1; // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, // data); // uint16_t fop; // "fop" // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, // data); // uint32_t ip; // "fioff" // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, // data); // uint16_t cs; // "fiseg" // bytes_written += data.PutHex16 (0); // uint16_t pad2; // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, // data); // uint32_t dp; // "fooff" // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, // data); // uint16_t ds; // "foseg" // bytes_written += data.PutHex16 (0); // uint16_t pad3; // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, // data); // uint32_t mxcsr; // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, // 4, data);// uint32_t mxcsrmask; // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, // sizeof(XMMReg), data); // // // Fill rest with zeros // for (size_t i=0, n = fpu_byte_size - bytes_written; iGetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) data.PutChar(0); } return reg_byte_size; } } // Just write zeros if all else fails for (size_t i = 0; i < reg_byte_size; ++i) data.PutChar(0); return reg_byte_size; } static bool Create_LC_THREAD(Thread *thread, Stream &data) { RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); WriteRegister(reg_ctx, "eax", NULL, 4, data); WriteRegister(reg_ctx, "ebx", NULL, 4, data); WriteRegister(reg_ctx, "ecx", NULL, 4, data); WriteRegister(reg_ctx, "edx", NULL, 4, data); WriteRegister(reg_ctx, "edi", NULL, 4, data); WriteRegister(reg_ctx, "esi", NULL, 4, data); WriteRegister(reg_ctx, "ebp", NULL, 4, data); WriteRegister(reg_ctx, "esp", NULL, 4, data); WriteRegister(reg_ctx, "ss", NULL, 4, data); WriteRegister(reg_ctx, "eflags", NULL, 4, data); WriteRegister(reg_ctx, "eip", NULL, 4, data); WriteRegister(reg_ctx, "cs", NULL, 4, data); WriteRegister(reg_ctx, "ds", NULL, 4, data); WriteRegister(reg_ctx, "es", NULL, 4, data); WriteRegister(reg_ctx, "fs", NULL, 4, data); WriteRegister(reg_ctx, "gs", NULL, 4, data); // Write out the EXC registers data.PutHex32(EXCRegSet); data.PutHex32(EXCWordCount); WriteRegister(reg_ctx, "trapno", NULL, 4, data); WriteRegister(reg_ctx, "err", NULL, 4, data); WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } }; class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm { public: RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_arm(thread, 0) { SetRegisterDataFrom_LC_THREAD(data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { lldb::offset_t offset = 0; SetError(GPRRegSet, Read, -1); SetError(FPURegSet, Read, -1); SetError(EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32(&offset); uint32_t count = data.GetU32(&offset); lldb::offset_t next_thread_state = offset + (count * 4); switch (flavor) { case GPRAltRegSet: case GPRRegSet: for (uint32_t i = 0; i < count; ++i) { gpr.r[i] = data.GetU32(&offset); } // Note that gpr.cpsr is also copied by the above loop; this loop // technically extends // one element past the end of the gpr.r[] array. SetError(GPRRegSet, Read, 0); offset = next_thread_state; break; case FPURegSet: { uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0]; const int fpu_reg_buf_size = sizeof(fpu.floats); if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) { offset += fpu_reg_buf_size; fpu.fpscr = data.GetU32(&offset); SetError(FPURegSet, Read, 0); } else { done = true; } } offset = next_thread_state; break; case EXCRegSet: if (count == 3) { exc.exception = data.GetU32(&offset); exc.fsr = data.GetU32(&offset); exc.far = data.GetU32(&offset); SetError(EXCRegSet, Read, 0); } done = true; offset = next_thread_state; break; // Unknown register set flavor, stop trying to parse. default: done = true; } } } static size_t WriteRegister(RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) data.PutChar(0); } return reg_byte_size; } } // Just write zeros if all else fails for (size_t i = 0; i < reg_byte_size; ++i) data.PutChar(0); return reg_byte_size; } static bool Create_LC_THREAD(Thread *thread, Stream &data) { RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); WriteRegister(reg_ctx, "r0", NULL, 4, data); WriteRegister(reg_ctx, "r1", NULL, 4, data); WriteRegister(reg_ctx, "r2", NULL, 4, data); WriteRegister(reg_ctx, "r3", NULL, 4, data); WriteRegister(reg_ctx, "r4", NULL, 4, data); WriteRegister(reg_ctx, "r5", NULL, 4, data); WriteRegister(reg_ctx, "r6", NULL, 4, data); WriteRegister(reg_ctx, "r7", NULL, 4, data); WriteRegister(reg_ctx, "r8", NULL, 4, data); WriteRegister(reg_ctx, "r9", NULL, 4, data); WriteRegister(reg_ctx, "r10", NULL, 4, data); WriteRegister(reg_ctx, "r11", NULL, 4, data); WriteRegister(reg_ctx, "r12", NULL, 4, data); WriteRegister(reg_ctx, "sp", NULL, 4, data); WriteRegister(reg_ctx, "lr", NULL, 4, data); WriteRegister(reg_ctx, "pc", NULL, 4, data); WriteRegister(reg_ctx, "cpsr", NULL, 4, data); // Write out the EXC registers // data.PutHex32 (EXCRegSet); // data.PutHex32 (EXCWordCount); // WriteRegister (reg_ctx, "exception", NULL, 4, data); // WriteRegister (reg_ctx, "fsr", NULL, 4, data); // WriteRegister (reg_ctx, "far", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { return -1; } }; class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 { public: RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_arm64(thread, 0) { SetRegisterDataFrom_LC_THREAD(data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { lldb::offset_t offset = 0; SetError(GPRRegSet, Read, -1); SetError(FPURegSet, Read, -1); SetError(EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32(&offset); uint32_t count = data.GetU32(&offset); lldb::offset_t next_thread_state = offset + (count * 4); switch (flavor) { case GPRRegSet: // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 // 32-bit register) if (count >= (33 * 2) + 1) { for (uint32_t i = 0; i < 29; ++i) gpr.x[i] = data.GetU64(&offset); gpr.fp = data.GetU64(&offset); gpr.lr = data.GetU64(&offset); gpr.sp = data.GetU64(&offset); gpr.pc = data.GetU64(&offset); gpr.cpsr = data.GetU32(&offset); SetError(GPRRegSet, Read, 0); } offset = next_thread_state; break; case FPURegSet: { uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0]; const int fpu_reg_buf_size = sizeof(fpu); if (fpu_reg_buf_size == count && data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) { SetError(FPURegSet, Read, 0); } else { done = true; } } offset = next_thread_state; break; case EXCRegSet: if (count == 4) { exc.far = data.GetU64(&offset); exc.esr = data.GetU32(&offset); exc.exception = data.GetU32(&offset); SetError(EXCRegSet, Read, 0); } offset = next_thread_state; break; default: done = true; break; } } } static size_t WriteRegister(RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); if (reg_info == NULL) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) data.PutChar(0); } return reg_byte_size; } } // Just write zeros if all else fails for (size_t i = 0; i < reg_byte_size; ++i) data.PutChar(0); return reg_byte_size; } static bool Create_LC_THREAD(Thread *thread, Stream &data) { RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); WriteRegister(reg_ctx, "x0", NULL, 8, data); WriteRegister(reg_ctx, "x1", NULL, 8, data); WriteRegister(reg_ctx, "x2", NULL, 8, data); WriteRegister(reg_ctx, "x3", NULL, 8, data); WriteRegister(reg_ctx, "x4", NULL, 8, data); WriteRegister(reg_ctx, "x5", NULL, 8, data); WriteRegister(reg_ctx, "x6", NULL, 8, data); WriteRegister(reg_ctx, "x7", NULL, 8, data); WriteRegister(reg_ctx, "x8", NULL, 8, data); WriteRegister(reg_ctx, "x9", NULL, 8, data); WriteRegister(reg_ctx, "x10", NULL, 8, data); WriteRegister(reg_ctx, "x11", NULL, 8, data); WriteRegister(reg_ctx, "x12", NULL, 8, data); WriteRegister(reg_ctx, "x13", NULL, 8, data); WriteRegister(reg_ctx, "x14", NULL, 8, data); WriteRegister(reg_ctx, "x15", NULL, 8, data); WriteRegister(reg_ctx, "x16", NULL, 8, data); WriteRegister(reg_ctx, "x17", NULL, 8, data); WriteRegister(reg_ctx, "x18", NULL, 8, data); WriteRegister(reg_ctx, "x19", NULL, 8, data); WriteRegister(reg_ctx, "x20", NULL, 8, data); WriteRegister(reg_ctx, "x21", NULL, 8, data); WriteRegister(reg_ctx, "x22", NULL, 8, data); WriteRegister(reg_ctx, "x23", NULL, 8, data); WriteRegister(reg_ctx, "x24", NULL, 8, data); WriteRegister(reg_ctx, "x25", NULL, 8, data); WriteRegister(reg_ctx, "x26", NULL, 8, data); WriteRegister(reg_ctx, "x27", NULL, 8, data); WriteRegister(reg_ctx, "x28", NULL, 8, data); WriteRegister(reg_ctx, "fp", NULL, 8, data); WriteRegister(reg_ctx, "lr", NULL, 8, data); WriteRegister(reg_ctx, "sp", NULL, 8, data); WriteRegister(reg_ctx, "pc", NULL, 8, data); WriteRegister(reg_ctx, "cpsr", NULL, 4, data); // Write out the EXC registers // data.PutHex32 (EXCRegSet); // data.PutHex32 (EXCWordCount); // WriteRegister (reg_ctx, "far", NULL, 8, data); // WriteRegister (reg_ctx, "esr", NULL, 4, data); // WriteRegister (reg_ctx, "exception", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { return -1; } }; static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { switch (magic) { case MH_MAGIC: case MH_CIGAM: return sizeof(struct mach_header); case MH_MAGIC_64: case MH_CIGAM_64: return sizeof(struct mach_header_64); break; default: break; } return 0; } #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 void ObjectFileMachO::Initialize() { PluginManager::RegisterPlugin( GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, CreateMemoryInstance, GetModuleSpecifications, SaveCore); } void ObjectFileMachO::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() { static ConstString g_name("mach-o"); return g_name; } const char *ObjectFileMachO::GetPluginDescriptionStatic() { return "Mach-o object file reader (32 and 64 bit)"; } ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, lldb::offset_t data_offset, const FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) { if (!data_sp) { data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); data_offset = 0; } if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) { // Update the data to contain the entire file if it doesn't already if (data_sp->GetByteSize() < length) { data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); data_offset = 0; } std::unique_ptr objfile_ap(new ObjectFileMachO( module_sp, data_sp, data_offset, file, file_offset, length)); if (objfile_ap.get() && objfile_ap->ParseHeader()) return objfile_ap.release(); } return NULL; } ObjectFile *ObjectFileMachO::CreateMemoryInstance( const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, const ProcessSP &process_sp, lldb::addr_t header_addr) { if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { std::unique_ptr objfile_ap( new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr)); if (objfile_ap.get() && objfile_ap->ParseHeader()) return objfile_ap.release(); } return NULL; } size_t ObjectFileMachO::GetModuleSpecifications( const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, lldb::offset_t data_offset, lldb::offset_t file_offset, lldb::offset_t length, lldb_private::ModuleSpecList &specs) { const size_t initial_count = specs.GetSize(); if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { DataExtractor data; data.SetData(data_sp); llvm::MachO::mach_header header; if (ParseHeader(data, &data_offset, header)) { size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); if (header_and_load_cmds >= data_sp->GetByteSize()) { data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); data.SetData(data_sp); data_offset = MachHeaderSizeFromMagic(header.magic); } if (data_sp) { ModuleSpec spec; spec.GetFileSpec() = file; spec.SetObjectOffset(file_offset); spec.SetObjectSize(length); if (GetArchitecture(header, data, data_offset, spec.GetArchitecture())) { if (spec.GetArchitecture().IsValid()) { GetUUID(header, data, data_offset, spec.GetUUID()); specs.Append(spec); } } } } } return specs.GetSize() - initial_count; } const ConstString &ObjectFileMachO::GetSegmentNameTEXT() { static ConstString g_segment_name_TEXT("__TEXT"); return g_segment_name_TEXT; } const ConstString &ObjectFileMachO::GetSegmentNameDATA() { static ConstString g_segment_name_DATA("__DATA"); return g_segment_name_DATA; } const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() { static ConstString g_segment_name("__DATA_DIRTY"); return g_segment_name; } const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() { static ConstString g_segment_name("__DATA_CONST"); return g_segment_name; } const ConstString &ObjectFileMachO::GetSegmentNameOBJC() { static ConstString g_segment_name_OBJC("__OBJC"); return g_segment_name_OBJC; } const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() { static ConstString g_section_name_LINKEDIT("__LINKEDIT"); return g_section_name_LINKEDIT; } const ConstString &ObjectFileMachO::GetSectionNameEHFrame() { static ConstString g_section_name_eh_frame("__eh_frame"); return g_section_name_eh_frame; } bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp, lldb::addr_t data_offset, lldb::addr_t data_length) { DataExtractor data; data.SetData(data_sp, data_offset, data_length); lldb::offset_t offset = 0; uint32_t magic = data.GetU32(&offset); return MachHeaderSizeFromMagic(magic) != 0; } ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, lldb::offset_t data_offset, const FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false), m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { ::memset(&m_header, 0, sizeof(m_header)); ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); } ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, lldb::DataBufferSP &header_data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false), m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { ::memset(&m_header, 0, sizeof(m_header)); ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); } bool ObjectFileMachO::ParseHeader(DataExtractor &data, lldb::offset_t *data_offset_ptr, llvm::MachO::mach_header &header) { data.SetByteOrder(endian::InlHostByteOrder()); // Leave magic in the original byte order header.magic = data.GetU32(data_offset_ptr); bool can_parse = false; bool is_64_bit = false; switch (header.magic) { case MH_MAGIC: data.SetByteOrder(endian::InlHostByteOrder()); data.SetAddressByteSize(4); can_parse = true; break; case MH_MAGIC_64: data.SetByteOrder(endian::InlHostByteOrder()); data.SetAddressByteSize(8); can_parse = true; is_64_bit = true; break; case MH_CIGAM: data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); data.SetAddressByteSize(4); can_parse = true; break; case MH_CIGAM_64: data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); data.SetAddressByteSize(8); is_64_bit = true; can_parse = true; break; default: break; } if (can_parse) { data.GetU32(data_offset_ptr, &header.cputype, 6); if (is_64_bit) *data_offset_ptr += 4; return true; } else { memset(&header, 0, sizeof(header)); } return false; } bool ObjectFileMachO::ParseHeader() { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); bool can_parse = false; lldb::offset_t offset = 0; m_data.SetByteOrder(endian::InlHostByteOrder()); // Leave magic in the original byte order m_header.magic = m_data.GetU32(&offset); switch (m_header.magic) { case MH_MAGIC: m_data.SetByteOrder(endian::InlHostByteOrder()); m_data.SetAddressByteSize(4); can_parse = true; break; case MH_MAGIC_64: m_data.SetByteOrder(endian::InlHostByteOrder()); m_data.SetAddressByteSize(8); can_parse = true; break; case MH_CIGAM: m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(4); can_parse = true; break; case MH_CIGAM_64: m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(8); can_parse = true; break; default: break; } if (can_parse) { m_data.GetU32(&offset, &m_header.cputype, 6); ArchSpec mach_arch; if (GetArchitecture(mach_arch)) { // Check if the module has a required architecture const ArchSpec &module_arch = module_sp->GetArchitecture(); if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) return false; if (SetModulesArchitecture(mach_arch)) { const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); if (m_data.GetByteSize() < header_and_lc_size) { DataBufferSP data_sp; ProcessSP process_sp(m_process_wp.lock()); if (process_sp) { data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size); } else { // Read in all only the load command data from the file on disk data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); if (data_sp->GetByteSize() != header_and_lc_size) return false; } if (data_sp) m_data.SetData(data_sp); } } return true; } } else { memset(&m_header, 0, sizeof(struct mach_header)); } } return false; } ByteOrder ObjectFileMachO::GetByteOrder() const { return m_data.GetByteOrder(); } bool ObjectFileMachO::IsExecutable() const { return m_header.filetype == MH_EXECUTE; } uint32_t ObjectFileMachO::GetAddressByteSize() const { return m_data.GetAddressByteSize(); } AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) { Symtab *symtab = GetSymtab(); if (symtab) { Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); if (symbol) { if (symbol->ValueIsAddress()) { SectionSP section_sp(symbol->GetAddressRef().GetSection()); if (section_sp) { const lldb::SectionType section_type = section_sp->GetType(); switch (section_type) { case eSectionTypeInvalid: return eAddressClassUnknown; case eSectionTypeCode: if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { // For ARM we have a bit in the n_desc field of the symbol // that tells us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return eAddressClassCodeAlternateISA; } return eAddressClassCode; case eSectionTypeContainer: return eAddressClassUnknown; case eSectionTypeData: case eSectionTypeDataCString: case eSectionTypeDataCStringPointers: case eSectionTypeDataSymbolAddress: case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: case eSectionTypeDataPointers: case eSectionTypeZeroFill: case eSectionTypeDataObjCMessageRefs: case eSectionTypeDataObjCCFStrings: case eSectionTypeGoSymtab: return eAddressClassData; case eSectionTypeDebug: case eSectionTypeDWARFDebugAbbrev: case eSectionTypeDWARFDebugAddr: case eSectionTypeDWARFDebugAranges: case eSectionTypeDWARFDebugFrame: case eSectionTypeDWARFDebugInfo: case eSectionTypeDWARFDebugLine: case eSectionTypeDWARFDebugLoc: case eSectionTypeDWARFDebugMacInfo: case eSectionTypeDWARFDebugMacro: case eSectionTypeDWARFDebugPubNames: case eSectionTypeDWARFDebugPubTypes: case eSectionTypeDWARFDebugRanges: case eSectionTypeDWARFDebugStr: case eSectionTypeDWARFDebugStrOffsets: case eSectionTypeDWARFAppleNames: case eSectionTypeDWARFAppleTypes: case eSectionTypeDWARFAppleNamespaces: case eSectionTypeDWARFAppleObjC: return eAddressClassDebug; case eSectionTypeEHFrame: case eSectionTypeARMexidx: case eSectionTypeARMextab: case eSectionTypeCompactUnwind: return eAddressClassRuntime; case eSectionTypeAbsoluteAddress: case eSectionTypeELFSymbolTable: case eSectionTypeELFDynamicSymbols: case eSectionTypeELFRelocationEntries: case eSectionTypeELFDynamicLinkInfo: case eSectionTypeOther: return eAddressClassUnknown; } } } const SymbolType symbol_type = symbol->GetType(); switch (symbol_type) { case eSymbolTypeAny: return eAddressClassUnknown; case eSymbolTypeAbsolute: return eAddressClassUnknown; case eSymbolTypeCode: case eSymbolTypeTrampoline: case eSymbolTypeResolver: if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { // For ARM we have a bit in the n_desc field of the symbol // that tells us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return eAddressClassCodeAlternateISA; } return eAddressClassCode; case eSymbolTypeData: return eAddressClassData; case eSymbolTypeRuntime: return eAddressClassRuntime; case eSymbolTypeException: return eAddressClassRuntime; case eSymbolTypeSourceFile: return eAddressClassDebug; case eSymbolTypeHeaderFile: return eAddressClassDebug; case eSymbolTypeObjectFile: return eAddressClassDebug; case eSymbolTypeCommonBlock: return eAddressClassDebug; case eSymbolTypeBlock: return eAddressClassDebug; case eSymbolTypeLocal: return eAddressClassData; case eSymbolTypeParam: return eAddressClassData; case eSymbolTypeVariable: return eAddressClassData; case eSymbolTypeVariableType: return eAddressClassDebug; case eSymbolTypeLineEntry: return eAddressClassDebug; case eSymbolTypeLineHeader: return eAddressClassDebug; case eSymbolTypeScopeBegin: return eAddressClassDebug; case eSymbolTypeScopeEnd: return eAddressClassDebug; case eSymbolTypeAdditional: return eAddressClassUnknown; case eSymbolTypeCompiler: return eAddressClassDebug; case eSymbolTypeInstrumentation: return eAddressClassDebug; case eSymbolTypeUndefined: return eAddressClassUnknown; case eSymbolTypeObjCClass: return eAddressClassRuntime; case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; case eSymbolTypeObjCIVar: return eAddressClassRuntime; case eSymbolTypeReExported: return eAddressClassRuntime; } } } return eAddressClassUnknown; } Symtab *ObjectFileMachO::GetSymtab() { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); if (m_symtab_ap.get() == NULL) { m_symtab_ap.reset(new Symtab(this)); std::lock_guard symtab_guard( m_symtab_ap->GetMutex()); ParseSymtab(); m_symtab_ap->Finalize(); } } return m_symtab_ap.get(); } bool ObjectFileMachO::IsStripped() { if (m_dysymtab.cmd == 0) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; load_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) break; if (lc.cmd == LC_DYSYMTAB) { m_dysymtab.cmd = lc.cmd; m_dysymtab.cmdsize = lc.cmdsize; if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) { // Clear m_dysymtab if we were unable to read all items from the // load command ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); } } offset = load_cmd_offset + lc.cmdsize; } } } if (m_dysymtab.cmd) return m_dysymtab.nlocalsym <= 1; return false; } void ObjectFileMachO::CreateSections(SectionList &unified_section_list) { if (!m_sections_ap.get()) { m_sections_ap.reset(new SectionList()); const bool is_dsym = (m_header.filetype == MH_DSYM); lldb::user_id_t segID = 0; lldb::user_id_t sectID = 0; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; const bool is_core = GetType() == eTypeCoreFile; // bool dump_sections = false; ModuleSP module_sp(GetModule()); // First look up any LC_ENCRYPTION_INFO load commands typedef RangeArray EncryptedFileRanges; EncryptedFileRanges encrypted_file_ranges; encryption_info_command encryption_cmd; for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) break; // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for // the 3 fields we care about, so treat them the same. if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) { if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) { if (encryption_cmd.cryptid != 0) { EncryptedFileRanges::Entry entry; entry.SetRangeBase(encryption_cmd.cryptoff); entry.SetByteSize(encryption_cmd.cryptsize); encrypted_file_ranges.Append(entry); } } } offset = load_cmd_offset + encryption_cmd.cmdsize; } bool section_file_addresses_changed = false; offset = MachHeaderSizeFromMagic(m_header.magic); struct segment_command_64 load_cmd; for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) break; if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) { if (m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) { bool add_section = true; bool add_to_unified = true; ConstString const_segname(load_cmd.segname, std::min(strlen(load_cmd.segname), sizeof(load_cmd.segname))); SectionSP unified_section_sp( unified_section_list.FindSectionByName(const_segname)); if (is_dsym && unified_section_sp) { if (const_segname == GetSegmentNameLINKEDIT()) { // We need to keep the __LINKEDIT segment private to this object // file only add_to_unified = false; } else { // This is the dSYM file and this section has already been created // by // the object file, no need to create it. add_section = false; } } load_cmd.vmaddr = m_data.GetAddress(&offset); load_cmd.vmsize = m_data.GetAddress(&offset); load_cmd.fileoff = m_data.GetAddress(&offset); load_cmd.filesize = m_data.GetAddress(&offset); if (m_length != 0 && load_cmd.filesize != 0) { if (load_cmd.fileoff > m_length) { // We have a load command that says it extends past the end of the // file. This is likely // a corrupt file. We don't have any way to return an error // condition here (this method // was likely invoked from something like // ObjectFile::GetSectionList()) -- all we can do // is null out the SectionList vector and if a process has been // set up, dump a message // to stdout. The most common case here is core file debugging // with a truncated file. const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; module_sp->ReportWarning( "load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", i, lc_segment_name, load_cmd.fileoff, m_length); load_cmd.fileoff = 0; load_cmd.filesize = 0; } if (load_cmd.fileoff + load_cmd.filesize > m_length) { // We have a load command that says it extends past the end of the // file. This is likely // a corrupt file. We don't have any way to return an error // condition here (this method // was likely invoked from something like // ObjectFile::GetSectionList()) -- all we can do // is null out the SectionList vector and if a process has been // set up, dump a message // to stdout. The most common case here is core file debugging // with a truncated file. const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; GetModule()->ReportWarning( "load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", i, lc_segment_name, load_cmd.fileoff + load_cmd.filesize, m_length); // Tuncase the length load_cmd.filesize = m_length - load_cmd.fileoff; } } if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) { uint32_t segment_permissions = 0; if (load_cmd.initprot & VM_PROT_READ) segment_permissions |= ePermissionsReadable; if (load_cmd.initprot & VM_PROT_WRITE) segment_permissions |= ePermissionsWritable; if (load_cmd.initprot & VM_PROT_EXECUTE) segment_permissions |= ePermissionsExecutable; const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; // Keep a list of mach segments around in case we need to // get at data that isn't stored in the abstracted Sections. m_mach_segments.push_back(load_cmd); // Use a segment ID of the segment index shifted left by 8 so they // never conflict with any of the sections. SectionSP segment_sp; if (add_section && (const_segname || is_core)) { segment_sp.reset(new Section( module_sp, // Module to which this section belongs this, // Object file to which this sections belongs ++segID << 8, // Section ID is the 1 based segment index // shifted right by 8 bits as not to collide // with any of the 256 section IDs that are // possible const_segname, // Name of this section eSectionTypeContainer, // This section is a container of other // sections. load_cmd.vmaddr, // File VM address == addresses as they are // found in the object file load_cmd.vmsize, // VM size in bytes of this section load_cmd.fileoff, // Offset to the data for this section in // the file load_cmd.filesize, // Size in bytes of this section as found // in the file 0, // Segments have no alignment information load_cmd.flags)); // Flags for this section segment_sp->SetIsEncrypted(segment_is_encrypted); m_sections_ap->AddSection(segment_sp); segment_sp->SetPermissions(segment_permissions); if (add_to_unified) unified_section_list.AddSection(segment_sp); } else if (unified_section_sp) { if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) { // Check to see if the module was read from memory? if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) { // We have a module that is in memory and needs to have its // file address adjusted. We need to do this because when we // load a file from memory, its addresses will be slid // already, // yet the addresses in the new symbol file will still be // unslid. // Since everything is stored as section offset, this // shouldn't // cause any problems. // Make sure we've parsed the symbol table from the // ObjectFile before we go around changing its Sections. module_sp->GetObjectFile()->GetSymtab(); // eh_frame would present the same problems but we parse that // on // a per-function basis as-needed so it's more difficult to // remove its use of the Sections. Realistically, the // environments // where this code path will be taken will not have eh_frame // sections. unified_section_sp->SetFileAddress(load_cmd.vmaddr); // Notify the module that the section addresses have been // changed once // we're done so any file-address caches can be updated. section_file_addresses_changed = true; } } m_sections_ap->AddSection(unified_section_sp); } struct section_64 sect64; ::memset(§64, 0, sizeof(sect64)); // Push a section into our mach sections for the section at // index zero (NO_SECT) if we don't have any mach sections yet... if (m_mach_sections.empty()) m_mach_sections.push_back(sect64); uint32_t segment_sect_idx; const lldb::user_id_t first_segment_sectID = sectID + 1; const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects; ++segment_sect_idx) { if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname, sizeof(sect64.sectname)) == NULL) break; if (m_data.GetU8(&offset, (uint8_t *)sect64.segname, sizeof(sect64.segname)) == NULL) break; sect64.addr = m_data.GetAddress(&offset); sect64.size = m_data.GetAddress(&offset); if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) break; // Keep a list of mach sections around in case we need to // get at data that isn't stored in the abstracted Sections. m_mach_sections.push_back(sect64); if (add_section) { ConstString section_name( sect64.sectname, std::min(strlen(sect64.sectname), sizeof(sect64.sectname))); if (!const_segname) { // We have a segment with no name so we need to conjure up // segments that correspond to the section's segname if there // isn't already such a section. If there is such a section, // we resize the section so that it spans all sections. // We also mark these sections as fake so address matches // don't // hit if they land in the gaps between the child sections. const_segname.SetTrimmedCStringWithLength( sect64.segname, sizeof(sect64.segname)); segment_sp = unified_section_list.FindSectionByName(const_segname); if (segment_sp.get()) { Section *segment = segment_sp.get(); // Grow the section size as needed. const lldb::addr_t sect64_min_addr = sect64.addr; const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; if (sect64_min_addr >= curr_seg_min_addr) { const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; // Only grow the section size if needed if (new_seg_byte_size > curr_seg_byte_size) segment->SetByteSize(new_seg_byte_size); } else { // We need to change the base address of the segment and // adjust the child section offsets for all existing // children. const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; segment->Slide(slide_amount, false); segment->GetChildren().Slide(-slide_amount, false); segment->SetByteSize(curr_seg_max_addr - sect64_min_addr); } // Grow the section size as needed. if (sect64.offset) { const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); const lldb::addr_t section_min_file_offset = sect64.offset; const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; const lldb::addr_t new_file_offset = std::min( section_min_file_offset, segment_min_file_offset); const lldb::addr_t new_file_size = std::max(section_max_file_offset, segment_max_file_offset) - new_file_offset; segment->SetFileOffset(new_file_offset); segment->SetFileSize(new_file_size); } } else { // Create a fake section for the section's named segment segment_sp.reset(new Section( segment_sp, // Parent section module_sp, // Module to which this section belongs this, // Object file to which this section belongs ++segID << 8, // Section ID is the 1 based segment index // shifted right by 8 bits as not to // collide with any of the 256 section IDs // that are possible const_segname, // Name of this section eSectionTypeContainer, // This section is a container of // other sections. sect64.addr, // File VM address == addresses as they are // found in the object file sect64.size, // VM size in bytes of this section sect64.offset, // Offset to the data for this section in // the file sect64.offset ? sect64.size : 0, // Size in bytes of // this section as // found in the file sect64.align, load_cmd.flags)); // Flags for this section segment_sp->SetIsFake(true); segment_sp->SetPermissions(segment_permissions); m_sections_ap->AddSection(segment_sp); if (add_to_unified) unified_section_list.AddSection(segment_sp); segment_sp->SetIsEncrypted(segment_is_encrypted); } } assert(segment_sp.get()); lldb::SectionType sect_type = eSectionTypeOther; if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) sect_type = eSectionTypeCode; else { uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; static ConstString g_sect_name_objc_data("__objc_data"); static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs"); static ConstString g_sect_name_objc_selrefs("__objc_selrefs"); static ConstString g_sect_name_objc_classrefs( "__objc_classrefs"); static ConstString g_sect_name_objc_superrefs( "__objc_superrefs"); static ConstString g_sect_name_objc_const("__objc_const"); static ConstString g_sect_name_objc_classlist( "__objc_classlist"); static ConstString g_sect_name_cfstring("__cfstring"); static ConstString g_sect_name_dwarf_debug_abbrev( "__debug_abbrev"); static ConstString g_sect_name_dwarf_debug_aranges( "__debug_aranges"); static ConstString g_sect_name_dwarf_debug_frame( "__debug_frame"); static ConstString g_sect_name_dwarf_debug_info( "__debug_info"); static ConstString g_sect_name_dwarf_debug_line( "__debug_line"); static ConstString g_sect_name_dwarf_debug_loc("__debug_loc"); static ConstString g_sect_name_dwarf_debug_macinfo( "__debug_macinfo"); static ConstString g_sect_name_dwarf_debug_pubnames( "__debug_pubnames"); static ConstString g_sect_name_dwarf_debug_pubtypes( "__debug_pubtypes"); static ConstString g_sect_name_dwarf_debug_ranges( "__debug_ranges"); static ConstString g_sect_name_dwarf_debug_str("__debug_str"); static ConstString g_sect_name_dwarf_apple_names( "__apple_names"); static ConstString g_sect_name_dwarf_apple_types( "__apple_types"); static ConstString g_sect_name_dwarf_apple_namespaces( "__apple_namespac"); static ConstString g_sect_name_dwarf_apple_objc( "__apple_objc"); static ConstString g_sect_name_eh_frame("__eh_frame"); static ConstString g_sect_name_compact_unwind( "__unwind_info"); static ConstString g_sect_name_text("__text"); static ConstString g_sect_name_data("__data"); static ConstString g_sect_name_go_symtab("__gosymtab"); if (section_name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; else if (section_name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; else if (section_name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; else if (section_name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; else if (section_name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; else if (section_name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; else if (section_name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; else if (section_name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; else if (section_name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; else if (section_name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; else if (section_name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; else if (section_name == g_sect_name_dwarf_apple_names) sect_type = eSectionTypeDWARFAppleNames; else if (section_name == g_sect_name_dwarf_apple_types) sect_type = eSectionTypeDWARFAppleTypes; else if (section_name == g_sect_name_dwarf_apple_namespaces) sect_type = eSectionTypeDWARFAppleNamespaces; else if (section_name == g_sect_name_dwarf_apple_objc) sect_type = eSectionTypeDWARFAppleObjC; else if (section_name == g_sect_name_objc_selrefs) sect_type = eSectionTypeDataCStringPointers; else if (section_name == g_sect_name_objc_msgrefs) sect_type = eSectionTypeDataObjCMessageRefs; else if (section_name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; else if (section_name == g_sect_name_compact_unwind) sect_type = eSectionTypeCompactUnwind; else if (section_name == g_sect_name_cfstring) sect_type = eSectionTypeDataObjCCFStrings; else if (section_name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; else if (section_name == g_sect_name_objc_data || section_name == g_sect_name_objc_classrefs || section_name == g_sect_name_objc_superrefs || section_name == g_sect_name_objc_const || section_name == g_sect_name_objc_classlist) { sect_type = eSectionTypeDataPointers; } if (sect_type == eSectionTypeOther) { switch (mach_sect_type) { // TODO: categorize sections by other flags for regular // sections case S_REGULAR: if (section_name == g_sect_name_text) sect_type = eSectionTypeCode; else if (section_name == g_sect_name_data) sect_type = eSectionTypeData; else sect_type = eSectionTypeOther; break; case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of // stub in the reserved2 field case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for // initialization case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for // termination case S_COALESCED: sect_type = eSectionTypeOther; break; case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for // interposing case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; default: break; } } } SectionSP section_sp(new Section( segment_sp, module_sp, this, ++sectID, section_name, sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align, sect64.flags)); // Set the section to be encrypted to match the segment bool section_is_encrypted = false; if (!segment_is_encrypted && load_cmd.filesize != 0) section_is_encrypted = encrypted_file_ranges.FindEntryThatContains( sect64.offset) != NULL; section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted); section_sp->SetPermissions(segment_permissions); segment_sp->GetChildren().AddSection(section_sp); if (segment_sp->IsFake()) { segment_sp.reset(); const_segname.Clear(); } } } if (segment_sp && is_dsym) { if (first_segment_sectID <= sectID) { lldb::user_id_t sect_uid; for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) { SectionSP curr_section_sp( segment_sp->GetChildren().FindSectionByID(sect_uid)); SectionSP next_section_sp; if (sect_uid + 1 <= sectID) next_section_sp = segment_sp->GetChildren().FindSectionByID(sect_uid + 1); if (curr_section_sp.get()) { if (curr_section_sp->GetByteSize() == 0) { if (next_section_sp.get() != NULL) curr_section_sp->SetByteSize( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress()); else curr_section_sp->SetByteSize(load_cmd.vmsize); } } } } } } } } else if (load_cmd.cmd == LC_DYSYMTAB) { m_dysymtab.cmd = load_cmd.cmd; m_dysymtab.cmdsize = load_cmd.cmdsize; m_data.GetU32(&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); } offset = load_cmd_offset + load_cmd.cmdsize; } if (section_file_addresses_changed && module_sp.get()) { module_sp->SectionFileAddressesChanged(); } } } class MachSymtabSectionInfo { public: MachSymtabSectionInfo(SectionList *section_list) : m_section_list(section_list), m_section_infos() { // Get the number of sections down to a depth of 1 to include // all segments and their sections, but no other sections that // may be added for debug map or m_section_infos.resize(section_list->GetNumSections(1)); } SectionSP GetSection(uint8_t n_sect, addr_t file_addr) { if (n_sect == 0) return SectionSP(); if (n_sect < m_section_infos.size()) { if (!m_section_infos[n_sect].section_sp) { SectionSP section_sp(m_section_list->FindSectionByID(n_sect)); m_section_infos[n_sect].section_sp = section_sp; if (section_sp) { m_section_infos[n_sect].vm_range.SetBaseAddress( section_sp->GetFileAddress()); m_section_infos[n_sect].vm_range.SetByteSize( section_sp->GetByteSize()); } else { Host::SystemLog(Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); } } if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { // Symbol is in section. return m_section_infos[n_sect].section_sp; } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 && m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) { // Symbol is in section with zero size, but has the same start // address as the section. This can happen with linker symbols // (symbols that start with the letter 'l' or 'L'. return m_section_infos[n_sect].section_sp; } } return m_section_list->FindSectionContainingFileAddress(file_addr); } protected: struct SectionInfo { SectionInfo() : vm_range(), section_sp() {} VMRange vm_range; SectionSP section_sp; }; SectionList *m_section_list; std::vector m_section_infos; }; struct TrieEntry { TrieEntry() : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0), import_name() {} void Clear() { name.Clear(); address = LLDB_INVALID_ADDRESS; flags = 0; other = 0; import_name.Clear(); } void Dump() const { printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", static_cast(address), static_cast(flags), static_cast(other), name.GetCString()); if (import_name) printf(" -> \"%s\"\n", import_name.GetCString()); else printf("\n"); } ConstString name; uint64_t address; uint64_t flags; uint64_t other; ConstString import_name; }; struct TrieEntryWithOffset { lldb::offset_t nodeOffset; TrieEntry entry; TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {} void Dump(uint32_t idx) const { printf("[%3u] 0x%16.16llx: ", idx, static_cast(nodeOffset)); entry.Dump(); } bool operator<(const TrieEntryWithOffset &other) const { return (nodeOffset < other.nodeOffset); } }; static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset, const bool is_arm, std::vector &nameSlices, std::set &resolver_addresses, std::vector &output) { if (!data.ValidOffset(offset)) return true; const uint64_t terminalSize = data.GetULEB128(&offset); lldb::offset_t children_offset = offset + terminalSize; if (terminalSize != 0) { TrieEntryWithOffset e(offset); e.entry.flags = data.GetULEB128(&offset); const char *import_name = NULL; if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) { e.entry.address = 0; e.entry.other = data.GetULEB128(&offset); // dylib ordinal import_name = data.GetCStr(&offset); } else { e.entry.address = data.GetULEB128(&offset); if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) { e.entry.other = data.GetULEB128(&offset); uint64_t resolver_addr = e.entry.other; if (is_arm) resolver_addr &= THUMB_ADDRESS_BIT_MASK; resolver_addresses.insert(resolver_addr); } else e.entry.other = 0; } // Only add symbols that are reexport symbols with a valid import name if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) { std::string name; if (!nameSlices.empty()) { for (auto name_slice : nameSlices) name.append(name_slice.data(), name_slice.size()); } if (name.size() > 1) { // Skip the leading '_' e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1); } if (import_name) { // Skip the leading '_' e.entry.import_name.SetCString(import_name + 1); } output.push_back(e); } } const uint8_t childrenCount = data.GetU8(&children_offset); for (uint8_t i = 0; i < childrenCount; ++i) { const char *cstr = data.GetCStr(&children_offset); if (cstr) nameSlices.push_back(llvm::StringRef(cstr)); else return false; // Corrupt data lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); if (childNodeOffset) { if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices, resolver_addresses, output)) { return false; } } nameSlices.pop_back(); } return true; } // Read the UUID out of a dyld_shared_cache file on-disk. UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache, const ByteOrder byte_order, const uint32_t addr_byte_size) { UUID dsc_uuid; DataBufferSP dsc_data_sp = dyld_shared_cache.MemoryMapFileContentsIfLocal( 0, sizeof(struct lldb_copy_dyld_cache_header_v1)); if (dsc_data_sp) { DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); char version_str[7]; lldb::offset_t offset = 0; memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6); version_str[6] = '\0'; if (strcmp(version_str, "dyld_v") == 0) { offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid); uint8_t uuid_bytes[sizeof(uuid_t)]; memcpy(uuid_bytes, dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t)); dsc_uuid.SetBytes(uuid_bytes); } } return dsc_uuid; } size_t ObjectFileMachO::ParseSymtab() { Timer scoped_timer(LLVM_PRETTY_FUNCTION, "ObjectFileMachO::ParseSymtab () module = %s", m_file.GetFilename().AsCString("")); ModuleSP module_sp(GetModule()); if (!module_sp) return 0; struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0}; struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0}; struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; typedef AddressDataArray FunctionStarts; FunctionStarts function_starts; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; FileSpecList dylib_files; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; // Read in the load command and load command size struct load_command lc; if (m_data.GetU32(&offset, &lc, 2) == NULL) break; // Watch for the symbol table load command switch (lc.cmd) { case LC_SYMTAB: symtab_load_command.cmd = lc.cmd; symtab_load_command.cmdsize = lc.cmdsize; // Read in the rest of the symtab load command if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields return 0; if (symtab_load_command.symoff == 0) { if (log) module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); return 0; } if (symtab_load_command.stroff == 0) { if (log) module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); return 0; } if (symtab_load_command.nsyms == 0) { if (log) module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); return 0; } if (symtab_load_command.strsize == 0) { if (log) module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); return 0; } break; case LC_DYLD_INFO: case LC_DYLD_INFO_ONLY: if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) { dyld_info.cmd = lc.cmd; dyld_info.cmdsize = lc.cmdsize; } else { memset(&dyld_info, 0, sizeof(dyld_info)); } break; case LC_LOAD_DYLIB: case LC_LOAD_WEAK_DYLIB: case LC_REEXPORT_DYLIB: case LC_LOADFVMLIB: case LC_LOAD_UPWARD_DYLIB: { uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); const char *path = m_data.PeekCStr(name_offset); if (path) { FileSpec file_spec(path, false); // Strip the path if there is @rpath, @executable, etc so we just use // the basename if (path[0] == '@') file_spec.GetDirectory().Clear(); if (lc.cmd == LC_REEXPORT_DYLIB) { m_reexported_dylibs.AppendIfUnique(file_spec); } dylib_files.Append(file_spec); } } break; case LC_FUNCTION_STARTS: function_starts_load_command.cmd = lc.cmd; function_starts_load_command.cmdsize = lc.cmdsize; if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields memset(&function_starts_load_command, 0, sizeof(function_starts_load_command)); break; default: break; } offset = cmd_offset + lc.cmdsize; } if (symtab_load_command.cmd) { Symtab *symtab = m_symtab_ap.get(); SectionList *section_list = GetSectionList(); if (section_list == NULL) return 0; const uint32_t addr_byte_size = m_data.GetAddressByteSize(); const ByteOrder byte_order = m_data.GetByteOrder(); bool bit_width_32 = addr_byte_size == 4; const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size); DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size); DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size); DataExtractor indirect_symbol_index_data(NULL, 0, byte_order, addr_byte_size); DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size); const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; const addr_t strtab_data_byte_size = symtab_load_command.strsize; addr_t strtab_addr = LLDB_INVALID_ADDRESS; ProcessSP process_sp(m_process_wp.lock()); Process *process = process_sp.get(); uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; if (process && m_header.filetype != llvm::MachO::MH_OBJECT) { Target &target = process->GetTarget(); memory_module_load_level = target.GetMemoryModuleLoadLevel(); SectionSP linkedit_section_sp( section_list->FindSectionByName(GetSegmentNameLINKEDIT())); // Reading mach file from memory in a process or core file... if (linkedit_section_sp) { addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); if (linkedit_load_addr == LLDB_INVALID_ADDRESS) { // We might be trying to access the symbol table before the // __LINKEDIT's load // address has been set in the target. We can't fail to read the // symbol table, // so calculate the right address manually linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage( m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); } const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; bool data_was_read = false; #if defined(__APPLE__) && \ (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof(void *)) { // This mach-o memory file is in the dyld shared cache. If this // program is not remote and this is iOS, then this process will // share the same shared cache as the process we are debugging and // we can read the entire __LINKEDIT from the address space in this // process. This is a needed optimization that is used for local iOS // debugging only since all shared libraries in the shared cache do // not have corresponding files that exist in the file system of the // device. They have been combined into a single file. This means we // always have to load these files from memory. All of the symbol and // string tables from all of the __LINKEDIT sections from the shared // libraries in the shared cache have been merged into a single large // symbol and string table. Reading all of this symbol and string // table // data across can slow down debug launch times, so we optimize this // by // reading the memory for the __LINKEDIT section from this process. UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); UUID process_shared_cache(GetProcessSharedCacheUUID(process)); bool use_lldb_cache = true; if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) { use_lldb_cache = false; ModuleSP module_sp(GetModule()); if (module_sp) module_sp->ReportWarning("shared cache in process does not match " "lldb's own shared cache, startup will " "be slow."); } PlatformSP platform_sp(target.GetPlatform()); if (platform_sp && platform_sp->IsHost() && use_lldb_cache) { data_was_read = true; nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); if (function_starts_load_command.cmd) { const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; function_starts_data.SetData( (void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); } } } #endif if (!data_was_read) { // Always load dyld - the dynamic linker - from memory if we didn't // find a binary anywhere else. // lldb will not register dylib/framework/bundle loads/unloads if we // don't have the dyld symbols, // we force dyld to load from memory despite the user's // target.memory-module-load-level setting. if (memory_module_load_level == eMemoryModuleLoadLevelComplete || m_header.filetype == llvm::MachO::MH_DYLINKER) { DataBufferSP nlist_data_sp( ReadMemory(process_sp, symoff_addr, nlist_data_byte_size)); if (nlist_data_sp) nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize()); // Load strings individually from memory when loading from memory // since shared cache // string tables contain strings for all symbols from all shared // cached libraries // DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, // strtab_data_byte_size)); // if (strtab_data_sp) // strtab_data.SetData (strtab_data_sp, 0, // strtab_data_sp->GetByteSize()); if (m_dysymtab.nindirectsyms != 0) { const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; DataBufferSP indirect_syms_data_sp( ReadMemory(process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); if (indirect_syms_data_sp) indirect_symbol_index_data.SetData( indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); } } else if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) { if (function_starts_load_command.cmd) { const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; DataBufferSP func_start_data_sp( ReadMemory(process_sp, func_start_addr, function_starts_load_command.datasize)); if (func_start_data_sp) function_starts_data.SetData(func_start_data_sp, 0, func_start_data_sp->GetByteSize()); } } } } } else { nlist_data.SetData(m_data, symtab_load_command.symoff, nlist_data_byte_size); strtab_data.SetData(m_data, symtab_load_command.stroff, strtab_data_byte_size); if (dyld_info.export_size > 0) { dyld_trie_data.SetData(m_data, dyld_info.export_off, dyld_info.export_size); } if (m_dysymtab.nindirectsyms != 0) { indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4); } if (function_starts_load_command.cmd) { function_starts_data.SetData(m_data, function_starts_load_command.dataoff, function_starts_load_command.datasize); } } if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) { if (log) module_sp->LogMessage(log, "failed to read nlist data"); return 0; } const bool have_strtab_data = strtab_data.GetByteSize() > 0; if (!have_strtab_data) { if (process) { if (strtab_addr == LLDB_INVALID_ADDRESS) { if (log) module_sp->LogMessage(log, "failed to locate the strtab in memory"); return 0; } } else { if (log) module_sp->LogMessage(log, "failed to read strtab data"); return 0; } } const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); SectionSP text_section_sp( section_list->FindSectionByName(g_segment_name_TEXT)); SectionSP data_section_sp( section_list->FindSectionByName(g_segment_name_DATA)); SectionSP data_dirty_section_sp( section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); SectionSP data_const_section_sp( section_list->FindSectionByName(g_segment_name_DATA_CONST)); SectionSP objc_section_sp( section_list->FindSectionByName(g_segment_name_OBJC)); SectionSP eh_frame_section_sp; if (text_section_sp.get()) eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName( g_section_name_eh_frame); else eh_frame_section_sp = section_list->FindSectionByName(g_section_name_eh_frame); const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); // lldb works best if it knows the start address of all functions in a // module. // Linker symbols or debug info are normally the best source of information // for start addr / size but // they may be stripped in a released binary. // Two additional sources of information exist in Mach-O binaries: // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each // function's start address in the // binary, relative to the text section. // eh_frame - the eh_frame FDEs have the start addr & size of // each function // LC_FUNCTION_STARTS is the fastest source to read in, and is present on // all modern binaries. // Binaries built to run on older releases may need to use eh_frame // information. if (text_section_sp && function_starts_data.GetByteSize()) { FunctionStarts::Entry function_start_entry; function_start_entry.data = false; lldb::offset_t function_start_offset = 0; function_start_entry.addr = text_section_sp->GetFileAddress(); uint64_t delta; while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) { // Now append the current entry function_start_entry.addr += delta; function_starts.Append(function_start_entry); } } else { // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the // load command claiming an eh_frame // but it doesn't actually have the eh_frame content. And if we have a // dSYM, we don't need to do any // of this fill-in-the-missing-symbols works anyway - the debug info // should give us all the functions in // the module. if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) { DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindEHFrame, true); DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; eh_frame.GetFunctionAddressAndSizeVector(functions); addr_t text_base_addr = text_section_sp->GetFileAddress(); size_t count = functions.GetSize(); for (size_t i = 0; i < count; ++i) { const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex(i); if (func) { FunctionStarts::Entry function_start_entry; function_start_entry.addr = func->base - text_base_addr; function_starts.Append(function_start_entry); } } } } const size_t function_starts_count = function_starts.GetSize(); // For user process binaries (executables, dylibs, frameworks, bundles), if // we don't have // LC_FUNCTION_STARTS/eh_frame section in this binary, we're going to assume // the binary // has been stripped. Don't allow assembly language instruction emulation // because we don't // know proper function start boundaries. // // For all other types of binaries (kernels, stand-alone bare board // binaries, kexts), they // may not have LC_FUNCTION_STARTS / eh_frame sections - we should not make // any assumptions // about them based on that. if (function_starts_count == 0 && CalculateStrata() == eStrataUser) { m_allow_assembly_emulation_unwind_plans = false; Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet( LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND)); if (unwind_or_symbol_log) module_sp->LogMessage( unwind_or_symbol_log, "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds"); } const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : static_cast(NO_SECT); lldb::offset_t nlist_data_offset = 0; uint32_t N_SO_index = UINT32_MAX; MachSymtabSectionInfo section_info(section_list); std::vector N_FUN_indexes; std::vector N_NSYM_indexes; std::vector N_INCL_indexes; std::vector N_BRAC_indexes; std::vector N_COMM_indexes; typedef std::multimap ValueToSymbolIndexMap; typedef std::map NListIndexToSymbolIndexMap; typedef std::map ConstNameToSymbolIndexMap; ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; // Any symbols that get merged into another will get an entry // in this map so we know NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; uint32_t nlist_idx = 0; Symbol *symbol_ptr = NULL; uint32_t sym_idx = 0; Symbol *sym = NULL; size_t num_syms = 0; std::string memory_symbol_name; uint32_t unmapped_local_symbols_found = 0; std::vector trie_entries; std::set resolver_addresses; if (dyld_trie_data.GetByteSize() > 0) { std::vector nameSlices; ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices, resolver_addresses, trie_entries); ConstString text_segment_name("__TEXT"); SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); if (text_segment_sp) { const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); if (text_segment_file_addr != LLDB_INVALID_ADDRESS) { for (auto &e : trie_entries) e.entry.address += text_segment_file_addr; } } } typedef std::set IndirectSymbols; IndirectSymbols indirect_symbol_names; #if defined(__APPLE__) && \ (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been // optimized by moving LOCAL // symbols out of the memory mapped portion of the DSC. The symbol // information has all been retained, // but it isn't available in the normal nlist data. However, there *are* // duplicate entries of *some* // LOCAL symbols in the normal nlist data. To handle this situation // correctly, we must first attempt // to parse any DSC unmapped symbol information. If we find any, we set a // flag that tells the normal // nlist parser to ignore all LOCAL symbols. if (m_header.flags & 0x80000000u) { // Before we can start mapping the DSC, we need to make certain the target // process is actually // using the cache we can find. // Next we need to determine the correct path for the dyld shared cache. ArchSpec header_arch; GetArchitecture(header_arch); char dsc_path[PATH_MAX]; char dsc_path_development[PATH_MAX]; snprintf( dsc_path, sizeof(dsc_path), "%s%s%s", "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ header_arch.GetArchitectureName()); snprintf( dsc_path_development, sizeof(dsc_path), "%s%s%s%s", "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ header_arch.GetArchitectureName(), ".development"); FileSpec dsc_nondevelopment_filespec(dsc_path, false); FileSpec dsc_development_filespec(dsc_path_development, false); FileSpec dsc_filespec; UUID dsc_uuid; UUID process_shared_cache_uuid; if (process) { process_shared_cache_uuid = GetProcessSharedCacheUUID(process); } // First see if we can find an exact match for the inferior process shared // cache UUID in // the development or non-development shared caches on disk. if (process_shared_cache_uuid.IsValid()) { if (dsc_development_filespec.Exists()) { UUID dsc_development_uuid = GetSharedCacheUUID( dsc_development_filespec, byte_order, addr_byte_size); if (dsc_development_uuid.IsValid() && dsc_development_uuid == process_shared_cache_uuid) { dsc_filespec = dsc_development_filespec; dsc_uuid = dsc_development_uuid; } } if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) { UUID dsc_nondevelopment_uuid = GetSharedCacheUUID( dsc_nondevelopment_filespec, byte_order, addr_byte_size); if (dsc_nondevelopment_uuid.IsValid() && dsc_nondevelopment_uuid == process_shared_cache_uuid) { dsc_filespec = dsc_nondevelopment_filespec; dsc_uuid = dsc_nondevelopment_uuid; } } } // Failing a UUID match, prefer the development dyld_shared cache if both // are present. if (!dsc_filespec.Exists()) { if (dsc_development_filespec.Exists()) { dsc_filespec = dsc_development_filespec; } else { dsc_filespec = dsc_nondevelopment_filespec; } } /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). The dyld_cache_local_symbols_info structure gives us three things: 1. The start and count of the nlist records in the dyld_shared_cache file 2. The start and size of the strings for these nlist records 3. The start and count of dyld_cache_local_symbols_entry entries There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records and the count of how many nlist records there are for this dylib/framework. */ // Process the dyld shared cache header to find the unmapped symbols DataBufferSP dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal( 0, sizeof(struct lldb_copy_dyld_cache_header_v1)); if (!dsc_uuid.IsValid()) { dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size); } if (dsc_data_sp) { DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); bool uuid_match = true; if (dsc_uuid.IsValid() && process) { if (process_shared_cache_uuid.IsValid() && dsc_uuid != process_shared_cache_uuid) { // The on-disk dyld_shared_cache file is not the same as the one in // this // process' memory, don't use it. uuid_match = false; ModuleSP module_sp(GetModule()); if (module_sp) module_sp->ReportWarning("process shared cache does not match " "on-disk dyld_shared_cache file, some " "symbol names will be missing."); } } offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset); uint32_t mappingOffset = dsc_header_data.GetU32(&offset); // If the mappingOffset points to a location inside the header, we've // opened an old dyld shared cache, and should not proceed further. if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) { DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal( mappingOffset, sizeof(struct lldb_copy_dyld_cache_mapping_info)); DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); offset = 0; // The File addresses (from the in-memory Mach-O load commands) for // the shared libraries // in the shared library cache need to be adjusted by an offset to // match up with the // dylibOffset identifying field in the // dyld_cache_local_symbol_entry's. This offset is // recorded in mapping_offset_value. const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); offset = offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); if (localSymbolsOffset && localSymbolsSize) { // Map the local symbols if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal( localSymbolsOffset, localSymbolsSize)) { DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); offset = 0; typedef std::map UndefinedNameToDescMap; typedef std::map SymbolIndexToName; UndefinedNameToDescMap undefined_name_to_desc; SymbolIndexToName reexport_shlib_needs_fixup; // Read the local_symbols_infos struct in one shot struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); SectionSP text_section_sp( section_list->FindSectionByName(GetSegmentNameTEXT())); uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); offset = local_symbols_info.entriesOffset; for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) { struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); if (header_file_offset == local_symbols_entry.dylibOffset) { unmapped_local_symbols_found = local_symbols_entry.nlistCount; // The normal nlist code cannot correctly size the Symbols // array, we need to allocate it here. sym = symtab->Resize( symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); num_syms = symtab->GetNumSymbols(); nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); uint32_t string_table_offset = local_symbols_info.stringsOffset; for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) { ///////////////////////////// { struct nlist_64 nlist; if (!dsc_local_symbols_data.ValidOffsetForDataOfSize( nlist_data_offset, nlist_byte_size)) break; nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked( &nlist_data_offset); nlist.n_type = dsc_local_symbols_data.GetU8_unchecked( &nlist_data_offset); nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked( &nlist_data_offset); nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked( &nlist_data_offset); nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked( &nlist_data_offset); SymbolType type = eSymbolTypeInvalid; const char *symbol_name = dsc_local_symbols_data.PeekCStr( string_table_offset + nlist.n_strx); if (symbol_name == NULL) { // No symbol should be NULL, even the symbols with no // string values should have an offset zero which points // to an empty C-string Host::SystemLog( Host::eSystemLogError, "error: DSC unmapped local symbol[%u] has invalid " "string table offset 0x%x in %s, ignoring symbol\n", entry_index, nlist.n_strx, module_sp->GetFileSpec().GetPath().c_str()); continue; } if (symbol_name[0] == '\0') symbol_name = NULL; const char *symbol_name_non_abi_mangled = NULL; SectionSP symbol_section; uint32_t symbol_byte_size = 0; bool add_nlist = true; bool is_debug = ((nlist.n_type & N_STAB) != 0); bool demangled_is_synthesized = false; bool is_gsym = false; bool set_value = true; assert(sym_idx < num_syms); sym[sym_idx].SetDebug(is_debug); if (is_debug) { switch (nlist.n_type) { case N_GSYM: // global symbol: name,,NO_SECT,type,0 // Sometimes the N_GSYM value contains the address. // FIXME: In the .o files, we have a GSYM and a debug // symbol for all the ObjC data. They // have the same address, but we want to ensure that // we always find only the real symbol, // 'cause we don't currently correctly attribute the // GSYM one to the ObjCClass/Ivar/MetaClass // symbol type. This is a temporary hack to make sure // the ObjectiveC symbols get treated // correctly. To do this right, we should coalesce // all the GSYM & global symbols that have the // same address. is_gsym = true; sym[sym_idx].SetExternal(true); if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith( g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } else { if (nlist.n_value != 0) symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); type = eSymbolTypeData; } break; case N_FNAME: // procedure name (f77 kludge): name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_FUN: // procedure: name,,n_sect,linenumber,address if (symbol_name) { type = eSymbolTypeCode; symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); N_FUN_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); // We use the current number of symbols in the // symbol table in lieu of // using nlist_idx in case we ever start trimming // entries out N_FUN_indexes.push_back(sym_idx); } else { type = eSymbolTypeCompiler; if (!N_FUN_indexes.empty()) { // Copy the size of the function into the original // STAB entry so we don't have // to hunt for it later symtab->SymbolAtIndex(N_FUN_indexes.back()) ->SetByteSize(nlist.n_value); N_FUN_indexes.pop_back(); // We don't really need the end function STAB as // it contains the size which // we already placed with the original symbol, so // don't add it if we want a // minimal symbol table add_nlist = false; } } break; case N_STSYM: // static symbol: name,,n_sect,type,address N_STSYM_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); if (symbol_name && symbol_name[0]) { type = ObjectFile::GetSymbolTypeFromName( symbol_name + 1, eSymbolTypeData); } break; case N_LCSYM: // .lcomm symbol: name,,n_sect,type,address symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); type = eSymbolTypeCommonBlock; break; case N_BNSYM: // We use the current number of symbols in the symbol // table in lieu of // using nlist_idx in case we ever start trimming // entries out // Skip these if we want minimal symbol tables add_nlist = false; break; case N_ENSYM: // Set the size of the N_BNSYM to the terminating // index of this N_ENSYM // so that we can always skip the entire symbol if we // need to navigate // more quickly at the source level when parsing STABS // Skip these if we want minimal symbol tables add_nlist = false; break; case N_OPT: // emitted with gcc2_compiled and in gcc source type = eSymbolTypeCompiler; break; case N_RSYM: // register sym: name,,NO_SECT,type,register type = eSymbolTypeVariable; break; case N_SLINE: // src line: 0,,n_sect,linenumber,address symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; case N_SSYM: // structure elt: name,,NO_SECT,type,struct_offset type = eSymbolTypeVariableType; break; case N_SO: // source file name type = eSymbolTypeSourceFile; if (symbol_name == NULL) { add_nlist = false; if (N_SO_index != UINT32_MAX) { // Set the size of the N_SO to the terminating // index of this N_SO // so that we can always skip the entire N_SO if // we need to navigate // more quickly at the source level when parsing // STABS symbol_ptr = symtab->SymbolAtIndex(N_SO_index); symbol_ptr->SetByteSize(sym_idx); symbol_ptr->SetSizeIsSibling(true); } N_NSYM_indexes.clear(); N_INCL_indexes.clear(); N_BRAC_indexes.clear(); N_COMM_indexes.clear(); N_FUN_indexes.clear(); N_SO_index = UINT32_MAX; } else { // We use the current number of symbols in the // symbol table in lieu of // using nlist_idx in case we ever start trimming // entries out const bool N_SO_has_full_path = symbol_name[0] == '/'; if (N_SO_has_full_path) { if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // We have two consecutive N_SO entries where // the first contains a directory // and the second contains a full path. sym[sym_idx - 1].GetMangled().SetValue( ConstString(symbol_name), false); m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; add_nlist = false; } else { // This is the first entry in a N_SO that // contains a directory or // a full path to the source file N_SO_index = sym_idx; } } else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // This is usually the second N_SO entry that // contains just the filename, // so here we combine it with the first one if we // are minimizing the symbol table const char *so_path = sym[sym_idx - 1] .GetMangled() .GetDemangledName( lldb::eLanguageTypeUnknown) .AsCString(); if (so_path && so_path[0]) { std::string full_so_path(so_path); const size_t double_slash_pos = full_so_path.find("//"); if (double_slash_pos != std::string::npos) { // The linker has been generating bad N_SO // entries with doubled up paths // in the format "%s%s" where the first string // in the DW_AT_comp_dir, // and the second is the directory for the // source file so you end up with // a path that looks like "/tmp/src//tmp/src/" FileSpec so_dir(so_path, false); if (!so_dir.Exists()) { so_dir.SetFile( &full_so_path[double_slash_pos + 1], false); if (so_dir.Exists()) { // Trim off the incorrect path full_so_path.erase(0, double_slash_pos + 1); } } } if (*full_so_path.rbegin() != '/') full_so_path += '/'; full_so_path += symbol_name; sym[sym_idx - 1].GetMangled().SetValue( ConstString(full_so_path.c_str()), false); add_nlist = false; m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; } } else { // This could be a relative path to a N_SO N_SO_index = sym_idx; } } break; case N_OSO: // object file name: name,,0,0,st_mtime type = eSymbolTypeObjectFile; break; case N_LSYM: // local sym: name,,NO_SECT,type,offset type = eSymbolTypeLocal; break; //---------------------------------------------------------------------- // INCL scopes //---------------------------------------------------------------------- case N_BINCL: // include file beginning: name,,NO_SECT,0,sum // We use the current number of symbols in the symbol // table in lieu of // using nlist_idx in case we ever start trimming // entries out N_INCL_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_EINCL: // include file end: name,,NO_SECT,0,0 // Set the size of the N_BINCL to the terminating // index of this N_EINCL // so that we can always skip the entire symbol if we // need to navigate // more quickly at the source level when parsing STABS if (!N_INCL_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_INCL_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_SOL: // #included file name: name,,n_sect,0,address type = eSymbolTypeHeaderFile; // We currently don't use the header files on darwin add_nlist = false; break; case N_PARAMS: // compiler parameters: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_VERSION: // compiler version: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_OLEVEL: // compiler -O level: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_PSYM: // parameter: name,,NO_SECT,type,offset type = eSymbolTypeVariable; break; case N_ENTRY: // alternate entry: name,,n_sect,linenumber,address symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; //---------------------------------------------------------------------- // Left and Right Braces //---------------------------------------------------------------------- case N_LBRAC: // left bracket: 0,,NO_SECT,nesting level,address // We use the current number of symbols in the symbol // table in lieu of // using nlist_idx in case we ever start trimming // entries out symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); N_BRAC_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_RBRAC: // right bracket: 0,,NO_SECT,nesting level,address // Set the size of the N_LBRAC to the terminating // index of this N_RBRAC // so that we can always skip the entire symbol if we // need to navigate // more quickly at the source level when parsing STABS symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); if (!N_BRAC_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_BRAC_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_EXCL: // deleted include file: name,,NO_SECT,0,sum type = eSymbolTypeHeaderFile; break; //---------------------------------------------------------------------- // COMM scopes //---------------------------------------------------------------------- case N_BCOMM: // begin common: name,,NO_SECT,0,0 // We use the current number of symbols in the symbol // table in lieu of // using nlist_idx in case we ever start trimming // entries out type = eSymbolTypeScopeBegin; N_COMM_indexes.push_back(sym_idx); break; case N_ECOML: // end common (local name): 0,,n_sect,0,address symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); // Fall through case N_ECOMM: // end common: name,,n_sect,0,0 // Set the size of the N_BCOMM to the terminating // index of this N_ECOMM/N_ECOML // so that we can always skip the entire symbol if we // need to navigate // more quickly at the source level when parsing STABS if (!N_COMM_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_COMM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_LENG: // second stab entry with length information type = eSymbolTypeAdditional; break; default: break; } } else { // uint8_t n_pext = N_PEXT & nlist.n_type; uint8_t n_type = N_TYPE & nlist.n_type; sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); switch (n_type) { case N_INDR: { const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); if (reexport_name_cstr && reexport_name_cstr[0]) { type = eSymbolTypeReExported; ConstString reexport_name( reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); sym[sym_idx].SetReExportedSymbolName(reexport_name); set_value = false; reexport_shlib_needs_fixup[sym_idx] = reexport_name; indirect_symbol_names.insert( ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); } else type = eSymbolTypeUndefined; } break; case N_UNDF: if (symbol_name && symbol_name[0]) { ConstString undefined_name( symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); undefined_name_to_desc[undefined_name] = nlist.n_desc; } // Fall through case N_PBUD: type = eSymbolTypeUndefined; break; case N_ABS: type = eSymbolTypeAbsolute; break; case N_SECT: { symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); if (symbol_section == NULL) { // TODO: warn about this? add_nlist = false; break; } if (TEXT_eh_frame_sectID == nlist.n_sect) { type = eSymbolTypeException; } else { uint32_t section_type = symbol_section->Get() & SECTION_TYPE; switch (section_type) { case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol // pointers case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte // size of stub in the reserved2 field case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for // initialization case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for // termination case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function // pointers for interposing case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; default: switch (symbol_section->GetType()) { case lldb::eSectionTypeCode: type = eSymbolTypeCode; break; case eSectionTypeData: case eSectionTypeDataCString: // Inlined C string // data case eSectionTypeDataCStringPointers: // Pointers // to C // string // data case eSectionTypeDataSymbolAddress: // Address of // a symbol in // the symbol // table case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: type = eSymbolTypeData; break; default: break; } break; } if (type == eSymbolTypeInvalid) { const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant( text_section_sp.get())) { if (symbol_section->IsClear( S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SELF_MODIFYING_CODE | S_ATTR_SOME_INSTRUCTIONS)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant( data_section_sp.get()) || symbol_section->IsDescendant( data_dirty_section_sp.get()) || symbol_section->IsDescendant( data_const_section_sp.get())) { if (symbol_sect_name && ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name) { llvm::StringRef symbol_name_ref( symbol_name); if (symbol_name_ref.startswith("_OBJC_")) { static const llvm::StringRef g_objc_v2_prefix_class( "_OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass( "_OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar( "_OBJC_IVAR_$_"); if (symbol_name_ref.startswith( g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if ( symbol_name_ref.startswith( g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } else if (symbol_section->IsDescendant( objc_section_sp.get())) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '.') { llvm::StringRef symbol_name_ref(symbol_name); static const llvm::StringRef g_objc_v1_prefix_class( ".objc_class_name_"); if (symbol_name_ref.startswith( g_objc_v1_prefix_class)) { symbol_name_non_abi_mangled = symbol_name; symbol_name = symbol_name + g_objc_v1_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } } } } } } break; } } if (add_nlist) { uint64_t symbol_value = nlist.n_value; if (symbol_name_non_abi_mangled) { sym[sym_idx].GetMangled().SetMangledName( ConstString(symbol_name_non_abi_mangled)); sym[sym_idx].GetMangled().SetDemangledName( ConstString(symbol_name)); } else { bool symbol_name_is_mangled = false; if (symbol_name && symbol_name[0] == '_') { symbol_name_is_mangled = symbol_name[1] == '_'; symbol_name++; // Skip the leading underscore } if (symbol_name) { ConstString const_symbol_name(symbol_name); sym[sym_idx].GetMangled().SetValue( const_symbol_name, symbol_name_is_mangled); if (is_gsym && is_debug) { const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) .GetCString(); if (gsym_name) N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; } } } if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); if (symbol_byte_size == 0 && function_starts_count > 0) { addr_t symbol_lookup_file_addr = nlist.n_value; // Do an exact address match for non-ARM addresses, // else get the closest since // the symbol might be a thumb symbol which has an // address with bit zero set FunctionStarts::Entry *func_start_entry = function_starts.FindEntry( symbol_lookup_file_addr, !is_arm); if (is_arm && func_start_entry) { // Verify that the function start address is the // symbol address (ARM) // or the symbol address + 1 (thumb) if (func_start_entry->addr != symbol_lookup_file_addr && func_start_entry->addr != (symbol_lookup_file_addr + 1)) { // Not the right entry, NULL it out... func_start_entry = NULL; } } if (func_start_entry) { func_start_entry->data = true; addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (is_arm) { if (symbol_file_addr & 1) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; } const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry( func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; // Be sure the clear the Thumb address bit when // we calculate the size // from the current and next address if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min( next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } } } symbol_value -= section_file_addr; } if (is_debug == false) { if (type == eSymbolTypeCode) { // See if we can find a N_FUN entry for any code // symbols. // If we do find a match, and the name matches, then // we // can merge the two into just the function symbol // to avoid // duplicate entries in the symbol table std::pair range; range = N_FUN_addr_to_sym_idx.equal_range( nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker // symbol, so put these flags // into the N_FUN flags to avoid duplicate // symbols in the symbol table sym[pos->second].SetExternal( sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) sym[pos->second].SetType( eSymbolTypeResolver); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) type = eSymbolTypeResolver; } } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || type == eSymbolTypeObjCMetaClass || type == eSymbolTypeObjCIVar) { // See if we can find a N_STSYM entry for any data // symbols. // If we do find a match, and the name matches, then // we // can merge the two into just the Static symbol to // avoid // duplicate entries in the symbol table std::pair range; range = N_STSYM_addr_to_sym_idx.equal_range( nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker // symbol, so put these flags // into the N_STSYM flags to avoid duplicate // symbols in the symbol table sym[pos->second].SetExternal( sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) .GetCString(); if (gsym_name) { // Combine N_GSYM stab entries with the non stab // symbol ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); if (pos != N_GSYM_name_to_sym_idx.end()) { const uint32_t GSYM_sym_idx = pos->second; m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; // Copy the address, because often the N_GSYM // address has an invalid address of zero // when the global is a common symbol sym[GSYM_sym_idx].GetAddressRef().SetSection( symbol_section); sym[GSYM_sym_idx].GetAddressRef().SetOffset( symbol_value); // We just need the flags from the linker // symbol, so put these flags // into the N_GSYM flags to avoid duplicate // symbols in the symbol table sym[GSYM_sym_idx].SetFlags( nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); continue; } } } } } sym[sym_idx].SetID(nlist_idx); sym[sym_idx].SetType(type); if (set_value) { sym[sym_idx].GetAddressRef().SetSection( symbol_section); sym[sym_idx].GetAddressRef().SetOffset(symbol_value); } sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (symbol_byte_size > 0) sym[sym_idx].SetByteSize(symbol_byte_size); if (demangled_is_synthesized) sym[sym_idx].SetDemangledNameIsSynthesized(true); ++sym_idx; } else { sym[sym_idx].Clear(); } } ///////////////////////////// } break; // No more entries to consider } } for (const auto &pos : reexport_shlib_needs_fixup) { const auto undef_pos = undefined_name_to_desc.find(pos.second); if (undef_pos != undefined_name_to_desc.end()) { const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) sym[pos.first].SetReExportedSymbolSharedLibrary( dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); } } } } } } } // Must reset this in case it was mutated above! nlist_data_offset = 0; #endif if (nlist_data.GetByteSize() > 0) { // If the sym array was not created while parsing the DSC unmapped // symbols, create it now. if (sym == NULL) { sym = symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms); num_syms = symtab->GetNumSymbols(); } if (unmapped_local_symbols_found) { assert(m_dysymtab.ilocalsym == 0); nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); nlist_idx = m_dysymtab.nlocalsym; } else { nlist_idx = 0; } typedef std::map UndefinedNameToDescMap; typedef std::map SymbolIndexToName; UndefinedNameToDescMap undefined_name_to_desc; SymbolIndexToName reexport_shlib_needs_fixup; for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { struct nlist_64 nlist; if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) break; nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset); nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset); nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset); nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset); SymbolType type = eSymbolTypeInvalid; const char *symbol_name = NULL; if (have_strtab_data) { symbol_name = strtab_data.PeekCStr(nlist.n_strx); if (symbol_name == NULL) { // No symbol should be NULL, even the symbols with no // string values should have an offset zero which points // to an empty C-string Host::SystemLog(Host::eSystemLogError, "error: symbol[%u] has invalid string table offset " "0x%x in %s, ignoring symbol\n", nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath().c_str()); continue; } if (symbol_name[0] == '\0') symbol_name = NULL; } else { const addr_t str_addr = strtab_addr + nlist.n_strx; Error str_error; if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) symbol_name = memory_symbol_name.c_str(); } const char *symbol_name_non_abi_mangled = NULL; SectionSP symbol_section; lldb::addr_t symbol_byte_size = 0; bool add_nlist = true; bool is_gsym = false; bool is_debug = ((nlist.n_type & N_STAB) != 0); bool demangled_is_synthesized = false; bool set_value = true; assert(sym_idx < num_syms); sym[sym_idx].SetDebug(is_debug); if (is_debug) { switch (nlist.n_type) { case N_GSYM: // global symbol: name,,NO_SECT,type,0 // Sometimes the N_GSYM value contains the address. // FIXME: In the .o files, we have a GSYM and a debug symbol for all // the ObjC data. They // have the same address, but we want to ensure that we always find // only the real symbol, // 'cause we don't currently correctly attribute the GSYM one to the // ObjCClass/Ivar/MetaClass // symbol type. This is a temporary hack to make sure the // ObjectiveC symbols get treated // correctly. To do this right, we should coalesce all the GSYM & // global symbols that have the // same address. is_gsym = true; sym[sym_idx].SetExternal(true); if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } else { if (nlist.n_value != 0) symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeData; } break; case N_FNAME: // procedure name (f77 kludge): name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_FUN: // procedure: name,,n_sect,linenumber,address if (symbol_name) { type = eSymbolTypeCode; symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); N_FUN_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); // We use the current number of symbols in the symbol table in // lieu of // using nlist_idx in case we ever start trimming entries out N_FUN_indexes.push_back(sym_idx); } else { type = eSymbolTypeCompiler; if (!N_FUN_indexes.empty()) { // Copy the size of the function into the original STAB entry so // we don't have // to hunt for it later symtab->SymbolAtIndex(N_FUN_indexes.back()) ->SetByteSize(nlist.n_value); N_FUN_indexes.pop_back(); // We don't really need the end function STAB as it contains the // size which // we already placed with the original symbol, so don't add it // if we want a // minimal symbol table add_nlist = false; } } break; case N_STSYM: // static symbol: name,,n_sect,type,address N_STSYM_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (symbol_name && symbol_name[0]) { type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1, eSymbolTypeData); } break; case N_LCSYM: // .lcomm symbol: name,,n_sect,type,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeCommonBlock; break; case N_BNSYM: // We use the current number of symbols in the symbol table in lieu // of // using nlist_idx in case we ever start trimming entries out // Skip these if we want minimal symbol tables add_nlist = false; break; case N_ENSYM: // Set the size of the N_BNSYM to the terminating index of this // N_ENSYM // so that we can always skip the entire symbol if we need to // navigate // more quickly at the source level when parsing STABS // Skip these if we want minimal symbol tables add_nlist = false; break; case N_OPT: // emitted with gcc2_compiled and in gcc source type = eSymbolTypeCompiler; break; case N_RSYM: // register sym: name,,NO_SECT,type,register type = eSymbolTypeVariable; break; case N_SLINE: // src line: 0,,n_sect,linenumber,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; case N_SSYM: // structure elt: name,,NO_SECT,type,struct_offset type = eSymbolTypeVariableType; break; case N_SO: // source file name type = eSymbolTypeSourceFile; if (symbol_name == NULL) { add_nlist = false; if (N_SO_index != UINT32_MAX) { // Set the size of the N_SO to the terminating index of this // N_SO // so that we can always skip the entire N_SO if we need to // navigate // more quickly at the source level when parsing STABS symbol_ptr = symtab->SymbolAtIndex(N_SO_index); symbol_ptr->SetByteSize(sym_idx); symbol_ptr->SetSizeIsSibling(true); } N_NSYM_indexes.clear(); N_INCL_indexes.clear(); N_BRAC_indexes.clear(); N_COMM_indexes.clear(); N_FUN_indexes.clear(); N_SO_index = UINT32_MAX; } else { // We use the current number of symbols in the symbol table in // lieu of // using nlist_idx in case we ever start trimming entries out const bool N_SO_has_full_path = symbol_name[0] == '/'; if (N_SO_has_full_path) { if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // We have two consecutive N_SO entries where the first // contains a directory // and the second contains a full path. sym[sym_idx - 1].GetMangled().SetValue( ConstString(symbol_name), false); m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; add_nlist = false; } else { // This is the first entry in a N_SO that contains a directory // or // a full path to the source file N_SO_index = sym_idx; } } else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // This is usually the second N_SO entry that contains just the // filename, // so here we combine it with the first one if we are minimizing // the symbol table const char *so_path = sym[sym_idx - 1] .GetMangled() .GetDemangledName(lldb::eLanguageTypeUnknown) .AsCString(); if (so_path && so_path[0]) { std::string full_so_path(so_path); const size_t double_slash_pos = full_so_path.find("//"); if (double_slash_pos != std::string::npos) { // The linker has been generating bad N_SO entries with // doubled up paths // in the format "%s%s" where the first string in the // DW_AT_comp_dir, // and the second is the directory for the source file so // you end up with // a path that looks like "/tmp/src//tmp/src/" FileSpec so_dir(so_path, false); if (!so_dir.Exists()) { so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); if (so_dir.Exists()) { // Trim off the incorrect path full_so_path.erase(0, double_slash_pos + 1); } } } if (*full_so_path.rbegin() != '/') full_so_path += '/'; full_so_path += symbol_name; sym[sym_idx - 1].GetMangled().SetValue( ConstString(full_so_path.c_str()), false); add_nlist = false; m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; } } else { // This could be a relative path to a N_SO N_SO_index = sym_idx; } } break; case N_OSO: // object file name: name,,0,0,st_mtime type = eSymbolTypeObjectFile; break; case N_LSYM: // local sym: name,,NO_SECT,type,offset type = eSymbolTypeLocal; break; //---------------------------------------------------------------------- // INCL scopes //---------------------------------------------------------------------- case N_BINCL: // include file beginning: name,,NO_SECT,0,sum // We use the current number of symbols in the symbol table in lieu // of // using nlist_idx in case we ever start trimming entries out N_INCL_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_EINCL: // include file end: name,,NO_SECT,0,0 // Set the size of the N_BINCL to the terminating index of this // N_EINCL // so that we can always skip the entire symbol if we need to // navigate // more quickly at the source level when parsing STABS if (!N_INCL_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_INCL_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_SOL: // #included file name: name,,n_sect,0,address type = eSymbolTypeHeaderFile; // We currently don't use the header files on darwin add_nlist = false; break; case N_PARAMS: // compiler parameters: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_VERSION: // compiler version: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_OLEVEL: // compiler -O level: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_PSYM: // parameter: name,,NO_SECT,type,offset type = eSymbolTypeVariable; break; case N_ENTRY: // alternate entry: name,,n_sect,linenumber,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; //---------------------------------------------------------------------- // Left and Right Braces //---------------------------------------------------------------------- case N_LBRAC: // left bracket: 0,,NO_SECT,nesting level,address // We use the current number of symbols in the symbol table in lieu // of // using nlist_idx in case we ever start trimming entries out symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); N_BRAC_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_RBRAC: // right bracket: 0,,NO_SECT,nesting level,address // Set the size of the N_LBRAC to the terminating index of this // N_RBRAC // so that we can always skip the entire symbol if we need to // navigate // more quickly at the source level when parsing STABS symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (!N_BRAC_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_BRAC_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_EXCL: // deleted include file: name,,NO_SECT,0,sum type = eSymbolTypeHeaderFile; break; //---------------------------------------------------------------------- // COMM scopes //---------------------------------------------------------------------- case N_BCOMM: // begin common: name,,NO_SECT,0,0 // We use the current number of symbols in the symbol table in lieu // of // using nlist_idx in case we ever start trimming entries out type = eSymbolTypeScopeBegin; N_COMM_indexes.push_back(sym_idx); break; case N_ECOML: // end common (local name): 0,,n_sect,0,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); LLVM_FALLTHROUGH; case N_ECOMM: // end common: name,,n_sect,0,0 // Set the size of the N_BCOMM to the terminating index of this // N_ECOMM/N_ECOML // so that we can always skip the entire symbol if we need to // navigate // more quickly at the source level when parsing STABS if (!N_COMM_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_COMM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_LENG: // second stab entry with length information type = eSymbolTypeAdditional; break; default: break; } } else { // uint8_t n_pext = N_PEXT & nlist.n_type; uint8_t n_type = N_TYPE & nlist.n_type; sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); switch (n_type) { case N_INDR: { const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); if (reexport_name_cstr && reexport_name_cstr[0]) { type = eSymbolTypeReExported; ConstString reexport_name( reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); sym[sym_idx].SetReExportedSymbolName(reexport_name); set_value = false; reexport_shlib_needs_fixup[sym_idx] = reexport_name; indirect_symbol_names.insert( ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); } else type = eSymbolTypeUndefined; } break; case N_UNDF: if (symbol_name && symbol_name[0]) { ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); undefined_name_to_desc[undefined_name] = nlist.n_desc; } LLVM_FALLTHROUGH; case N_PBUD: type = eSymbolTypeUndefined; break; case N_ABS: type = eSymbolTypeAbsolute; break; case N_SECT: { symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (!symbol_section) { // TODO: warn about this? add_nlist = false; break; } if (TEXT_eh_frame_sectID == nlist.n_sect) { type = eSymbolTypeException; } else { uint32_t section_type = symbol_section->Get() & SECTION_TYPE; switch (section_type) { case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in // the reserved2 field case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for // interposing case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; default: switch (symbol_section->GetType()) { case lldb::eSectionTypeCode: type = eSymbolTypeCode; break; case eSectionTypeData: case eSectionTypeDataCString: // Inlined C string data case eSectionTypeDataCStringPointers: // Pointers to C string // data case eSectionTypeDataSymbolAddress: // Address of a symbol in // the symbol table case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: type = eSymbolTypeData; break; default: break; } break; } if (type == eSymbolTypeInvalid) { const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant(text_section_sp.get())) { if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SELF_MODIFYING_CODE | S_ATTR_SOME_INSTRUCTIONS)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant( data_section_sp.get()) || symbol_section->IsDescendant( data_dirty_section_sp.get()) || symbol_section->IsDescendant( data_const_section_sp.get())) { if (symbol_sect_name && ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name) { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith("_OBJC_")) { static const llvm::StringRef g_objc_v2_prefix_class( "_OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass( "_OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar( "_OBJC_IVAR_$_"); if (symbol_name_ref.startswith( g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } else if (symbol_section->IsDescendant( objc_section_sp.get())) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '.') { llvm::StringRef symbol_name_ref(symbol_name); static const llvm::StringRef g_objc_v1_prefix_class( ".objc_class_name_"); if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { symbol_name_non_abi_mangled = symbol_name; symbol_name = symbol_name + g_objc_v1_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } } } } } } break; } } if (add_nlist) { uint64_t symbol_value = nlist.n_value; if (symbol_name_non_abi_mangled) { sym[sym_idx].GetMangled().SetMangledName( ConstString(symbol_name_non_abi_mangled)); sym[sym_idx].GetMangled().SetDemangledName( ConstString(symbol_name)); } else { bool symbol_name_is_mangled = false; if (symbol_name && symbol_name[0] == '_') { symbol_name_is_mangled = symbol_name[1] == '_'; symbol_name++; // Skip the leading underscore } if (symbol_name) { ConstString const_symbol_name(symbol_name); sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); } } if (is_gsym) { const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) .GetCString(); if (gsym_name) N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; } if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); if (symbol_byte_size == 0 && function_starts_count > 0) { addr_t symbol_lookup_file_addr = nlist.n_value; // Do an exact address match for non-ARM addresses, else get the // closest since // the symbol might be a thumb symbol which has an address with // bit zero set FunctionStarts::Entry *func_start_entry = function_starts.FindEntry(symbol_lookup_file_addr, !is_arm); if (is_arm && func_start_entry) { // Verify that the function start address is the symbol address // (ARM) // or the symbol address + 1 (thumb) if (func_start_entry->addr != symbol_lookup_file_addr && func_start_entry->addr != (symbol_lookup_file_addr + 1)) { // Not the right entry, NULL it out... func_start_entry = NULL; } } if (func_start_entry) { func_start_entry->data = true; addr_t symbol_file_addr = func_start_entry->addr; if (is_arm) symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry(func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; // Be sure the clear the Thumb address bit when we calculate // the size // from the current and next address if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min( next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } } } symbol_value -= section_file_addr; } if (is_debug == false) { if (type == eSymbolTypeCode) { // See if we can find a N_FUN entry for any code symbols. // If we do find a match, and the name matches, then we // can merge the two into just the function symbol to avoid // duplicate entries in the symbol table std::pair range; range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put // these flags // into the N_FUN flags to avoid duplicate symbols in the // symbol table sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) sym[pos->second].SetType(eSymbolTypeResolver); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) type = eSymbolTypeResolver; } } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || type == eSymbolTypeObjCMetaClass || type == eSymbolTypeObjCIVar) { // See if we can find a N_STSYM entry for any data symbols. // If we do find a match, and the name matches, then we // can merge the two into just the Static symbol to avoid // duplicate entries in the symbol table std::pair range; range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { bool found_it = false; for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put // these flags // into the N_STSYM flags to avoid duplicate symbols in the // symbol table sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { // Combine N_GSYM stab entries with the non stab symbol const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) .GetCString(); if (gsym_name) { ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); if (pos != N_GSYM_name_to_sym_idx.end()) { const uint32_t GSYM_sym_idx = pos->second; m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; // Copy the address, because often the N_GSYM address has an // invalid address of zero // when the global is a common symbol sym[GSYM_sym_idx].GetAddressRef().SetSection( symbol_section); sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value); // We just need the flags from the linker symbol, so put // these flags // into the N_GSYM flags to avoid duplicate symbols in the // symbol table sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); continue; } } } } } sym[sym_idx].SetID(nlist_idx); sym[sym_idx].SetType(type); if (set_value) { sym[sym_idx].GetAddressRef().SetSection(symbol_section); sym[sym_idx].GetAddressRef().SetOffset(symbol_value); } sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (symbol_byte_size > 0) sym[sym_idx].SetByteSize(symbol_byte_size); if (demangled_is_synthesized) sym[sym_idx].SetDemangledNameIsSynthesized(true); ++sym_idx; } else { sym[sym_idx].Clear(); } } for (const auto &pos : reexport_shlib_needs_fixup) { const auto undef_pos = undefined_name_to_desc.find(pos.second); if (undef_pos != undefined_name_to_desc.end()) { const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) sym[pos.first].SetReExportedSymbolSharedLibrary( dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); } } } uint32_t synthetic_sym_id = symtab_load_command.nsyms; if (function_starts_count > 0) { uint32_t num_synthetic_function_symbols = 0; for (i = 0; i < function_starts_count; ++i) { if (function_starts.GetEntryRef(i).data == false) ++num_synthetic_function_symbols; } if (num_synthetic_function_symbols > 0) { if (num_syms < sym_idx + num_synthetic_function_symbols) { num_syms = sym_idx + num_synthetic_function_symbols; sym = symtab->Resize(num_syms); } for (i = 0; i < function_starts_count; ++i) { const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex(i); if (func_start_entry->data == false) { addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (is_arm) { if (symbol_file_addr & 1) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; } Address symbol_addr; if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) { SectionSP symbol_section(symbol_addr.GetSection()); uint32_t symbol_byte_size = 0; if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry(func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min( next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } sym[sym_idx].SetID(synthetic_sym_id++); sym[sym_idx].GetMangled().SetDemangledName( GetNextSyntheticSymbolName()); sym[sym_idx].SetType(eSymbolTypeCode); sym[sym_idx].SetIsSynthetic(true); sym[sym_idx].GetAddressRef() = symbol_addr; if (symbol_flags) sym[sym_idx].SetFlags(symbol_flags); if (symbol_byte_size) sym[sym_idx].SetByteSize(symbol_byte_size); ++sym_idx; } } } } } } // Trim our symbols down to just what we ended up with after // removing any symbols. if (sym_idx < num_syms) { num_syms = sym_idx; sym = symtab->Resize(num_syms); } // Now synthesize indirect symbols if (m_dysymtab.nindirectsyms != 0) { if (indirect_symbol_index_data.GetByteSize()) { NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) { if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) { uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; if (symbol_stub_byte_size == 0) continue; const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; if (num_symbol_stubs == 0) continue; const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) { const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; if (indirect_symbol_index_data.ValidOffsetForDataOfSize( symbol_stub_offset, 4)) { const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32(&symbol_stub_offset); if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) continue; NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find(stub_sym_id); Symbol *stub_symbol = NULL; if (index_pos != end_index_pos) { // We have a remapping from the original nlist index to // a current symbol index, so just look this up by index stub_symbol = symtab->SymbolAtIndex(index_pos->second); } else { // We need to lookup a symbol using the original nlist // symbol index since this index is coming from the // S_SYMBOL_STUBS stub_symbol = symtab->FindSymbolByID(stub_sym_id); } if (stub_symbol) { Address so_addr(symbol_stub_addr, section_list); if (stub_symbol->GetType() == eSymbolTypeUndefined) { // Change the external symbol into a trampoline that makes // sense // These symbols were N_UNDF N_EXT, and are useless to us, // so we // can re-use them so we don't have to make up a synthetic // symbol // for no good reason. if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) stub_symbol->SetType(eSymbolTypeTrampoline); else stub_symbol->SetType(eSymbolTypeResolver); stub_symbol->SetExternal(false); stub_symbol->GetAddressRef() = so_addr; stub_symbol->SetByteSize(symbol_stub_byte_size); } else { // Make a synthetic symbol to describe the trampoline stub Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); if (sym_idx >= num_syms) { sym = symtab->Resize(++num_syms); stub_symbol = NULL; // this pointer no longer valid } sym[sym_idx].SetID(synthetic_sym_id++); sym[sym_idx].GetMangled() = stub_symbol_mangled_name; if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) sym[sym_idx].SetType(eSymbolTypeTrampoline); else sym[sym_idx].SetType(eSymbolTypeResolver); sym[sym_idx].SetIsSynthetic(true); sym[sym_idx].GetAddressRef() = so_addr; sym[sym_idx].SetByteSize(symbol_stub_byte_size); ++sym_idx; } } else { if (log) log->Warning("symbol stub referencing symbol table symbol " "%u that isn't in our minimal symbol table, " "fix this!!!", stub_sym_id); } } } } } } } if (!trie_entries.empty()) { for (const auto &e : trie_entries) { if (e.entry.import_name) { // Only add indirect symbols from the Trie entries if we // didn't have a N_INDR nlist entry for this already if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) { // Make a synthetic symbol to describe re-exported symbol. if (sym_idx >= num_syms) sym = symtab->Resize(++num_syms); sym[sym_idx].SetID(synthetic_sym_id++); sym[sym_idx].GetMangled() = Mangled(e.entry.name); sym[sym_idx].SetType(eSymbolTypeReExported); sym[sym_idx].SetIsSynthetic(true); sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) { sym[sym_idx].SetReExportedSymbolSharedLibrary( dylib_files.GetFileSpecAtIndex(e.entry.other - 1)); } ++sym_idx; } } } } // StreamFile s(stdout, false); // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); // symtab->Dump(&s, NULL, eSortOrderNone); // Set symbol byte sizes correctly since mach-o nlist entries don't have // sizes symtab->CalculateSymbolSizes(); // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); // symtab->Dump(&s, NULL, eSortOrderNone); return symtab->GetNumSymbols(); } return 0; } void ObjectFileMachO::Dump(Stream *s) { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); s->Printf("%p: ", static_cast(this)); s->Indent(); if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) s->PutCString("ObjectFileMachO64"); else s->PutCString("ObjectFileMachO32"); ArchSpec header_arch; GetArchitecture(header_arch); *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; SectionList *sections = GetSectionList(); if (sections) sections->Dump(s, NULL, true, UINT32_MAX); if (m_symtab_ap.get()) m_symtab_ap->Dump(s, NULL, eSortOrderNone); } } bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header, const lldb_private::DataExtractor &data, lldb::offset_t lc_offset, lldb_private::UUID &uuid) { uint32_t i; struct uuid_command load_cmd; lldb::offset_t offset = lc_offset; for (i = 0; i < header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (data.GetU32(&offset, &load_cmd, 2) == NULL) break; if (load_cmd.cmd == LC_UUID) { const uint8_t *uuid_bytes = data.PeekData(offset, 16); if (uuid_bytes) { // OpenCL on Mac OS X uses the same UUID for each of its object files. // We pretend these object files have no UUID to prevent crashing. const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8, 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d}; if (!memcmp(uuid_bytes, opencl_uuid, 16)) return false; uuid.SetBytes(uuid_bytes); return true; } return false; } offset = cmd_offset + load_cmd.cmdsize; } return false; } bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header, const lldb_private::DataExtractor &data, lldb::offset_t lc_offset, ArchSpec &arch) { arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype); if (arch.IsValid()) { llvm::Triple &triple = arch.GetTriple(); // Set OS to an unspecified unknown or a "*" so it can match any OS triple.setOS(llvm::Triple::UnknownOS); triple.setOSName(llvm::StringRef()); if (header.filetype == MH_PRELOAD) { if (header.cputype == CPU_TYPE_ARM) { // If this is a 32-bit arm binary, and it's a standalone binary, // force the Vendor to Apple so we don't accidentally pick up // the generic armv7 ABI at runtime. Apple's armv7 ABI always uses // r7 for the frame pointer register; most other armv7 ABIs use a // combination of r7 and r11. triple.setVendor(llvm::Triple::Apple); } else { // Set vendor to an unspecified unknown or a "*" so it can match any // vendor // This is required for correct behavior of EFI debugging on x86_64 triple.setVendor(llvm::Triple::UnknownVendor); triple.setVendorName(llvm::StringRef()); } return true; } else { struct load_command load_cmd; lldb::offset_t offset = lc_offset; for (uint32_t i = 0; i < header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (data.GetU32(&offset, &load_cmd, 2) == NULL) break; switch (load_cmd.cmd) { case llvm::MachO::LC_VERSION_MIN_IPHONEOS: triple.setOS(llvm::Triple::IOS); return true; case llvm::MachO::LC_VERSION_MIN_MACOSX: triple.setOS(llvm::Triple::MacOSX); return true; case llvm::MachO::LC_VERSION_MIN_TVOS: triple.setOS(llvm::Triple::TvOS); return true; case llvm::MachO::LC_VERSION_MIN_WATCHOS: triple.setOS(llvm::Triple::WatchOS); return true; default: break; } offset = cmd_offset + load_cmd.cmdsize; } if (header.filetype != MH_KEXT_BUNDLE) { // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT // so lets not say our Vendor is Apple, leave it as an unspecified // unknown triple.setVendor(llvm::Triple::UnknownVendor); triple.setVendorName(llvm::StringRef()); } } } return arch.IsValid(); } bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); return GetUUID(m_header, m_data, offset, *uuid); } return false; } uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) { uint32_t count = 0; ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); struct load_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); std::vector rpath_paths; std::vector rpath_relative_paths; const bool resolve_path = false; // Don't resolve the dependent file paths // since they may not reside on this system uint32_t i; for (i = 0; i < m_header.ncmds; ++i) { const uint32_t cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) break; switch (load_cmd.cmd) { case LC_RPATH: case LC_LOAD_DYLIB: case LC_LOAD_WEAK_DYLIB: case LC_REEXPORT_DYLIB: case LC_LOAD_DYLINKER: case LC_LOADFVMLIB: case LC_LOAD_UPWARD_DYLIB: { uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); const char *path = m_data.PeekCStr(name_offset); if (path) { if (load_cmd.cmd == LC_RPATH) rpath_paths.push_back(path); else { if (path[0] == '@') { if (strncmp(path, "@rpath", strlen("@rpath")) == 0) rpath_relative_paths.push_back(path + strlen("@rpath")); } else { FileSpec file_spec(path, resolve_path); if (files.AppendIfUnique(file_spec)) count++; } } } } break; default: break; } offset = cmd_offset + load_cmd.cmdsize; } if (!rpath_paths.empty()) { // Fixup all LC_RPATH values to be absolute paths FileSpec this_file_spec(m_file); this_file_spec.ResolvePath(); std::string loader_path("@loader_path"); std::string executable_path("@executable_path"); for (auto &rpath : rpath_paths) { if (rpath.find(loader_path) == 0) { rpath.erase(0, loader_path.size()); rpath.insert(0, this_file_spec.GetDirectory().GetCString()); } else if (rpath.find(executable_path) == 0) { rpath.erase(0, executable_path.size()); rpath.insert(0, this_file_spec.GetDirectory().GetCString()); } } for (const auto &rpath_relative_path : rpath_relative_paths) { for (const auto &rpath : rpath_paths) { std::string path = rpath; path += rpath_relative_path; // It is OK to resolve this path because we must find a file on // disk for us to accept it anyway if it is rpath relative. FileSpec file_spec(path, true); // Remove any redundant parts of the path (like "../foo") since // LC_RPATH values often contain "..". file_spec = file_spec.GetNormalizedPath(); if (file_spec.Exists() && files.AppendIfUnique(file_spec)) { count++; break; } } } } } return count; } lldb_private::Address ObjectFileMachO::GetEntryPointAddress() { // If the object file is not an executable it can't hold the entry point. // m_entry_point_address // is initialized to an invalid address, so we can just return that. // If m_entry_point_address is valid it means we've found it already, so // return the cached value. if (!IsExecutable() || m_entry_point_address.IsValid()) return m_entry_point_address; // Otherwise, look for the UnixThread or Thread command. The data for the // Thread command is given in // /usr/include/mach-o.h, but it is basically: // // uint32_t flavor - this is the flavor argument you would pass to // thread_get_state // uint32_t count - this is the count of longs in the thread state data // struct XXX_thread_state state - this is the structure from // corresponding to the flavor. // // // So we just keep reading the various register flavors till we find the GPR // one, then read the PC out of there. // FIXME: We will need to have a "RegisterContext data provider" class at some // point that can get all the registers // out of data in this form & attach them to a given thread. That should // underlie the MacOS X User process plugin, // and we'll also need it for the MacOS X Core File process plugin. When we // have that we can also use it here. // // For now we hard-code the offsets and flavors we need: // // ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); struct load_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; lldb::addr_t start_address = LLDB_INVALID_ADDRESS; bool done = false; for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) break; switch (load_cmd.cmd) { case LC_UNIXTHREAD: case LC_THREAD: { while (offset < cmd_offset + load_cmd.cmdsize) { uint32_t flavor = m_data.GetU32(&offset); uint32_t count = m_data.GetU32(&offset); if (count == 0) { // We've gotten off somehow, log and exit; return m_entry_point_address; } switch (m_header.cputype) { case llvm::MachO::CPU_TYPE_ARM: if (flavor == 1 || flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from // mach/arm/thread_status.h { offset += 60; // This is the offset of pc in the GPR thread state // data structure. start_address = m_data.GetU32(&offset); done = true; } break; case llvm::MachO::CPU_TYPE_ARM64: if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h { offset += 256; // This is the offset of pc in the GPR thread state // data structure. start_address = m_data.GetU64(&offset); done = true; } break; case llvm::MachO::CPU_TYPE_I386: if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h { offset += 40; // This is the offset of eip in the GPR thread state // data structure. start_address = m_data.GetU32(&offset); done = true; } break; case llvm::MachO::CPU_TYPE_X86_64: if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h { offset += 16 * 8; // This is the offset of rip in the GPR thread // state data structure. start_address = m_data.GetU64(&offset); done = true; } break; default: return m_entry_point_address; } // Haven't found the GPR flavor yet, skip over the data for this // flavor: if (done) break; offset += count * 4; } } break; case LC_MAIN: { ConstString text_segment_name("__TEXT"); uint64_t entryoffset = m_data.GetU64(&offset); SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); if (text_segment_sp) { done = true; start_address = text_segment_sp->GetFileAddress() + entryoffset; } } break; default: break; } if (done) break; // Go to the next load command: offset = cmd_offset + load_cmd.cmdsize; } if (start_address != LLDB_INVALID_ADDRESS) { // We got the start address from the load commands, so now resolve that // address in the sections // of this ObjectFile: if (!m_entry_point_address.ResolveAddressUsingFileSections( start_address, GetSectionList())) { m_entry_point_address.Clear(); } } else { // We couldn't read the UnixThread load command - maybe it wasn't there. // As a fallback look for the // "start" symbol in the main executable. ModuleSP module_sp(GetModule()); if (module_sp) { SymbolContextList contexts; SymbolContext context; if (module_sp->FindSymbolsWithNameAndType(ConstString("start"), eSymbolTypeCode, contexts)) { if (contexts.GetContextAtIndex(0, context)) m_entry_point_address = context.symbol->GetAddress(); } } } } return m_entry_point_address; } lldb_private::Address ObjectFileMachO::GetHeaderAddress() { lldb_private::Address header_addr; SectionList *section_list = GetSectionList(); if (section_list) { SectionSP text_segment_sp( section_list->FindSectionByName(GetSegmentNameTEXT())); if (text_segment_sp) { header_addr.SetSection(text_segment_sp); header_addr.SetOffset(0); } } return header_addr; } uint32_t ObjectFileMachO::GetNumThreadContexts() { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); if (!m_thread_context_offsets_valid) { m_thread_context_offsets_valid = true; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); FileRangeArray::Entry file_range; thread_command thread_cmd; for (uint32_t i = 0; i < m_header.ncmds; ++i) { const uint32_t cmd_offset = offset; if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) break; if (thread_cmd.cmd == LC_THREAD) { file_range.SetRangeBase(offset); file_range.SetByteSize(thread_cmd.cmdsize - 8); m_thread_context_offsets.Append(file_range); } offset = cmd_offset + thread_cmd.cmdsize; } } } return m_thread_context_offsets.GetSize(); } lldb::RegisterContextSP ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx, lldb_private::Thread &thread) { lldb::RegisterContextSP reg_ctx_sp; ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); if (!m_thread_context_offsets_valid) GetNumThreadContexts(); const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex(idx); if (thread_context_file_range) { DataExtractor data(m_data, thread_context_file_range->GetRangeBase(), thread_context_file_range->GetByteSize()); switch (m_header.cputype) { case llvm::MachO::CPU_TYPE_ARM64: reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data)); break; case llvm::MachO::CPU_TYPE_ARM: reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data)); break; case llvm::MachO::CPU_TYPE_I386: reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data)); break; case llvm::MachO::CPU_TYPE_X86_64: reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data)); break; } } } return reg_ctx_sp; } ObjectFile::Type ObjectFileMachO::CalculateType() { switch (m_header.filetype) { case MH_OBJECT: // 0x1u if (GetAddressByteSize() == 4) { // 32 bit kexts are just object files, but they do have a valid // UUID load command. UUID uuid; if (GetUUID(&uuid)) { // this checking for the UUID load command is not enough // we could eventually look for the symbol named // "OSKextGetCurrentIdentifier" as this is required of kexts if (m_strata == eStrataInvalid) m_strata = eStrataKernel; return eTypeSharedLibrary; } } return eTypeObjectFile; case MH_EXECUTE: return eTypeExecutable; // 0x2u case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u case MH_CORE: return eTypeCoreFile; // 0x4u case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u case MH_DYLIB: return eTypeSharedLibrary; // 0x6u case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u case MH_DSYM: return eTypeDebugInfo; // 0xAu case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu default: break; } return eTypeUnknown; } ObjectFile::Strata ObjectFileMachO::CalculateStrata() { switch (m_header.filetype) { case MH_OBJECT: // 0x1u { // 32 bit kexts are just object files, but they do have a valid // UUID load command. UUID uuid; if (GetUUID(&uuid)) { // this checking for the UUID load command is not enough // we could eventually look for the symbol named // "OSKextGetCurrentIdentifier" as this is required of kexts if (m_type == eTypeInvalid) m_type = eTypeSharedLibrary; return eStrataKernel; } } return eStrataUnknown; case MH_EXECUTE: // 0x2u // Check for the MH_DYLDLINK bit in the flags if (m_header.flags & MH_DYLDLINK) { return eStrataUser; } else { SectionList *section_list = GetSectionList(); if (section_list) { static ConstString g_kld_section_name("__KLD"); if (section_list->FindSectionByName(g_kld_section_name)) return eStrataKernel; } } return eStrataRawImage; case MH_FVMLIB: return eStrataUser; // 0x3u case MH_CORE: return eStrataUnknown; // 0x4u case MH_PRELOAD: return eStrataRawImage; // 0x5u case MH_DYLIB: return eStrataUser; // 0x6u case MH_DYLINKER: return eStrataUser; // 0x7u case MH_BUNDLE: return eStrataUser; // 0x8u case MH_DYLIB_STUB: return eStrataUser; // 0x9u case MH_DSYM: return eStrataUnknown; // 0xAu case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu default: break; } return eStrataUnknown; } uint32_t ObjectFileMachO::GetVersion(uint32_t *versions, uint32_t num_versions) { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); struct dylib_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t version_cmd = 0; uint64_t version = 0; uint32_t i; for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) break; if (load_cmd.cmd == LC_ID_DYLIB) { if (version_cmd == 0) { version_cmd = load_cmd.cmd; if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) break; version = load_cmd.dylib.current_version; } break; // Break for now unless there is another more complete version // number load command in the future. } offset = cmd_offset + load_cmd.cmdsize; } if (version_cmd == LC_ID_DYLIB) { if (versions != NULL && num_versions > 0) { if (num_versions > 0) versions[0] = (version & 0xFFFF0000ull) >> 16; if (num_versions > 1) versions[1] = (version & 0x0000FF00ull) >> 8; if (num_versions > 2) versions[2] = (version & 0x000000FFull); // Fill in an remaining version numbers with invalid values for (i = 3; i < num_versions; ++i) versions[i] = UINT32_MAX; } // The LC_ID_DYLIB load command has a version with 3 version numbers // in it, so always return 3 return 3; } } return false; } bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); return GetArchitecture(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); } return false; } UUID ObjectFileMachO::GetProcessSharedCacheUUID(Process *process) { UUID uuid; if (process && process->GetDynamicLoader()) { DynamicLoader *dl = process->GetDynamicLoader(); addr_t load_address; LazyBool using_shared_cache; LazyBool private_shared_cache; dl->GetSharedCacheInformation(load_address, uuid, using_shared_cache, private_shared_cache); } return uuid; } UUID ObjectFileMachO::GetLLDBSharedCacheUUID() { UUID uuid; #if defined(__APPLE__) && \ (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) uint8_t *(*dyld_get_all_image_infos)(void); dyld_get_all_image_infos = (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos"); if (dyld_get_all_image_infos) { uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); if (dyld_all_image_infos_address) { uint32_t *version = (uint32_t *) dyld_all_image_infos_address; // version if (*version >= 13) { uuid_t *sharedCacheUUID_address = 0; int wordsize = sizeof(uint8_t *); if (wordsize == 8) { sharedCacheUUID_address = (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 160); // sharedCacheUUID } else { sharedCacheUUID_address = (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 84); // sharedCacheUUID } uuid.SetBytes(sharedCacheUUID_address); } } } #endif return uuid; } uint32_t ObjectFileMachO::GetMinimumOSVersion(uint32_t *versions, uint32_t num_versions) { if (m_min_os_versions.empty()) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); bool success = false; for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; version_min_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) break; if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { if (m_data.GetU32(&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) { const uint32_t xxxx = lc.version >> 16; const uint32_t yy = (lc.version >> 8) & 0xffu; const uint32_t zz = lc.version & 0xffu; if (xxxx) { m_min_os_versions.push_back(xxxx); m_min_os_versions.push_back(yy); m_min_os_versions.push_back(zz); } success = true; } } offset = load_cmd_offset + lc.cmdsize; } if (success == false) { // Push an invalid value so we don't keep trying to m_min_os_versions.push_back(UINT32_MAX); } } if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) { if (versions != NULL && num_versions > 0) { for (size_t i = 0; i < num_versions; ++i) { if (i < m_min_os_versions.size()) versions[i] = m_min_os_versions[i]; else versions[i] = 0; } } return m_min_os_versions.size(); } // Call the superclasses version that will empty out the data return ObjectFile::GetMinimumOSVersion(versions, num_versions); } uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) { if (m_sdk_versions.empty()) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); bool success = false; for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; version_min_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) break; if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { if (m_data.GetU32(&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) { const uint32_t xxxx = lc.sdk >> 16; const uint32_t yy = (lc.sdk >> 8) & 0xffu; const uint32_t zz = lc.sdk & 0xffu; if (xxxx) { m_sdk_versions.push_back(xxxx); m_sdk_versions.push_back(yy); m_sdk_versions.push_back(zz); } success = true; } } offset = load_cmd_offset + lc.cmdsize; } if (success == false) { // Push an invalid value so we don't keep trying to m_sdk_versions.push_back(UINT32_MAX); } } if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) { if (versions != NULL && num_versions > 0) { for (size_t i = 0; i < num_versions; ++i) { if (i < m_sdk_versions.size()) versions[i] = m_sdk_versions[i]; else versions[i] = 0; } } return m_sdk_versions.size(); } // Call the superclasses version that will empty out the data return ObjectFile::GetSDKVersion(versions, num_versions); } bool ObjectFileMachO::GetIsDynamicLinkEditor() { return m_header.filetype == llvm::MachO::MH_DYLINKER; } bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() { return m_allow_assembly_emulation_unwind_plans; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ lldb_private::ConstString ObjectFileMachO::GetPluginName() { return GetPluginNameStatic(); } uint32_t ObjectFileMachO::GetPluginVersion() { return 1; } Section *ObjectFileMachO::GetMachHeaderSection() { // Find the first address of the mach header which is the first non-zero // file sized section whose file offset is zero. This is the base file address // of the mach-o file which can be subtracted from the vmaddr of the other // segments found in memory and added to the load address ModuleSP module_sp = GetModule(); if (module_sp) { SectionList *section_list = GetSectionList(); if (section_list) { lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; const size_t num_sections = section_list->GetSize(); for (size_t sect_idx = 0; sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; ++sect_idx) { Section *section = section_list->GetSectionAtIndex(sect_idx).get(); if (section && section->GetFileSize() > 0 && section->GetFileOffset() == 0 && section->IsThreadSpecific() == false && module_sp.get() == section->GetModule().get()) { return section; } } } } return nullptr; } lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage( lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) { ModuleSP module_sp = GetModule(); if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) { lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); if (mach_header_file_addr != LLDB_INVALID_ADDRESS) { if (section && section->GetFileSize() > 0 && section->IsThreadSpecific() == false && module_sp.get() == section->GetModule().get()) { // Ignore __LINKEDIT and __DWARF segments if (section->GetName() == GetSegmentNameLINKEDIT()) { // Only map __LINKEDIT if we have an in memory image and this isn't // a kernel binary like a kext or mach_kernel. const bool is_memory_image = (bool)m_process_wp.lock(); const Strata strata = GetStrata(); if (is_memory_image == false || strata == eStrataKernel) return LLDB_INVALID_ADDRESS; } return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; } } } return LLDB_INVALID_ADDRESS; } bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value, bool value_is_offset) { ModuleSP module_sp = GetModule(); if (module_sp) { size_t num_loaded_sections = 0; SectionList *section_list = GetSectionList(); if (section_list) { const size_t num_sections = section_list->GetSize(); if (value_is_offset) { // "value" is an offset to apply to each top level segment for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { // Iterate through the object file sections to find all // of the sections that size on disk (to avoid __PAGEZERO) // and load them SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); if (section_sp && section_sp->GetFileSize() > 0 && section_sp->IsThreadSpecific() == false && module_sp.get() == section_sp->GetModule().get()) { // Ignore __LINKEDIT and __DWARF segments if (section_sp->GetName() == GetSegmentNameLINKEDIT()) { // Only map __LINKEDIT if we have an in memory image and this // isn't // a kernel binary like a kext or mach_kernel. const bool is_memory_image = (bool)m_process_wp.lock(); const Strata strata = GetStrata(); if (is_memory_image == false || strata == eStrataKernel) continue; } if (target.GetSectionLoadList().SetSectionLoadAddress( section_sp, section_sp->GetFileAddress() + value)) ++num_loaded_sections; } } } else { // "value" is the new base address of the mach_header, adjust each // section accordingly Section *mach_header_section = GetMachHeaderSection(); if (mach_header_section) { for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage( value, mach_header_section, section_sp.get()); if (section_load_addr != LLDB_INVALID_ADDRESS) { if (target.GetSectionLoadList().SetSectionLoadAddress( section_sp, section_load_addr)) ++num_loaded_sections; } } } } } return num_loaded_sections > 0; } return false; } bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp, const FileSpec &outfile, Error &error) { if (process_sp) { Target &target = process_sp->GetTarget(); const ArchSpec target_arch = target.GetArchitecture(); const llvm::Triple &target_triple = target_arch.GetTriple(); if (target_triple.getVendor() == llvm::Triple::Apple && (target_triple.getOS() == llvm::Triple::MacOSX || target_triple.getOS() == llvm::Triple::IOS || target_triple.getOS() == llvm::Triple::WatchOS || target_triple.getOS() == llvm::Triple::TvOS)) { bool make_core = false; switch (target_arch.GetMachine()) { case llvm::Triple::aarch64: case llvm::Triple::arm: case llvm::Triple::thumb: case llvm::Triple::x86: case llvm::Triple::x86_64: make_core = true; break; default: error.SetErrorStringWithFormat("unsupported core architecture: %s", target_triple.str().c_str()); break; } if (make_core) { std::vector segment_load_commands; // uint32_t range_info_idx = 0; MemoryRegionInfo range_info; Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); const ByteOrder byte_order = target_arch.GetByteOrder(); if (range_error.Success()) { while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) { const addr_t addr = range_info.GetRange().GetRangeBase(); const addr_t size = range_info.GetRange().GetByteSize(); if (size == 0) break; // Calculate correct protections uint32_t prot = 0; if (range_info.GetReadable() == MemoryRegionInfo::eYes) prot |= VM_PROT_READ; if (range_info.GetWritable() == MemoryRegionInfo::eYes) prot |= VM_PROT_WRITE; if (range_info.GetExecutable() == MemoryRegionInfo::eYes) prot |= VM_PROT_EXECUTE; // printf ("[%3u] [0x%16.16" PRIx64 " - // 0x%16.16" PRIx64 ") %c%c%c\n", // range_info_idx, // addr, // size, // (prot & VM_PROT_READ ) ? 'r' : // '-', // (prot & VM_PROT_WRITE ) ? 'w' : // '-', // (prot & VM_PROT_EXECUTE) ? 'x' : // '-'); if (prot != 0) { uint32_t cmd_type = LC_SEGMENT_64; uint32_t segment_size = sizeof(segment_command_64); if (addr_byte_size == 4) { cmd_type = LC_SEGMENT; segment_size = sizeof(segment_command); } segment_command_64 segment = { cmd_type, // uint32_t cmd; segment_size, // uint32_t cmdsize; {0}, // char segname[16]; addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O size, // uint64_t filesize; // uint32_t for 32-bit Mach-O prot, // uint32_t maxprot; prot, // uint32_t initprot; 0, // uint32_t nsects; 0}; // uint32_t flags; segment_load_commands.push_back(segment); } else { // No protections and a size of 1 used to be returned from old // debugservers when we asked about a region that was past the // last memory region and it indicates the end... if (size == 1) break; } range_error = process_sp->GetMemoryRegionInfo( range_info.GetRange().GetRangeEnd(), range_info); if (range_error.Fail()) break; } StreamString buffer(Stream::eBinary, addr_byte_size, byte_order); mach_header_64 mach_header; if (addr_byte_size == 8) { mach_header.magic = MH_MAGIC_64; } else { mach_header.magic = MH_MAGIC; } mach_header.cputype = target_arch.GetMachOCPUType(); mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); mach_header.filetype = MH_CORE; mach_header.ncmds = segment_load_commands.size(); mach_header.flags = 0; mach_header.reserved = 0; ThreadList &thread_list = process_sp->GetThreadList(); const uint32_t num_threads = thread_list.GetSize(); // Make an array of LC_THREAD data items. Each one contains // the contents of the LC_THREAD load command. The data doesn't // contain the load command + load command size, we will // add the load command and load command size as we emit the data. std::vector LC_THREAD_datas(num_threads); for (auto &LC_THREAD_data : LC_THREAD_datas) { LC_THREAD_data.GetFlags().Set(Stream::eBinary); LC_THREAD_data.SetAddressByteSize(addr_byte_size); LC_THREAD_data.SetByteOrder(byte_order); } for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); if (thread_sp) { switch (mach_header.cputype) { case llvm::MachO::CPU_TYPE_ARM64: RegisterContextDarwin_arm64_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_ARM: RegisterContextDarwin_arm_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_I386: RegisterContextDarwin_i386_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_X86_64: RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; } } } // The size of the load command is the size of the segments... if (addr_byte_size == 8) { mach_header.sizeofcmds = segment_load_commands.size() * sizeof(struct segment_command_64); } else { mach_header.sizeofcmds = segment_load_commands.size() * sizeof(struct segment_command); } // and the size of all LC_THREAD load command for (const auto &LC_THREAD_data : LC_THREAD_datas) { ++mach_header.ncmds; mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); } printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x " "0x%8.8x 0x%8.8x\n", mach_header.magic, mach_header.cputype, mach_header.cpusubtype, mach_header.filetype, mach_header.ncmds, mach_header.sizeofcmds, mach_header.flags, mach_header.reserved); // Write the mach header buffer.PutHex32(mach_header.magic); buffer.PutHex32(mach_header.cputype); buffer.PutHex32(mach_header.cpusubtype); buffer.PutHex32(mach_header.filetype); buffer.PutHex32(mach_header.ncmds); buffer.PutHex32(mach_header.sizeofcmds); buffer.PutHex32(mach_header.flags); if (addr_byte_size == 8) { buffer.PutHex32(mach_header.reserved); } // Skip the mach header and all load commands and align to the next // 0x1000 byte boundary addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; if (file_offset & 0x00000fff) { file_offset += 0x00001000ull; file_offset &= (~0x00001000ull + 1); } for (auto &segment : segment_load_commands) { segment.fileoff = file_offset; file_offset += segment.filesize; } // Write out all of the LC_THREAD load commands for (const auto &LC_THREAD_data : LC_THREAD_datas) { const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); buffer.PutHex32(LC_THREAD); buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size); } // Write out all of the segment load commands for (const auto &segment : segment_load_commands) { printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", segment.cmd, segment.cmdsize, segment.vmaddr, segment.vmaddr + segment.vmsize, segment.fileoff, segment.filesize, segment.maxprot, segment.initprot, segment.nsects, segment.flags); buffer.PutHex32(segment.cmd); buffer.PutHex32(segment.cmdsize); buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); if (addr_byte_size == 8) { buffer.PutHex64(segment.vmaddr); buffer.PutHex64(segment.vmsize); buffer.PutHex64(segment.fileoff); buffer.PutHex64(segment.filesize); } else { buffer.PutHex32(static_cast(segment.vmaddr)); buffer.PutHex32(static_cast(segment.vmsize)); buffer.PutHex32(static_cast(segment.fileoff)); buffer.PutHex32(static_cast(segment.filesize)); } buffer.PutHex32(segment.maxprot); buffer.PutHex32(segment.initprot); buffer.PutHex32(segment.nsects); buffer.PutHex32(segment.flags); } File core_file; std::string core_file_path(outfile.GetPath()); error = core_file.Open(core_file_path.c_str(), File::eOpenOptionWrite | File::eOpenOptionTruncate | File::eOpenOptionCanCreate); if (error.Success()) { // Read 1 page at a time uint8_t bytes[0x1000]; // Write the mach header and load commands out to the core file size_t bytes_written = buffer.GetString().size(); error = core_file.Write(buffer.GetString().data(), bytes_written); if (error.Success()) { // Now write the file data for all memory segments in the process for (const auto &segment : segment_load_commands) { if (core_file.SeekFromStart(segment.fileoff) == -1) { error.SetErrorStringWithFormat( "unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); break; } printf("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); addr_t bytes_left = segment.vmsize; addr_t addr = segment.vmaddr; Error memory_read_error; while (bytes_left > 0 && error.Success()) { const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; const size_t bytes_read = process_sp->ReadMemory( addr, bytes, bytes_to_read, memory_read_error); if (bytes_read == bytes_to_read) { size_t bytes_written = bytes_read; error = core_file.Write(bytes, bytes_written); bytes_left -= bytes_read; addr += bytes_read; } else { // Some pages within regions are not readable, those // should be zero filled memset(bytes, 0, bytes_to_read); size_t bytes_written = bytes_to_read; error = core_file.Write(bytes, bytes_written); bytes_left -= bytes_to_read; addr += bytes_to_read; } } } } } } else { error.SetErrorString( "process doesn't support getting memory region info"); } } return true; // This is the right plug to handle saving core files for // this process } } return false; }