//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "NativeProcessLinux.h" // C Includes #include #include #include #include // C++ Includes #include #include #include #include #include // Other libraries and framework includes #include "lldb/Core/EmulateInstruction.h" #include "lldb/Core/Error.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/State.h" #include "lldb/Host/Host.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Host/common/NativeBreakpoint.h" #include "lldb/Host/common/NativeRegisterContext.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/Process.h" #include "lldb/Target/ProcessLaunchInfo.h" #include "lldb/Target/Target.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/PseudoTerminal.h" #include "lldb/Utility/StringExtractor.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "NativeThreadLinux.h" #include "ProcFileReader.h" #include "Procfs.h" // System includes - They have to be included after framework includes because they define some // macros which collide with variable names in other modules #include #include #include #include #include #include #include "lldb/Host/linux/Personality.h" #include "lldb/Host/linux/Ptrace.h" #include "lldb/Host/linux/Uio.h" #include "lldb/Host/android/Android.h" #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff // Support hardware breakpoints in case it has not been defined #ifndef TRAP_HWBKPT #define TRAP_HWBKPT 4 #endif using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_linux; using namespace llvm; // Private bits we only need internally. static bool ProcessVmReadvSupported() { static bool is_supported; static std::once_flag flag; std::call_once(flag, [] { Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); uint32_t source = 0x47424742; uint32_t dest = 0; struct iovec local, remote; remote.iov_base = &source; local.iov_base = &dest; remote.iov_len = local.iov_len = sizeof source; // We shall try if cross-process-memory reads work by attempting to read a value from our own process. ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); is_supported = (res == sizeof(source) && source == dest); if (log) { if (is_supported) log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.", __FUNCTION__); else log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.", __FUNCTION__, strerror(errno)); } }); return is_supported; } namespace { Error ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch) { // Grab process info for the running process. ProcessInstanceInfo process_info; if (!Host::GetProcessInfo(pid, process_info)) return Error("failed to get process info"); // Resolve the executable module. ModuleSpecList module_specs; if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs)) return Error("failed to get module specifications"); assert(module_specs.GetSize() == 1); arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture(); if (arch.IsValid()) return Error(); else return Error("failed to retrieve a valid architecture from the exe module"); } // Used to notify the parent about which part of the launch sequence failed. enum LaunchCallSpecifier { ePtraceFailed, eDupStdinFailed, eDupStdoutFailed, eDupStderrFailed, eChdirFailed, eExecFailed, eSetGidFailed, eSetSigMaskFailed, eLaunchCallMax = eSetSigMaskFailed }; static uint8_t LLVM_ATTRIBUTE_NORETURN ExitChildAbnormally(LaunchCallSpecifier spec) { static_assert(eLaunchCallMax < 0x8, "Have more launch calls than we are able to represent"); // This may truncate the topmost bits of the errno because the exit code is only 8 bits wide. // However, it should still give us a pretty good indication of what went wrong. (And the // most common errors have small numbers anyway). _exit(unsigned(spec) | (errno << 3)); } // The second member is the errno (or its 5 lowermost bits anyway). inline std::pair DecodeChildExitCode(int exit_code) { return std::make_pair(LaunchCallSpecifier(exit_code & 0x7), exit_code >> 3); } void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); if (!log) return; if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) log->Printf("%s: setting STDIN to '%s'", __FUNCTION__, action->GetFileSpec().GetCString()); else log->Printf("%s leaving STDIN as is", __FUNCTION__); if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) log->Printf("%s setting STDOUT to '%s'", __FUNCTION__, action->GetFileSpec().GetCString()); else log->Printf("%s leaving STDOUT as is", __FUNCTION__); if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) log->Printf("%s setting STDERR to '%s'", __FUNCTION__, action->GetFileSpec().GetCString()); else log->Printf("%s leaving STDERR as is", __FUNCTION__); int i = 0; for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; ++args, ++i) log->Printf("%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); } void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { uint8_t *ptr = (uint8_t *)bytes; const uint32_t loop_count = std::min(DEBUG_PTRACE_MAXBYTES, count); for (uint32_t i = 0; i < loop_count; i++) { s.Printf("[%x]", *ptr); ptr++; } } void PtraceDisplayBytes(int &req, void *data, size_t data_size) { StreamString buf; Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); if (verbose_log) { switch(req) { case PTRACE_POKETEXT: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); break; } case PTRACE_POKEDATA: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); break; } case PTRACE_POKEUSER: { DisplayBytes(buf, &data, 8); verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); break; } case PTRACE_SETREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); break; } case PTRACE_SETFPREGS: { DisplayBytes(buf, data, data_size); verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); break; } case PTRACE_SETSIGINFO: { DisplayBytes(buf, data, sizeof(siginfo_t)); verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); break; } case PTRACE_SETREGSET: { // Extract iov_base from data, which is a pointer to the struct IOVEC DisplayBytes(buf, *(void **)data, data_size); verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); break; } default: { } } } } static constexpr unsigned k_ptrace_word_size = sizeof(void*); static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size"); } // end of anonymous namespace // Simple helper function to ensure flags are enabled on the given file // descriptor. static Error EnsureFDFlags(int fd, int flags) { Error error; int status = fcntl(fd, F_GETFL); if (status == -1) { error.SetErrorToErrno(); return error; } if (fcntl(fd, F_SETFL, status | flags) == -1) { error.SetErrorToErrno(); return error; } return error; } // ----------------------------------------------------------------------------- // Public Static Methods // ----------------------------------------------------------------------------- Error NativeProcessProtocol::Launch ( ProcessLaunchInfo &launch_info, NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); Error error; // Verify the working directory is valid if one was specified. FileSpec working_dir{launch_info.GetWorkingDirectory()}; if (working_dir && (!working_dir.ResolvePath() || working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) { error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir.GetCString()); return error; } // Create the NativeProcessLinux in launch mode. native_process_sp.reset (new NativeProcessLinux ()); if (!native_process_sp->RegisterNativeDelegate (native_delegate)) { native_process_sp.reset (); error.SetErrorStringWithFormat ("failed to register the native delegate"); return error; } error = std::static_pointer_cast(native_process_sp)->LaunchInferior(mainloop, launch_info); if (error.Fail ()) { native_process_sp.reset (); if (log) log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); return error; } launch_info.SetProcessID (native_process_sp->GetID ()); return error; } Error NativeProcessProtocol::Attach ( lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); // Retrieve the architecture for the running process. ArchSpec process_arch; Error error = ResolveProcessArchitecture(pid, process_arch); if (!error.Success ()) return error; std::shared_ptr native_process_linux_sp (new NativeProcessLinux ()); if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) { error.SetErrorStringWithFormat ("failed to register the native delegate"); return error; } native_process_linux_sp->AttachToInferior (mainloop, pid, error); if (!error.Success ()) return error; native_process_sp = native_process_linux_sp; return error; } // ----------------------------------------------------------------------------- // Public Instance Methods // ----------------------------------------------------------------------------- NativeProcessLinux::NativeProcessLinux () : NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), m_arch (), m_supports_mem_region (eLazyBoolCalculate), m_mem_region_cache (), m_pending_notification_tid(LLDB_INVALID_THREAD_ID) { } void NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, [this] (MainLoopBase &) { SigchldHandler(); }, error); if (! m_sigchld_handle) return; error = ResolveProcessArchitecture(pid, m_arch); if (!error.Success()) return; // Set the architecture to the exe architecture. if (log) log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); m_pid = pid; SetState(eStateAttaching); Attach(pid, error); } void NativeProcessLinux::ChildFunc(const ProcessLaunchInfo &info) { // Start tracing this child that is about to exec. if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) == -1) ExitChildAbnormally(ePtraceFailed); // Do not inherit setgid powers. if (setgid(getgid()) != 0) ExitChildAbnormally(eSetGidFailed); // Attempt to have our own process group. if (setpgid(0, 0) != 0) { // FIXME log that this failed. This is common. // Don't allow this to prevent an inferior exec. } // Dup file descriptors if needed. if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) if (!DupDescriptor(action->GetFileSpec(), STDIN_FILENO, O_RDONLY)) ExitChildAbnormally(eDupStdinFailed); if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) if (!DupDescriptor(action->GetFileSpec(), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) ExitChildAbnormally(eDupStdoutFailed); if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) if (!DupDescriptor(action->GetFileSpec(), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) ExitChildAbnormally(eDupStderrFailed); // Close everything besides stdin, stdout, and stderr that has no file // action to avoid leaking for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) if (!info.GetFileActionForFD(fd)) close(fd); // Change working directory if (info.GetWorkingDirectory() && 0 != ::chdir(info.GetWorkingDirectory().GetCString())) ExitChildAbnormally(eChdirFailed); // Disable ASLR if requested. if (info.GetFlags().Test(lldb::eLaunchFlagDisableASLR)) { const int old_personality = personality(LLDB_PERSONALITY_GET_CURRENT_SETTINGS); if (old_personality == -1) { // Can't retrieve Linux personality. Cannot disable ASLR. } else { const int new_personality = personality(ADDR_NO_RANDOMIZE | old_personality); if (new_personality == -1) { // Disabling ASLR failed. } else { // Disabling ASLR succeeded. } } } // Clear the signal mask to prevent the child from being affected by // any masking done by the parent. sigset_t set; if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0) ExitChildAbnormally(eSetSigMaskFailed); const char **argv = info.GetArguments().GetConstArgumentVector(); // Propagate the environment if one is not supplied. const char **envp = info.GetEnvironmentEntries().GetConstArgumentVector(); if (envp == NULL || envp[0] == NULL) envp = const_cast(environ); // Execute. We should never return... execve(argv[0], const_cast(argv), const_cast(envp)); if (errno == ETXTBSY) { // On android M and earlier we can get this error because the adb deamon can hold a write // handle on the executable even after it has finished uploading it. This state lasts // only a short time and happens only when there are many concurrent adb commands being // issued, such as when running the test suite. (The file remains open when someone does // an "adb shell" command in the fork() child before it has had a chance to exec.) Since // this state should clear up quickly, wait a while and then give it one more go. usleep(50000); execve(argv[0], const_cast(argv), const_cast(envp)); } // ...unless exec fails. In which case we definitely need to end the child here. ExitChildAbnormally(eExecFailed); } Error NativeProcessLinux::LaunchInferior(MainLoop &mainloop, ProcessLaunchInfo &launch_info) { Error error; m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); if (!m_sigchld_handle) return error; SetState(eStateLaunching); lldb_utility::PseudoTerminal terminal; const size_t err_len = 1024; char err_str[err_len]; lldb::pid_t pid; MaybeLogLaunchInfo(launch_info); if ((pid = terminal.Fork(err_str, err_len)) == static_cast (-1)) { error.SetErrorToGenericError(); error.SetErrorStringWithFormat("Process fork failed: %s", err_str); return error; } // Child process. if (pid == 0) { // First, make sure we disable all logging. If we are logging to stdout, our logs can be // mistaken for inferior output. Log::DisableAllLogChannels(nullptr); // terminal has already dupped the tty descriptors to stdin/out/err. // This closes original fd from which they were copied (and avoids // leaking descriptors to the debugged process. terminal.CloseSlaveFileDescriptor(); ChildFunc(launch_info); } Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // Wait for the child process to trap on its call to execve. ::pid_t wpid; int status; if ((wpid = waitpid(pid, &status, 0)) < 0) { error.SetErrorToErrno(); if (log) log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return error; } else if (WIFEXITED(status)) { auto p = DecodeChildExitCode(WEXITSTATUS(status)); Error child_error(p.second, eErrorTypePOSIX); const char *failure_reason; switch (p.first) { case ePtraceFailed: failure_reason = "Child ptrace failed"; break; case eDupStdinFailed: failure_reason = "Child open stdin failed"; break; case eDupStdoutFailed: failure_reason = "Child open stdout failed"; break; case eDupStderrFailed: failure_reason = "Child open stderr failed"; break; case eChdirFailed: failure_reason = "Child failed to set working directory"; break; case eExecFailed: failure_reason = "Child exec failed"; break; case eSetGidFailed: failure_reason = "Child setgid failed"; break; case eSetSigMaskFailed: failure_reason = "Child failed to set signal mask"; break; } error.SetErrorStringWithFormat("%s: %d - %s (error code truncated)", failure_reason, child_error.GetError(), child_error.AsCString()); if (log) { log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", __FUNCTION__, WEXITSTATUS(status)); } // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return error; } assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && "Could not sync with inferior process."); if (log) log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); error = SetDefaultPtraceOpts(pid); if (error.Fail()) { if (log) log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", __FUNCTION__, error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return error; } // Release the master terminal descriptor and pass it off to the // NativeProcessLinux instance. Similarly stash the inferior pid. m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); m_pid = pid; launch_info.SetProcessID(pid); // Set the terminal fd to be in non blocking mode (it simplifies the // implementation of ProcessLinux::GetSTDOUT to have a non-blocking // descriptor to read from). error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); if (error.Fail()) { if (log) log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", __FUNCTION__, error.AsCString ()); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. SetState (StateType::eStateInvalid); return error; } if (log) log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); ResolveProcessArchitecture(m_pid, m_arch); NativeThreadLinuxSP thread_sp = AddThread(pid); assert (thread_sp && "AddThread() returned a nullptr thread"); thread_sp->SetStoppedBySignal(SIGSTOP); ThreadWasCreated(*thread_sp); // Let our process instance know the thread has stopped. SetCurrentThreadID (thread_sp->GetID ()); SetState (StateType::eStateStopped); if (log) { if (error.Success ()) log->Printf("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); else log->Printf("NativeProcessLinux::%s inferior launching failed: %s", __FUNCTION__, error.AsCString()); } return error; } ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // Use a map to keep track of the threads which we have attached/need to attach. Host::TidMap tids_to_attach; if (pid <= 1) { error.SetErrorToGenericError(); error.SetErrorString("Attaching to process 1 is not allowed."); return -1; } while (Host::FindProcessThreads(pid, tids_to_attach)) { for (Host::TidMap::iterator it = tids_to_attach.begin(); it != tids_to_attach.end();) { if (it->second == false) { lldb::tid_t tid = it->first; // Attach to the requested process. // An attach will cause the thread to stop with a SIGSTOP. error = PtraceWrapper(PTRACE_ATTACH, tid); if (error.Fail()) { // No such thread. The thread may have exited. // More error handling may be needed. if (error.GetError() == ESRCH) { it = tids_to_attach.erase(it); continue; } else return -1; } int status; // Need to use __WALL otherwise we receive an error with errno=ECHLD // At this point we should have a thread stopped if waitpid succeeds. if ((status = waitpid(tid, NULL, __WALL)) < 0) { // No such thread. The thread may have exited. // More error handling may be needed. if (errno == ESRCH) { it = tids_to_attach.erase(it); continue; } else { error.SetErrorToErrno(); return -1; } } error = SetDefaultPtraceOpts(tid); if (error.Fail()) return -1; if (log) log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); it->second = true; // Create the thread, mark it as stopped. NativeThreadLinuxSP thread_sp (AddThread(static_cast(tid))); assert (thread_sp && "AddThread() returned a nullptr"); // This will notify this is a new thread and tell the system it is stopped. thread_sp->SetStoppedBySignal(SIGSTOP); ThreadWasCreated(*thread_sp); SetCurrentThreadID (thread_sp->GetID ()); } // move the loop forward ++it; } } if (tids_to_attach.size() > 0) { m_pid = pid; // Let our process instance know the thread has stopped. SetState (StateType::eStateStopped); } else { error.SetErrorToGenericError(); error.SetErrorString("No such process."); return -1; } return pid; } Error NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { long ptrace_opts = 0; // Have the child raise an event on exit. This is used to keep the child in // limbo until it is destroyed. ptrace_opts |= PTRACE_O_TRACEEXIT; // Have the tracer trace threads which spawn in the inferior process. // TODO: if we want to support tracing the inferiors' child, add the // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) ptrace_opts |= PTRACE_O_TRACECLONE; // Have the tracer notify us before execve returns // (needed to disable legacy SIGTRAP generation) ptrace_opts |= PTRACE_O_TRACEEXEC; return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts); } static ExitType convert_pid_status_to_exit_type (int status) { if (WIFEXITED (status)) return ExitType::eExitTypeExit; else if (WIFSIGNALED (status)) return ExitType::eExitTypeSignal; else if (WIFSTOPPED (status)) return ExitType::eExitTypeStop; else { // We don't know what this is. return ExitType::eExitTypeInvalid; } } static int convert_pid_status_to_return_code (int status) { if (WIFEXITED (status)) return WEXITSTATUS (status); else if (WIFSIGNALED (status)) return WTERMSIG (status); else if (WIFSTOPPED (status)) return WSTOPSIG (status); else { // We don't know what this is. return ExitType::eExitTypeInvalid; } } // Handles all waitpid events from the inferior process. void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, int signal, int status) { Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); // Certain activities differ based on whether the pid is the tid of the main thread. const bool is_main_thread = (pid == GetID ()); // Handle when the thread exits. if (exited) { if (log) log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); // This is a thread that exited. Ensure we're not tracking it anymore. const bool thread_found = StopTrackingThread (pid); if (is_main_thread) { // We only set the exit status and notify the delegate if we haven't already set the process // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) // for the main thread. const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); if (!already_notified) { if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); // The main thread exited. We're done monitoring. Report to delegate. SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); // Notify delegate that our process has exited. SetState (StateType::eStateExited, true); } else { if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); } } else { // Do we want to report to the delegate in this case? I think not. If this was an orderly // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, // and we would have done an all-stop then. if (log) log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); } return; } siginfo_t info; const auto info_err = GetSignalInfo(pid, &info); auto thread_sp = GetThreadByID(pid); if (! thread_sp) { // Normally, the only situation when we cannot find the thread is if we have just // received a new thread notification. This is indicated by GetSignalInfo() returning // si_code == SI_USER and si_pid == 0 if (log) log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid); if (info_err.Fail()) { if (log) log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString()); return; } if (log && (info.si_code != SI_USER || info.si_pid != 0)) log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid); auto thread_sp = AddThread(pid); // Resume the newly created thread. ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); ThreadWasCreated(*thread_sp); return; } // Get details on the signal raised. if (info_err.Success()) { // We have retrieved the signal info. Dispatch appropriately. if (info.si_signo == SIGTRAP) MonitorSIGTRAP(info, *thread_sp); else MonitorSignal(info, *thread_sp, exited); } else { if (info_err.GetError() == EINVAL) { // This is a group stop reception for this tid. // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the // tracee, triggering the group-stop mechanism. Normally receiving these would stop // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is // generally not needed (one use case is debugging background task being managed by a // shell). For general use, it is sufficient to stop the process in a signal-delivery // stop which happens before the group stop. This done by MonitorSignal and works // correctly for all signals. if (log) log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid); ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER); } else { // ptrace(GETSIGINFO) failed (but not due to group-stop). // A return value of ESRCH means the thread/process is no longer on the system, // so it was killed somehow outside of our control. Either way, we can't do anything // with it anymore. // Stop tracking the metadata for the thread since it's entirely off the system now. const bool thread_found = StopTrackingThread (pid); if (log) log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); if (is_main_thread) { // Notify the delegate - our process is not available but appears to have been killed outside // our control. Is eStateExited the right exit state in this case? SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); SetState (StateType::eStateExited, true); } else { // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); } } } } void NativeProcessLinux::WaitForNewThread(::pid_t tid) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); if (new_thread_sp) { // We are already tracking the thread - we got the event on the new thread (see // MonitorSignal) before this one. We are done. return; } // The thread is not tracked yet, let's wait for it to appear. int status = -1; ::pid_t wait_pid; do { if (log) log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); wait_pid = waitpid(tid, &status, __WALL); } while (wait_pid == -1 && errno == EINTR); // Since we are waiting on a specific tid, this must be the creation event. But let's do // some checks just in case. if (wait_pid != tid) { if (log) log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); // The only way I know of this could happen is if the whole process was // SIGKILLed in the mean time. In any case, we can't do anything about that now. return; } if (WIFEXITED(status)) { if (log) log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); // Also a very improbable event. return; } siginfo_t info; Error error = GetSignalInfo(tid, &info); if (error.Fail()) { if (log) log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); return; } if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) { // We should be getting a thread creation signal here, but we received something // else. There isn't much we can do about it now, so we will just log that. Since the // thread is alive and we are receiving events from it, we shall pretend that it was // created properly. log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); } if (log) log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, __FUNCTION__, GetID (), tid); new_thread_sp = AddThread(tid); ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); ThreadWasCreated(*new_thread_sp); } void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); const bool is_main_thread = (thread.GetID() == GetID ()); assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); switch (info.si_code) { // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { // This is the notification on the parent thread which informs us of new thread // creation. // We don't want to do anything with the parent thread so we just resume it. In case we // want to implement "break on thread creation" functionality, we would need to stop // here. unsigned long event_message = 0; if (GetEventMessage(thread.GetID(), &event_message).Fail()) { if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID()); } else WaitForNewThread(event_message); ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); break; } case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { NativeThreadLinuxSP main_thread_sp; if (log) log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP); // Exec clears any pending notifications. m_pending_notification_tid = LLDB_INVALID_THREAD_ID; // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. if (log) log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); for (auto thread_sp : m_threads) { const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); if (is_main_thread) { main_thread_sp = std::static_pointer_cast(thread_sp); if (log) log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); } else { if (log) log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); } } m_threads.clear (); if (main_thread_sp) { m_threads.push_back (main_thread_sp); SetCurrentThreadID (main_thread_sp->GetID ()); main_thread_sp->SetStoppedByExec(); } else { SetCurrentThreadID (LLDB_INVALID_THREAD_ID); if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); } // Tell coordinator about about the "new" (since exec) stopped main thread. ThreadWasCreated(*main_thread_sp); // Let our delegate know we have just exec'd. NotifyDidExec (); // If we have a main thread, indicate we are stopped. assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); // Let the process know we're stopped. StopRunningThreads(main_thread_sp->GetID()); break; } case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { // The inferior process or one of its threads is about to exit. // We don't want to do anything with the thread so we just resume it. In case we // want to implement "break on thread exit" functionality, we would need to stop // here. unsigned long data = 0; if (GetEventMessage(thread.GetID(), &data).Fail()) data = -1; if (log) { log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", __FUNCTION__, data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", thread.GetID(), is_main_thread ? "is main thread" : "not main thread"); } if (is_main_thread) { SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); } StateType state = thread.GetState(); if (! StateIsRunningState(state)) { // Due to a kernel bug, we may sometimes get this stop after the inferior gets a // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally, // we should not be receiving any ptrace events while the inferior is stopped. This // makes sure that the inferior is resumed and exits normally. state = eStateRunning; } ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); break; } case 0: case TRAP_TRACE: // We receive this on single stepping. case TRAP_HWBKPT: // We receive this on watchpoint hit { // If a watchpoint was hit, report it uint32_t wp_index; Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr); if (error.Fail() && log) log->Printf("NativeProcessLinux::%s() " "received error while checking for watchpoint hits, " "pid = %" PRIu64 " error = %s", __FUNCTION__, thread.GetID(), error.AsCString()); if (wp_index != LLDB_INVALID_INDEX32) { MonitorWatchpoint(thread, wp_index); break; } // Otherwise, report step over MonitorTrace(thread); break; } case SI_KERNEL: #if defined __mips__ // For mips there is no special signal for watchpoint // So we check for watchpoint in kernel trap { // If a watchpoint was hit, report it uint32_t wp_index; Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS); if (error.Fail() && log) log->Printf("NativeProcessLinux::%s() " "received error while checking for watchpoint hits, " "pid = %" PRIu64 " error = %s", __FUNCTION__, thread.GetID(), error.AsCString()); if (wp_index != LLDB_INVALID_INDEX32) { MonitorWatchpoint(thread, wp_index); break; } } // NO BREAK #endif case TRAP_BRKPT: MonitorBreakpoint(thread); break; case SIGTRAP: case (SIGTRAP | 0x80): if (log) log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID()); // Ignore these signals until we know more about them. ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); break; default: assert(false && "Unexpected SIGTRAP code!"); if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", __FUNCTION__, GetID(), thread.GetID(), info.si_code); break; } } void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); if (log) log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, thread.GetID()); // This thread is currently stopped. thread.SetStoppedByTrace(); StopRunningThreads(thread.GetID()); } void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); if (log) log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, thread.GetID()); // Mark the thread as stopped at breakpoint. thread.SetStoppedByBreakpoint(); Error error = FixupBreakpointPCAsNeeded(thread); if (error.Fail()) if (log) log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, thread.GetID(), error.AsCString()); if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end()) thread.SetStoppedByTrace(); StopRunningThreads(thread.GetID()); } void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); if (log) log->Printf("NativeProcessLinux::%s() received watchpoint event, " "pid = %" PRIu64 ", wp_index = %" PRIu32, __FUNCTION__, thread.GetID(), wp_index); // Mark the thread as stopped at watchpoint. // The address is at (lldb::addr_t)info->si_addr if we need it. thread.SetStoppedByWatchpoint(wp_index); // We need to tell all other running threads before we notify the delegate about this stop. StopRunningThreads(thread.GetID()); } void NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited) { const int signo = info.si_signo; const bool is_from_llgs = info.si_pid == getpid (); Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); // POSIX says that process behaviour is undefined after it ignores a SIGFPE, // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a // kill(2) or raise(3). Similarly for tgkill(2) on Linux. // // IOW, user generated signals never generate what we consider to be a // "crash". // // Similarly, ACK signals generated by this monitor. // Handle the signal. if (info.si_code == SI_TKILL || info.si_code == SI_USER) { if (log) log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", __FUNCTION__, Host::GetSignalAsCString(signo), signo, (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), info.si_pid, is_from_llgs ? "from llgs" : "not from llgs", thread.GetID()); } // Check for thread stop notification. if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { // This is a tgkill()-based stop. if (log) log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", __FUNCTION__, GetID (), thread.GetID()); // Check that we're not already marked with a stop reason. // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that // the kernel signaled us with the thread stopping which we handled and marked as stopped, // and that, without an intervening resume, we received another stop. It is more likely // that we are missing the marking of a run state somewhere if we find that the thread was // marked as stopped. const StateType thread_state = thread.GetState(); if (!StateIsStoppedState (thread_state, false)) { // An inferior thread has stopped because of a SIGSTOP we have sent it. // Generally, these are not important stops and we don't want to report them as // they are just used to stop other threads when one thread (the one with the // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the // case of an asynchronous Interrupt(), this *is* the real stop reason, so we // leave the signal intact if this is the thread that was chosen as the // triggering thread. if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { if (m_pending_notification_tid == thread.GetID()) thread.SetStoppedBySignal(SIGSTOP, &info); else thread.SetStoppedWithNoReason(); SetCurrentThreadID (thread.GetID ()); SignalIfAllThreadsStopped(); } else { // We can end up here if stop was initiated by LLGS but by this time a // thread stop has occurred - maybe initiated by another event. Error error = ResumeThread(thread, thread.GetState(), 0); if (error.Fail() && log) { log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", __FUNCTION__, thread.GetID(), error.AsCString()); } } } else { if (log) { // Retrieve the signal name if the thread was stopped by a signal. int stop_signo = 0; const bool stopped_by_signal = thread.IsStopped(&stop_signo); const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : ""; if (!signal_name) signal_name = ""; log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", __FUNCTION__, GetID (), thread.GetID(), StateAsCString (thread_state), stop_signo, signal_name); } SignalIfAllThreadsStopped(); } // Done handling. return; } if (log) log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo)); // This thread is stopped. thread.SetStoppedBySignal(signo, &info); // Send a stop to the debugger after we get all other threads to stop. StopRunningThreads(thread.GetID()); } namespace { struct EmulatorBaton { NativeProcessLinux* m_process; NativeRegisterContext* m_reg_context; // eRegisterKindDWARF -> RegsiterValue std::unordered_map m_register_values; EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : m_process(process), m_reg_context(reg_context) {} }; } // anonymous namespace static size_t ReadMemoryCallback (EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, lldb::addr_t addr, void *dst, size_t length) { EmulatorBaton* emulator_baton = static_cast(baton); size_t bytes_read; emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); return bytes_read; } static bool ReadRegisterCallback (EmulateInstruction *instruction, void *baton, const RegisterInfo *reg_info, RegisterValue ®_value) { EmulatorBaton* emulator_baton = static_cast(baton); auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); if (it != emulator_baton->m_register_values.end()) { reg_value = it->second; return true; } // The emulator only fill in the dwarf regsiter numbers (and in some case // the generic register numbers). Get the full register info from the // register context based on the dwarf register numbers. const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); if (error.Success()) return true; return false; } static bool WriteRegisterCallback (EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, const RegisterInfo *reg_info, const RegisterValue ®_value) { EmulatorBaton* emulator_baton = static_cast(baton); emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; return true; } static size_t WriteMemoryCallback (EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, lldb::addr_t addr, const void *dst, size_t length) { return length; } static lldb::addr_t ReadFlags (NativeRegisterContext* regsiter_context) { const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); } Error NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { Error error; NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); std::unique_ptr emulator_ap( EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); if (emulator_ap == nullptr) return Error("Instruction emulator not found!"); EmulatorBaton baton(this, register_context_sp.get()); emulator_ap->SetBaton(&baton); emulator_ap->SetReadMemCallback(&ReadMemoryCallback); emulator_ap->SetReadRegCallback(&ReadRegisterCallback); emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); if (!emulator_ap->ReadInstruction()) return Error("Read instruction failed!"); bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); lldb::addr_t next_pc; lldb::addr_t next_flags; if (emulation_result) { assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); next_pc = pc_it->second.GetAsUInt64(); if (flags_it != baton.m_register_values.end()) next_flags = flags_it->second.GetAsUInt64(); else next_flags = ReadFlags (register_context_sp.get()); } else if (pc_it == baton.m_register_values.end()) { // Emulate instruction failed and it haven't changed PC. Advance PC // with the size of the current opcode because the emulation of all // PC modifying instruction should be successful. The failure most // likely caused by a not supported instruction which don't modify PC. next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); next_flags = ReadFlags (register_context_sp.get()); } else { // The instruction emulation failed after it modified the PC. It is an // unknown error where we can't continue because the next instruction is // modifying the PC but we don't know how. return Error ("Instruction emulation failed unexpectedly."); } if (m_arch.GetMachine() == llvm::Triple::arm) { if (next_flags & 0x20) { // Thumb mode error = SetSoftwareBreakpoint(next_pc, 2); } else { // Arm mode error = SetSoftwareBreakpoint(next_pc, 4); } } else if (m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) error = SetSoftwareBreakpoint(next_pc, 4); else { // No size hint is given for the next breakpoint error = SetSoftwareBreakpoint(next_pc, 0); } if (error.Fail()) return error; m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); return Error(); } bool NativeProcessLinux::SupportHardwareSingleStepping() const { if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) return false; return true; } Error NativeProcessLinux::Resume (const ResumeActionList &resume_actions) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); if (log) log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); bool software_single_step = !SupportHardwareSingleStepping(); if (software_single_step) { for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); if (action == nullptr) continue; if (action->state == eStateStepping) { Error error = SetupSoftwareSingleStepping(static_cast(*thread_sp)); if (error.Fail()) return error; } } } for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); if (action == nullptr) { if (log) log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), thread_sp->GetID ()); continue; } if (log) { log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); } switch (action->state) { case eStateRunning: case eStateStepping: { // Run the thread, possibly feeding it the signal. const int signo = action->signal; ResumeThread(static_cast(*thread_sp), action->state, signo); break; } case eStateSuspended: case eStateStopped: lldbassert(0 && "Unexpected state"); default: return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); } } return Error(); } Error NativeProcessLinux::Halt () { Error error; if (kill (GetID (), SIGSTOP) != 0) error.SetErrorToErrno (); return error; } Error NativeProcessLinux::Detach () { Error error; // Stop monitoring the inferior. m_sigchld_handle.reset(); // Tell ptrace to detach from the process. if (GetID () == LLDB_INVALID_PROCESS_ID) return error; for (auto thread_sp : m_threads) { Error e = Detach(thread_sp->GetID()); if (e.Fail()) error = e; // Save the error, but still attempt to detach from other threads. } return error; } Error NativeProcessLinux::Signal (int signo) { Error error; Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID()); if (kill(GetID(), signo)) error.SetErrorToErrno(); return error; } Error NativeProcessLinux::Interrupt () { // Pick a running thread (or if none, a not-dead stopped thread) as // the chosen thread that will be the stop-reason thread. Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); NativeThreadProtocolSP running_thread_sp; NativeThreadProtocolSP stopped_thread_sp; if (log) log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); for (auto thread_sp : m_threads) { // The thread shouldn't be null but lets just cover that here. if (!thread_sp) continue; // If we have a running or stepping thread, we'll call that the // target of the interrupt. const auto thread_state = thread_sp->GetState (); if (thread_state == eStateRunning || thread_state == eStateStepping) { running_thread_sp = thread_sp; break; } else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) { // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. stopped_thread_sp = thread_sp; } } if (!running_thread_sp && !stopped_thread_sp) { Error error("found no running/stepping or live stopped threads as target for interrupt"); if (log) log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); return error; } NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", __FUNCTION__, GetID (), running_thread_sp ? "running" : "stopped", deferred_signal_thread_sp->GetID ()); StopRunningThreads(deferred_signal_thread_sp->GetID()); return Error(); } Error NativeProcessLinux::Kill () { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); Error error; switch (m_state) { case StateType::eStateInvalid: case StateType::eStateExited: case StateType::eStateCrashed: case StateType::eStateDetached: case StateType::eStateUnloaded: // Nothing to do - the process is already dead. if (log) log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); return error; case StateType::eStateConnected: case StateType::eStateAttaching: case StateType::eStateLaunching: case StateType::eStateStopped: case StateType::eStateRunning: case StateType::eStateStepping: case StateType::eStateSuspended: // We can try to kill a process in these states. break; } if (kill (GetID (), SIGKILL) != 0) { error.SetErrorToErrno (); return error; } return error; } static Error ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) { memory_region_info.Clear(); StringExtractor line_extractor (maps_line.c_str ()); // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). // Parse out the starting address lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); // Parse out hyphen separating start and end address from range. if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); // Parse out the ending address lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); // Parse out the space after the address. if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) return Error ("malformed /proc/{pid}/maps entry, missing space after range"); // Save the range. memory_region_info.GetRange ().SetRangeBase (start_address); memory_region_info.GetRange ().SetRangeEnd (end_address); // Any memory region in /proc/{pid}/maps is by definition mapped into the process. memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); // Parse out each permission entry. if (line_extractor.GetBytesLeft () < 4) return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); // Handle read permission. const char read_perm_char = line_extractor.GetChar (); if (read_perm_char == 'r') memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); else if (read_perm_char == '-') memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); else return Error ("unexpected /proc/{pid}/maps read permission char"); // Handle write permission. const char write_perm_char = line_extractor.GetChar (); if (write_perm_char == 'w') memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); else if (write_perm_char == '-') memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); else return Error ("unexpected /proc/{pid}/maps write permission char"); // Handle execute permission. const char exec_perm_char = line_extractor.GetChar (); if (exec_perm_char == 'x') memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); else if (exec_perm_char == '-') memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); else return Error ("unexpected /proc/{pid}/maps exec permission char"); return Error (); } Error NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) { // FIXME review that the final memory region returned extends to the end of the virtual address space, // with no perms if it is not mapped. // Use an approach that reads memory regions from /proc/{pid}/maps. // Assume proc maps entries are in ascending order. // FIXME assert if we find differently. Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); Error error; if (m_supports_mem_region == LazyBool::eLazyBoolNo) { // We're done. error.SetErrorString ("unsupported"); return error; } // If our cache is empty, pull the latest. There should always be at least one memory region // if memory region handling is supported. if (m_mem_region_cache.empty ()) { error = ProcFileReader::ProcessLineByLine (GetID (), "maps", [&] (const std::string &line) -> bool { MemoryRegionInfo info; const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); if (parse_error.Success ()) { m_mem_region_cache.push_back (info); return true; } else { if (log) log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); return false; } }); // If we had an error, we'll mark unsupported. if (error.Fail ()) { m_supports_mem_region = LazyBool::eLazyBoolNo; return error; } else if (m_mem_region_cache.empty ()) { // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps // is supported. Assume we don't support map entries via procfs. if (log) log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); m_supports_mem_region = LazyBool::eLazyBoolNo; error.SetErrorString ("not supported"); return error; } if (log) log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast (m_mem_region_cache.size ()), GetID ()); // We support memory retrieval, remember that. m_supports_mem_region = LazyBool::eLazyBoolYes; } else { if (log) log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast (m_mem_region_cache.size ())); } lldb::addr_t prev_base_address = 0; // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. // There can be a ton of regions on pthreads apps with lots of threads. for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) { MemoryRegionInfo &proc_entry_info = *it; // Sanity check assumption that /proc/{pid}/maps entries are ascending. assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); // If the target address comes before this entry, indicate distance to next region. if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) { range_info.GetRange ().SetRangeBase (load_addr); range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); return error; } else if (proc_entry_info.GetRange ().Contains (load_addr)) { // The target address is within the memory region we're processing here. range_info = proc_entry_info; return error; } // The target memory address comes somewhere after the region we just parsed. } // If we made it here, we didn't find an entry that contained the given address. Return the // load_addr as start and the amount of bytes betwwen load address and the end of the memory as // size. range_info.GetRange ().SetRangeBase (load_addr); range_info.GetRange ().SetRangeEnd(LLDB_INVALID_ADDRESS); range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); return error; } void NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); if (log) log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast (m_mem_region_cache.size ())); m_mem_region_cache.clear (); } Error NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) { // FIXME implementing this requires the equivalent of // InferiorCallPOSIX::InferiorCallMmap, which depends on // functional ThreadPlans working with Native*Protocol. #if 1 return Error ("not implemented yet"); #else addr = LLDB_INVALID_ADDRESS; unsigned prot = 0; if (permissions & lldb::ePermissionsReadable) prot |= eMmapProtRead; if (permissions & lldb::ePermissionsWritable) prot |= eMmapProtWrite; if (permissions & lldb::ePermissionsExecutable) prot |= eMmapProtExec; // TODO implement this directly in NativeProcessLinux // (and lift to NativeProcessPOSIX if/when that class is // refactored out). if (InferiorCallMmap(this, addr, 0, size, prot, eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { m_addr_to_mmap_size[addr] = size; return Error (); } else { addr = LLDB_INVALID_ADDRESS; return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); } #endif } Error NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) { // FIXME see comments in AllocateMemory - required lower-level // bits not in place yet (ThreadPlans) return Error ("not implemented"); } lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress () { // punt on this for now return LLDB_INVALID_ADDRESS; } size_t NativeProcessLinux::UpdateThreads () { // The NativeProcessLinux monitoring threads are always up to date // with respect to thread state and they keep the thread list // populated properly. All this method needs to do is return the // thread count. return m_threads.size (); } bool NativeProcessLinux::GetArchitecture (ArchSpec &arch) const { arch = m_arch; return true; } Error NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size) { // FIXME put this behind a breakpoint protocol class that can be // set per architecture. Need ARM, MIPS support here. static const uint8_t g_i386_opcode [] = { 0xCC }; static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 }; switch (m_arch.GetMachine ()) { case llvm::Triple::x86: case llvm::Triple::x86_64: actual_opcode_size = static_cast (sizeof(g_i386_opcode)); return Error (); case llvm::Triple::systemz: actual_opcode_size = static_cast (sizeof(g_s390x_opcode)); return Error (); case llvm::Triple::arm: case llvm::Triple::aarch64: case llvm::Triple::mips64: case llvm::Triple::mips64el: case llvm::Triple::mips: case llvm::Triple::mipsel: // On these architectures the PC don't get updated for breakpoint hits actual_opcode_size = 0; return Error (); default: assert(false && "CPU type not supported!"); return Error ("CPU type not supported"); } } Error NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) { if (hardware) return Error ("NativeProcessLinux does not support hardware breakpoints"); else return SetSoftwareBreakpoint (addr, size); } Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) { // FIXME put this behind a breakpoint protocol class that can be set per // architecture. Need MIPS support here. static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the // linux kernel does otherwise. static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; static const uint8_t g_i386_opcode [] = { 0xCC }; static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 }; static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; switch (m_arch.GetMachine ()) { case llvm::Triple::aarch64: trap_opcode_bytes = g_aarch64_opcode; actual_opcode_size = sizeof(g_aarch64_opcode); return Error (); case llvm::Triple::arm: switch (trap_opcode_size_hint) { case 2: trap_opcode_bytes = g_thumb_breakpoint_opcode; actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); return Error (); case 4: trap_opcode_bytes = g_arm_breakpoint_opcode; actual_opcode_size = sizeof(g_arm_breakpoint_opcode); return Error (); default: assert(false && "Unrecognised trap opcode size hint!"); return Error ("Unrecognised trap opcode size hint!"); } case llvm::Triple::x86: case llvm::Triple::x86_64: trap_opcode_bytes = g_i386_opcode; actual_opcode_size = sizeof(g_i386_opcode); return Error (); case llvm::Triple::mips: case llvm::Triple::mips64: trap_opcode_bytes = g_mips64_opcode; actual_opcode_size = sizeof(g_mips64_opcode); return Error (); case llvm::Triple::mipsel: case llvm::Triple::mips64el: trap_opcode_bytes = g_mips64el_opcode; actual_opcode_size = sizeof(g_mips64el_opcode); return Error (); case llvm::Triple::systemz: trap_opcode_bytes = g_s390x_opcode; actual_opcode_size = sizeof(g_s390x_opcode); return Error (); default: assert(false && "CPU type not supported!"); return Error ("CPU type not supported"); } } #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGSEGV); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGSEGV"); break; case SI_KERNEL: // Linux will occasionally send spurious SI_KERNEL codes. // (this is poorly documented in sigaction) // One way to get this is via unaligned SIMD loads. reason = ProcessMessage::eInvalidAddress; // for lack of anything better break; case SEGV_MAPERR: reason = ProcessMessage::eInvalidAddress; break; case SEGV_ACCERR: reason = ProcessMessage::ePrivilegedAddress; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGILL); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGILL"); break; case ILL_ILLOPC: reason = ProcessMessage::eIllegalOpcode; break; case ILL_ILLOPN: reason = ProcessMessage::eIllegalOperand; break; case ILL_ILLADR: reason = ProcessMessage::eIllegalAddressingMode; break; case ILL_ILLTRP: reason = ProcessMessage::eIllegalTrap; break; case ILL_PRVOPC: reason = ProcessMessage::ePrivilegedOpcode; break; case ILL_PRVREG: reason = ProcessMessage::ePrivilegedRegister; break; case ILL_COPROC: reason = ProcessMessage::eCoprocessorError; break; case ILL_BADSTK: reason = ProcessMessage::eInternalStackError; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGFPE); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGFPE"); break; case FPE_INTDIV: reason = ProcessMessage::eIntegerDivideByZero; break; case FPE_INTOVF: reason = ProcessMessage::eIntegerOverflow; break; case FPE_FLTDIV: reason = ProcessMessage::eFloatDivideByZero; break; case FPE_FLTOVF: reason = ProcessMessage::eFloatOverflow; break; case FPE_FLTUND: reason = ProcessMessage::eFloatUnderflow; break; case FPE_FLTRES: reason = ProcessMessage::eFloatInexactResult; break; case FPE_FLTINV: reason = ProcessMessage::eFloatInvalidOperation; break; case FPE_FLTSUB: reason = ProcessMessage::eFloatSubscriptRange; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGBUS); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGBUS"); break; case BUS_ADRALN: reason = ProcessMessage::eIllegalAlignment; break; case BUS_ADRERR: reason = ProcessMessage::eIllegalAddress; break; case BUS_OBJERR: reason = ProcessMessage::eHardwareError; break; } return reason; } #endif Error NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) { if (ProcessVmReadvSupported()) { // The process_vm_readv path is about 50 times faster than ptrace api. We want to use // this syscall if it is supported. const ::pid_t pid = GetID(); struct iovec local_iov, remote_iov; local_iov.iov_base = buf; local_iov.iov_len = size; remote_iov.iov_base = reinterpret_cast(addr); remote_iov.iov_len = size; bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); const bool success = bytes_read == size; Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s", __FUNCTION__, size, addr, success ? "Success" : strerror(errno)); if (success) return Error(); // else // the call failed for some reason, let's retry the read using ptrace api. } unsigned char *dst = static_cast(buf); size_t remainder; long data; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size); for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data); if (error.Fail()) { if (log) ProcessPOSIXLog::DecNestLevel(); return error; } remainder = size - bytes_read; remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; // Copy the data into our buffer memcpy(dst, &data, remainder); if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) { uintptr_t print_dst = 0; // Format bytes from data by moving into print_dst for log output for (unsigned i = 0; i < remainder; ++i) print_dst |= (((data >> i*8) & 0xFF) << i*8); log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")", __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data)); } addr += k_ptrace_word_size; dst += k_ptrace_word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return Error(); } Error NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) { Error error = ReadMemory(addr, buf, size, bytes_read); if (error.Fail()) return error; return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); } Error NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) { const unsigned char *src = static_cast(buf); size_t remainder; Error error; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); if (log) ProcessPOSIXLog::IncNestLevel(); if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size); for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { remainder = size - bytes_written; remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; if (remainder == k_ptrace_word_size) { unsigned long data = 0; memcpy(&data, src, k_ptrace_word_size); if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)addr, *(const unsigned long*)src, data); error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data); if (error.Fail()) { if (log) ProcessPOSIXLog::DecNestLevel(); return error; } } else { unsigned char buff[8]; size_t bytes_read; error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); if (error.Fail()) { if (log) ProcessPOSIXLog::DecNestLevel(); return error; } memcpy(buff, src, remainder); size_t bytes_written_rec; error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); if (error.Fail()) { if (log) ProcessPOSIXLog::DecNestLevel(); return error; } if (log && ProcessPOSIXLog::AtTopNestLevel() && (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && size <= POSIX_LOG_MEMORY_SHORT_BYTES))) log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff); } addr += k_ptrace_word_size; src += k_ptrace_word_size; } if (log) ProcessPOSIXLog::DecNestLevel(); return error; } Error NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); } Error NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) { return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); } Error NativeProcessLinux::Detach(lldb::tid_t tid) { if (tid == LLDB_INVALID_THREAD_ID) return Error(); return PtraceWrapper(PTRACE_DETACH, tid); } bool NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags) { int target_fd = open(file_spec.GetCString(), flags, 0666); if (target_fd == -1) return false; if (dup2(target_fd, fd) == -1) return false; return (close(target_fd) == -1) ? false : true; } bool NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) { for (auto thread_sp : m_threads) { assert (thread_sp && "thread list should not contain NULL threads"); if (thread_sp->GetID () == thread_id) { // We have this thread. return true; } } // We don't have this thread. return false; } bool NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); bool found = false; for (auto it = m_threads.begin (); it != m_threads.end (); ++it) { if (*it && ((*it)->GetID () == thread_id)) { m_threads.erase (it); found = true; break; } } SignalIfAllThreadsStopped(); return found; } NativeThreadLinuxSP NativeProcessLinux::AddThread (lldb::tid_t thread_id) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); if (log) { log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, __FUNCTION__, GetID (), thread_id); } assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); // If this is the first thread, save it as the current thread if (m_threads.empty ()) SetCurrentThreadID (thread_id); auto thread_sp = std::make_shared(this, thread_id); m_threads.push_back (thread_sp); return thread_sp; } Error NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); Error error; // Find out the size of a breakpoint (might depend on where we are in the code). NativeRegisterContextSP context_sp = thread.GetRegisterContext(); if (!context_sp) { error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); if (log) log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); return error; } uint32_t breakpoint_size = 0; error = GetSoftwareBreakpointPCOffset(breakpoint_size); if (error.Fail ()) { if (log) log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); return error; } else { if (log) log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); } // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation (); lldb::addr_t breakpoint_addr = initial_pc_addr; if (breakpoint_size > 0) { // Do not allow breakpoint probe to wrap around. if (breakpoint_addr >= breakpoint_size) breakpoint_addr -= breakpoint_size; } // Check if we stopped because of a breakpoint. NativeBreakpointSP breakpoint_sp; error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); if (!error.Success () || !breakpoint_sp) { // We didn't find one at a software probe location. Nothing to do. if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // If the breakpoint is not a software breakpoint, nothing to do. if (!breakpoint_sp->IsSoftwareBreakpoint ()) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // // We have a software breakpoint and need to adjust the PC. // // Sanity check. if (breakpoint_size == 0) { // Nothing to do! How did we get here? if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); return Error (); } // Change the program counter. if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr); error = context_sp->SetPC (breakpoint_addr); if (error.Fail ()) { if (log) log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ()); return error; } return error; } Error NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) { FileSpec module_file_spec(module_path, true); bool found = false; file_spec.Clear(); ProcFileReader::ProcessLineByLine(GetID(), "maps", [&] (const std::string &line) { SmallVector columns; StringRef(line).split(columns, " ", -1, false); if (columns.size() < 6) return true; // continue searching FileSpec this_file_spec(columns[5].str().c_str(), false); if (this_file_spec.GetFilename() != module_file_spec.GetFilename()) return true; // continue searching file_spec = this_file_spec; found = true; return false; // we are done }); if (! found) return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", module_file_spec.GetFilename().AsCString(), GetID()); return Error(); } Error NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr) { load_addr = LLDB_INVALID_ADDRESS; Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps", [&] (const std::string &line) -> bool { StringRef maps_row(line); SmallVector maps_columns; maps_row.split(maps_columns, StringRef(" "), -1, false); if (maps_columns.size() < 6) { // Return true to continue reading the proc file return true; } if (maps_columns[5] == file_name) { StringExtractor addr_extractor(maps_columns[0].str().c_str()); load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); // Return false to stop reading the proc file further return false; } // Return true to continue reading the proc file return true; }); return error; } NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { return std::static_pointer_cast(NativeProcessProtocol::GetThreadByID(tid)); } Error NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID()); // Before we do the resume below, first check if we have a pending // stop notification that is currently waiting for // all threads to stop. This is potentially a buggy situation since // we're ostensibly waiting for threads to stop before we send out the // pending notification, and here we are resuming one before we send // out the pending stop notification. if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log) { log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid); } // Request a resume. We expect this to be synchronous and the system // to reflect it is running after this completes. switch (state) { case eStateRunning: { const auto resume_result = thread.Resume(signo); if (resume_result.Success()) SetState(eStateRunning, true); return resume_result; } case eStateStepping: { const auto step_result = thread.SingleStep(signo); if (step_result.Success()) SetState(eStateRunning, true); return step_result; } default: if (log) log->Printf("NativeProcessLinux::%s Unhandled state %s.", __FUNCTION__, StateAsCString(state)); llvm_unreachable("Unhandled state for resume"); } } //===----------------------------------------------------------------------===// void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) { log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", __FUNCTION__, triggering_tid); } m_pending_notification_tid = triggering_tid; // Request a stop for all the thread stops that need to be stopped // and are not already known to be stopped. for (const auto &thread_sp: m_threads) { if (StateIsRunningState(thread_sp->GetState())) static_pointer_cast(thread_sp)->RequestStop(); } SignalIfAllThreadsStopped(); if (log) { log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); } } void NativeProcessLinux::SignalIfAllThreadsStopped() { if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) return; // No pending notification. Nothing to do. for (const auto &thread_sp: m_threads) { if (StateIsRunningState(thread_sp->GetState())) return; // Some threads are still running. Don't signal yet. } // We have a pending notification and all threads have stopped. Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); // Clear any temporary breakpoints we used to implement software single stepping. for (const auto &thread_info: m_threads_stepping_with_breakpoint) { Error error = RemoveBreakpoint (thread_info.second); if (error.Fail()) if (log) log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", __FUNCTION__, thread_info.first, error.AsCString()); } m_threads_stepping_with_breakpoint.clear(); // Notify the delegate about the stop SetCurrentThreadID(m_pending_notification_tid); SetState(StateType::eStateStopped, true); m_pending_notification_tid = LLDB_INVALID_THREAD_ID; } void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); if (log) log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID()); if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState())) { // We will need to wait for this new thread to stop as well before firing the // notification. thread.RequestStop(); } } void NativeProcessLinux::SigchldHandler() { Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); // Process all pending waitpid notifications. while (true) { int status = -1; ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); if (wait_pid == 0) break; // We are done. if (wait_pid == -1) { if (errno == EINTR) continue; Error error(errno, eErrorTypePOSIX); if (log) log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s", __FUNCTION__, error.AsCString()); break; } bool exited = false; int signal = 0; int exit_status = 0; const char *status_cstr = nullptr; if (WIFSTOPPED(status)) { signal = WSTOPSIG(status); status_cstr = "STOPPED"; } else if (WIFEXITED(status)) { exit_status = WEXITSTATUS(status); status_cstr = "EXITED"; exited = true; } else if (WIFSIGNALED(status)) { signal = WTERMSIG(status); status_cstr = "SIGNALED"; if (wait_pid == static_cast< ::pid_t>(GetID())) { exited = true; exit_status = -1; } } else status_cstr = "(\?\?\?)"; if (log) log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)" "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status); MonitorCallback (wait_pid, exited, signal, exit_status); } } // Wrapper for ptrace to catch errors and log calls. // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) Error NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result) { Error error; long int ret; Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); PtraceDisplayBytes(req, data, data_size); errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); else ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); if (ret == -1) error.SetErrorToErrno(); if (result) *result = ret; if (log) log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret); PtraceDisplayBytes(req, data, data_size); if (log && error.GetError() != 0) { const char* str; switch (error.GetError()) { case ESRCH: str = "ESRCH"; break; case EINVAL: str = "EINVAL"; break; case EBUSY: str = "EBUSY"; break; case EPERM: str = "EPERM"; break; default: str = error.AsCString(); } log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); } return error; }