/**************************************************************************** THIS SOFTWARE IS NOT COPYRIGHTED HP offers the following for use in the public domain. HP makes no warranty with regard to the software or its performance and the user accepts the software "AS IS" with all faults. HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ****************************************************************************/ /**************************************************************************** * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ * * Module name: remcom.c $ * Revision: 1.34 $ * Date: 91/03/09 12:29:49 $ * Contributor: Lake Stevens Instrument Division$ * * Description: low level support for gdb debugger. $ * * Considerations: only works on target hardware $ * * Written by: Glenn Engel $ * ModuleState: Experimental $ * * NOTES: See Below $ * * Modified for FreeBSD by Stu Grossman. * * To enable debugger support, two things need to happen. One, a * call to set_debug_traps() is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint(). Breakpoint() * simulates a breakpoint by executing a trap #1. * * The external function exceptionHandler() is * used to attach a specific handler to a specific 386 vector number. * It should use the same privilege level it runs at. It should * install it as an interrupt gate so that interrupts are masked * while the handler runs. * Also, need to assign exceptionHook and oldExceptionHook. * * Because gdb will sometimes write to the stack area to execute function * calls, this program cannot rely on using the supervisor stack so it * uses its own stack area reserved in the int array remcomStack. * ************* * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * D detach OK * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $#. * * where * :: * :: < two hex digits computed as modulo 256 sum of > * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * ****************************************************************************/ #include #include #include #include #include #include #include #include /* #include "sio.h" */ #include "opt_ddb.h" #include "sio.h" #if NSIO == 0 void gdb_handle_exception (db_regs_t *raw_regs, int type, int code) { } #else /************************************************************************/ void gdb_handle_exception (db_regs_t *, int, int); extern jmp_buf db_jmpbuf; /************************************************************************/ /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/ /* at least NUMREGBYTES*2 are needed for register packets */ #define BUFMAX 1500 /* Create private copies of common functions used by the stub. This prevents nasty interactions between app code and the stub (for instance if user steps into strlen, etc..) */ /* XXX this is fairly bogus. strlen() and strcpy() should be reentrant, and are reentrant under FreeBSD. In any case, our versions should not be named the same as the standard versions, so that the address `strlen' is unambiguous... */ static int strlen (const char *s) { const char *s1 = s; while (*s1++ != '\000'); return s1 - s; } static char * strcpy (char *dst, const char *src) { char *retval = dst; while ((*dst++ = *src++) != '\000'); return retval; } /* XXX sio always uses its major with minor 0 no matter what we specify. */ #define REMOTE_DEV 0 static int putDebugChar (int c) /* write a single character */ { #if NSIO > 0 siogdbputc (c); #endif return 1; } static int getDebugChar (void) /* read and return a single char */ { #if NSIO > 0 return siogdbgetc (); #else return 0; #endif } static const char hexchars[]="0123456789abcdef"; static int hex(char ch) { if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10); if ((ch >= '0') && (ch <= '9')) return (ch-'0'); if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10); return (-1); } /* scan for the sequence $# */ static void getpacket (char *buffer) { unsigned char checksum; unsigned char xmitcsum; int i; int count; unsigned char ch; do { /* wait around for the start character, ignore all other characters */ while ((ch = (getDebugChar () & 0x7f)) != '$'); checksum = 0; xmitcsum = -1; count = 0; /* now, read until a # or end of buffer is found */ while (count < BUFMAX) { ch = getDebugChar () & 0x7f; if (ch == '#') break; checksum = checksum + ch; buffer[count] = ch; count = count + 1; } buffer[count] = 0; if (ch == '#') { xmitcsum = hex (getDebugChar () & 0x7f) << 4; xmitcsum += hex (getDebugChar () & 0x7f); if (checksum != xmitcsum) putDebugChar ('-'); /* failed checksum */ else { putDebugChar ('+'); /* successful transfer */ /* if a sequence char is present, reply the sequence ID */ if (buffer[2] == ':') { putDebugChar (buffer[0]); putDebugChar (buffer[1]); /* remove sequence chars from buffer */ count = strlen (buffer); for (i=3; i <= count; i++) buffer[i-3] = buffer[i]; } } } } while (checksum != xmitcsum); if (strlen(buffer) >= BUFMAX) panic("kgdb: buffer overflow"); } /* send the packet in buffer. */ static void putpacket (char *buffer) { unsigned char checksum; int count; unsigned char ch; if (strlen(buffer) >= BUFMAX) panic("kgdb: buffer overflow"); /* $#. */ do { /* * This is a non-standard hack to allow use of the serial console for * operation as well as debugging. Simply turn on 'remotechat' in gdb. * * This extension is not part of the Cygnus protocol, is kinda gross, * but gets the job done. */ #ifdef GDB_REMOTE_CHAT putDebugChar ('|'); putDebugChar ('|'); putDebugChar ('|'); putDebugChar ('|'); #endif putDebugChar ('$'); checksum = 0; count = 0; while ((ch=buffer[count]) != 0) { putDebugChar (ch); checksum += ch; count += 1; } putDebugChar ('#'); putDebugChar (hexchars[checksum >> 4]); putDebugChar (hexchars[checksum & 0xf]); } while ((getDebugChar () & 0x7f) != '+'); } static char remcomInBuffer[BUFMAX]; static char remcomOutBuffer[BUFMAX]; static int get_char (vm_offset_t addr) { char data; if (setjmp (db_jmpbuf)) return -1; db_read_bytes (addr, 1, &data); return data & 0xff; } static int set_char (vm_offset_t addr, int val) { char data; if (setjmp (db_jmpbuf)) return -1; data = val; db_write_bytes (addr, 1, &data); return 0; } /* convert the memory pointed to by mem into hex, placing result in buf */ /* return a pointer to the last char put in buf (null) */ static char * mem2hex (vm_offset_t mem, char *buf, int count) { int i; int ch; for (i=0;i> 4]; *buf++ = hexchars[ch % 16]; } *buf = 0; return(buf); } /* convert the hex array pointed to by buf into binary to be placed in mem */ /* return a pointer to the character AFTER the last byte written */ static char * hex2mem (char *buf, vm_offset_t mem, int count) { int i; int ch; int rv; for (i=0;i=0) { *intValue = (*intValue <<4) | hexValue; numChars ++; } else break; (*ptr)++; } return (numChars); } static enum { NONE, NORMAL, BRANCH } ss_mode = NONE; struct ss_bpt { int active; vm_offset_t addr; u_int32_t contents; }; static struct ss_bpt ss_bp1, ss_bp2; static int set_bpt(struct ss_bpt* bp) { u_int32_t bp_ins = BKPT_INST; if (bp->active) return 0; if (badaddr((caddr_t)bp->addr, 4)) return 0; db_read_bytes(bp->addr, 4, (caddr_t) &bp->contents); db_write_bytes(bp->addr, 4, (caddr_t) &bp_ins); bp->active = 1; return 1; } static void clear_bpt(struct ss_bpt* bp) { if (!bp->active) return; if (badaddr((caddr_t) bp->addr, 4)) return; db_write_bytes(bp->addr, 4, (caddr_t) &bp->contents); bp->active = 0; } static int set_single_step(db_regs_t* regs) { u_int32_t ins; vm_offset_t pc = regs->tf_regs[FRAME_PC]; if (ss_mode != NONE) { printf("single_step botch\n"); return 0; } if (badaddr((caddr_t) pc, 4)) return 0; db_read_bytes(pc, 4, (caddr_t) &ins); ss_bp1.addr = pc + 4; if (db_inst_branch(ins)) { ss_bp2.addr = db_branch_taken(ins, pc, regs); if (!set_bpt(&ss_bp1)) return 0; if (!set_bpt(&ss_bp2)) { clear_bpt(&ss_bp1); return 0; } ss_mode = BRANCH; } else { if (!set_bpt(&ss_bp1)) return 0; ss_mode = NORMAL; } return 1; } static void clear_single_step(db_regs_t* regs) { /* if we hit one of the step breakpoints, adjust pc */ if (ss_mode == BRANCH) { /* remove in reverse order in case they are at the same address */ if (regs->tf_regs[FRAME_PC] == ss_bp1.addr + 4 || regs->tf_regs[FRAME_PC] == ss_bp2.addr + 4) regs->tf_regs[FRAME_PC] -= 4; clear_bpt(&ss_bp2); clear_bpt(&ss_bp1); } else if (ss_mode == NORMAL) { if (regs->tf_regs[FRAME_PC] == ss_bp1.addr + 4) regs->tf_regs[FRAME_PC] -= 4; clear_bpt(&ss_bp1); } ss_mode = NONE; } #define NUMREGBYTES (sizeof registers) #define PC 64 #define SP 30 #define FP 15 #define VFP 65 #define NUM_REGS 66 /* * Map trapframe indices into gdb (integer) register indices. * Entries not in integer register set are set to -1. */ static int tf2gdb[FRAME_SIZE] = { /*0*/ R_V0, R_T0, R_T1, R_T2, R_T3, R_T4, R_T5, R_T6, /*8*/ R_T7, R_S0, R_S1, R_S2, R_S3, R_S4, R_S5, R_S6, /*16*/ R_A3, R_A4, R_A5, R_T8, R_T9, R_T10, R_T11, R_RA, /*24*/ R_T12, R_AT, R_SP, -1, -1, -1, -1, -1, /*32*/ R_GP, R_A0, R_A1, R_A2, }; /* * Map gdb register indices back to trapframe. * Entries not in trapframe are set to -1. */ static int gdb2tf[NUM_REGS] = { /* integer registers */ FRAME_V0, FRAME_T0, FRAME_T1, FRAME_T2, FRAME_T3, FRAME_T4, FRAME_T5, FRAME_T6, FRAME_T7, FRAME_S0, FRAME_S1, FRAME_S2, FRAME_S3, FRAME_S4, FRAME_S5, FRAME_S6, FRAME_A0, FRAME_A1, FRAME_A2, FRAME_A3, FRAME_A4, FRAME_A5, FRAME_T8, FRAME_T9, FRAME_T10, FRAME_T11, FRAME_RA, FRAME_T12, FRAME_AT, FRAME_GP, FRAME_SP, -1, /* float registers */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* misc registers */ FRAME_PC, -1, }; /* * This function does all command procesing for interfacing to gdb. */ void gdb_handle_exception (db_regs_t *raw_regs, int type, int code) { int sigval; long addr, length; char * ptr; struct alpharegs { u_int64_t r[32]; u_int64_t f[32]; u_int64_t pc, vfp; }; static struct alpharegs registers; int i; clear_single_step(raw_regs); bzero(®isters, sizeof registers); /* * Map trapframe to registers. * Ignore float regs for now. */ for (i = 0; i < FRAME_SIZE; i++) if (tf2gdb[i] >= 0) registers.r[tf2gdb[i]] = raw_regs->tf_regs[i]; registers.pc = raw_regs->tf_regs[FRAME_PC]; /* reply to host that an exception has occurred */ sigval = computeSignal (type, code); ptr = remcomOutBuffer; *ptr++ = 'T'; *ptr++ = hexchars[sigval >> 4]; *ptr++ = hexchars[sigval & 0xf]; *ptr++ = hexchars[PC >> 4]; *ptr++ = hexchars[PC & 0xf]; *ptr++ = ':'; ptr = mem2hex ((vm_offset_t)®isters.pc, ptr, 8); *ptr++ = ';'; *ptr++ = hexchars[FP >> 4]; *ptr++ = hexchars[FP & 0xf]; *ptr++ = ':'; ptr = mem2hex ((vm_offset_t)®isters.r[FP], ptr, 8); *ptr++ = ';'; *ptr++ = hexchars[SP >> 4]; *ptr++ = hexchars[SP & 0xf]; *ptr++ = ':'; ptr = mem2hex ((vm_offset_t)®isters.r[SP], ptr, 8); *ptr++ = ';'; *ptr++ = 0; putpacket (remcomOutBuffer); while (1) { remcomOutBuffer[0] = 0; getpacket (remcomInBuffer); switch (remcomInBuffer[0]) { case '?': remcomOutBuffer[0] = 'S'; remcomOutBuffer[1] = hexchars[sigval >> 4]; remcomOutBuffer[2] = hexchars[sigval % 16]; remcomOutBuffer[3] = 0; break; case 'D': /* detach; say OK and turn off gdb */ putpacket(remcomOutBuffer); boothowto &= ~RB_GDB; return; case 'k': prom_halt(); /*NOTREACHED*/ break; case 'g': /* return the value of the CPU registers */ mem2hex ((vm_offset_t)®isters, remcomOutBuffer, NUMREGBYTES); break; case 'G': /* set the value of the CPU registers - return OK */ hex2mem (&remcomInBuffer[1], (vm_offset_t)®isters, NUMREGBYTES); strcpy (remcomOutBuffer, "OK"); break; case 'P': /* Set the value of one register */ { long regno; ptr = &remcomInBuffer[1]; if (hexToInt (&ptr, ®no) && *ptr++ == '=' && regno < NUM_REGS) { hex2mem (ptr, (vm_offset_t)®isters + regno * 8, 8); strcpy(remcomOutBuffer,"OK"); } else strcpy (remcomOutBuffer, "P01"); break; } case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ /* Try to read %x,%x. */ ptr = &remcomInBuffer[1]; if (hexToInt (&ptr, &addr) && *(ptr++) == ',' && hexToInt (&ptr, &length)) { if (mem2hex((vm_offset_t) addr, remcomOutBuffer, length) == NULL) strcpy (remcomOutBuffer, "E03"); break; } else strcpy (remcomOutBuffer, "E01"); break; case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ /* Try to read '%x,%x:'. */ ptr = &remcomInBuffer[1]; if (hexToInt(&ptr,&addr) && *(ptr++) == ',' && hexToInt(&ptr, &length) && *(ptr++) == ':') { if (hex2mem(ptr, (vm_offset_t) addr, length) == NULL) strcpy (remcomOutBuffer, "E03"); else strcpy (remcomOutBuffer, "OK"); } else strcpy (remcomOutBuffer, "E02"); break; /* cAA..AA Continue at address AA..AA(optional) */ /* sAA..AA Step one instruction from AA..AA(optional) */ case 'c' : case 's' : /* try to read optional parameter, pc unchanged if no parm */ ptr = &remcomInBuffer[1]; if (hexToInt(&ptr,&addr)) registers.pc = addr; /* * Map gdb registers back to trapframe (ignoring fp regs). */ for (i = 0; i < NUM_REGS; i++) if (gdb2tf[i] >= 0) raw_regs->tf_regs[gdb2tf[i]] = registers.r[i]; raw_regs->tf_regs[FRAME_PC] = registers.pc; if (remcomInBuffer[0] == 's') if (!set_single_step(raw_regs)) printf("Can't set single step breakpoint\n"); return; } /* switch */ /* reply to the request */ putpacket (remcomOutBuffer); } } #endif /* NSIO > 0 */