/*- * Copyright (c) 2014 Ruslan Bukin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Samsung Chromebook Keyboard */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gpio_if.h" #include #include #include #include #define CKB_LOCK() mtx_lock(&Giant) #define CKB_UNLOCK() mtx_unlock(&Giant) #ifdef INVARIANTS /* * Assert that the lock is held in all contexts * where the code can be executed. */ #define CKB_LOCK_ASSERT() mtx_assert(&Giant, MA_OWNED) /* * Assert that the lock is held in the contexts * where it really has to be so. */ #define CKB_CTX_LOCK_ASSERT() \ do { \ if (!kdb_active && panicstr == NULL) \ mtx_assert(&Giant, MA_OWNED); \ } while (0) #else #define CKB_LOCK_ASSERT() (void)0 #define CKB_CTX_LOCK_ASSERT() (void)0 #endif /* * Define a stub keyboard driver in case one hasn't been * compiled into the kernel */ #include #include #include #define CKB_NFKEY 12 #define CKB_FLAG_COMPOSE 0x1 #define CKB_FLAG_POLLING 0x2 #define KBD_DRIVER_NAME "ckbd" struct ckb_softc { keyboard_t sc_kbd; keymap_t sc_keymap; accentmap_t sc_accmap; fkeytab_t sc_fkeymap[CKB_NFKEY]; struct resource* sc_mem_res; struct resource* sc_irq_res; void* sc_intr_hl; int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */ int sc_state; /* shift/lock key state */ int sc_accents; /* accent key index (> 0) */ int sc_flags; /* flags */ struct callout sc_repeat_callout; int sc_repeat_key; int sc_repeating; int flag; int rows; int cols; int gpio; device_t dev; device_t gpio_dev; struct thread *sc_poll_thread; uint16_t *keymap; uint8_t *scan_local; uint8_t *scan; }; /* prototypes */ static int ckb_set_typematic(keyboard_t *, int); static uint32_t ckb_read_char(keyboard_t *, int); static void ckb_clear_state(keyboard_t *); static int ckb_ioctl(keyboard_t *, u_long, caddr_t); static int ckb_enable(keyboard_t *); static int ckb_disable(keyboard_t *); static void ckb_repeat(void *arg) { struct ckb_softc *sc; sc = arg; if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { if (sc->sc_repeat_key != -1) { sc->sc_repeating = 1; sc->sc_kbd.kb_callback.kc_func(&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } } } /* detect a keyboard, not used */ static int ckb__probe(int unit, void *arg, int flags) { return (ENXIO); } /* reset and initialize the device, not used */ static int ckb_init(int unit, keyboard_t **kbdp, void *arg, int flags) { return (ENXIO); } /* test the interface to the device, not used */ static int ckb_test_if(keyboard_t *kbd) { return (0); } /* finish using this keyboard, not used */ static int ckb_term(keyboard_t *kbd) { return (ENXIO); } /* keyboard interrupt routine, not used */ static int ckb_intr(keyboard_t *kbd, void *arg) { return (0); } /* lock the access to the keyboard, not used */ static int ckb_lock(keyboard_t *kbd, int lock) { return (1); } /* clear the internal state of the keyboard */ static void ckb_clear_state(keyboard_t *kbd) { struct ckb_softc *sc; sc = kbd->kb_data; CKB_CTX_LOCK_ASSERT(); sc->sc_flags &= ~(CKB_FLAG_COMPOSE | CKB_FLAG_POLLING); sc->sc_state &= LOCK_MASK; /* preserve locking key state */ sc->sc_accents = 0; } /* save the internal state, not used */ static int ckb_get_state(keyboard_t *kbd, void *buf, size_t len) { return (len == 0) ? 1 : -1; } /* set the internal state, not used */ static int ckb_set_state(keyboard_t *kbd, void *buf, size_t len) { return (EINVAL); } /* check if data is waiting */ static int ckb_check(keyboard_t *kbd) { struct ckb_softc *sc; int i; sc = kbd->kb_data; CKB_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); if (sc->sc_flags & CKB_FLAG_POLLING) { return (1); } for (i = 0; i < sc->cols; i++) if (sc->scan_local[i] != sc->scan[i]) { return (1); } if (sc->sc_repeating) return (1); return (0); } /* check if char is waiting */ static int ckb_check_char_locked(keyboard_t *kbd) { CKB_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); return (ckb_check(kbd)); } static int ckb_check_char(keyboard_t *kbd) { int result; CKB_LOCK(); result = ckb_check_char_locked(kbd); CKB_UNLOCK(); return (result); } /* read one byte from the keyboard if it's allowed */ /* Currently unused. */ static int ckb_read(keyboard_t *kbd, int wait) { CKB_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (-1); printf("Implement ME: %s\n", __func__); return (0); } static uint16_t keymap_read(struct ckb_softc *sc, int col, int row) { KASSERT(sc->keymap != NULL, ("keymap_read: no keymap")); if (col >= 0 && col < sc->cols && row >= 0 && row < sc->rows) { return sc->keymap[row * sc->cols + col]; } return (0); } static int keymap_write(struct ckb_softc *sc, int col, int row, uint16_t key) { KASSERT(sc->keymap != NULL, ("keymap_write: no keymap")); if (col >= 0 && col < sc->cols && row >= 0 && row < sc->rows) { sc->keymap[row * sc->cols + col] = key; return (0); } return (-1); } /* read char from the keyboard */ static uint32_t ckb_read_char_locked(keyboard_t *kbd, int wait) { struct ckb_softc *sc; int i,j; uint16_t key; int oldbit; int newbit; int status; sc = kbd->kb_data; CKB_CTX_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (NOKEY); if (sc->sc_repeating) { sc->sc_repeating = 0; callout_reset(&sc->sc_repeat_callout, hz / 10, ckb_repeat, sc); return (sc->sc_repeat_key); } if (sc->sc_flags & CKB_FLAG_POLLING) { for (;;) { GPIO_PIN_GET(sc->gpio_dev, sc->gpio, &status); if (status == 0) { if (ec_command(EC_CMD_MKBP_STATE, sc->scan, sc->cols, sc->scan, sc->cols)) { return (NOKEY); } break; } if (!wait) { return (NOKEY); } DELAY(1000); } } for (i = 0; i < sc->cols; i++) { for (j = 0; j < sc->rows; j++) { oldbit = (sc->scan_local[i] & (1 << j)); newbit = (sc->scan[i] & (1 << j)); if (oldbit == newbit) continue; key = keymap_read(sc, i, j); if (key == 0) { continue; } if (newbit > 0) { /* key pressed */ sc->scan_local[i] |= (1 << j); /* setup repeating */ sc->sc_repeat_key = key; callout_reset(&sc->sc_repeat_callout, hz / 2, ckb_repeat, sc); } else { /* key released */ sc->scan_local[i] &= ~(1 << j); /* release flag */ key |= 0x80; /* unsetup repeating */ sc->sc_repeat_key = -1; callout_stop(&sc->sc_repeat_callout); } return (key); } } return (NOKEY); } /* Currently wait is always false. */ static uint32_t ckb_read_char(keyboard_t *kbd, int wait) { uint32_t keycode; CKB_LOCK(); keycode = ckb_read_char_locked(kbd, wait); CKB_UNLOCK(); return (keycode); } /* some useful control functions */ static int ckb_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg) { struct ckb_softc *sc; int i; sc = kbd->kb_data; CKB_LOCK_ASSERT(); switch (cmd) { case KDGKBMODE: /* get keyboard mode */ *(int *)arg = sc->sc_mode; break; case KDSKBMODE: /* set keyboard mode */ switch (*(int *)arg) { case K_XLATE: if (sc->sc_mode != K_XLATE) { /* make lock key state and LED state match */ sc->sc_state &= ~LOCK_MASK; sc->sc_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (sc->sc_mode != *(int *)arg) { if ((sc->sc_flags & CKB_FLAG_POLLING) == 0) ckb_clear_state(kbd); sc->sc_mode = *(int *)arg; } break; default: return (EINVAL); } break; case KDGETLED: /* get keyboard LED */ *(int *)arg = KBD_LED_VAL(kbd); break; case KDSETLED: /* set keyboard LED */ /* NOTE: lock key state in "sc_state" won't be changed */ if (*(int *)arg & ~LOCK_MASK) return (EINVAL); i = *(int *)arg; /* replace CAPS LED with ALTGR LED for ALTGR keyboards */ if (sc->sc_mode == K_XLATE && kbd->kb_keymap->n_keys > ALTGR_OFFSET) { if (i & ALKED) i |= CLKED; else i &= ~CLKED; } if (KBD_HAS_DEVICE(kbd)) { /* Configure LED */ } KBD_LED_VAL(kbd) = *(int *)arg; break; case KDGKBSTATE: /* get lock key state */ *(int *)arg = sc->sc_state & LOCK_MASK; break; case KDSKBSTATE: /* set lock key state */ if (*(int *)arg & ~LOCK_MASK) { return (EINVAL); } sc->sc_state &= ~LOCK_MASK; sc->sc_state |= *(int *)arg; /* set LEDs and quit */ return (ckb_ioctl(kbd, KDSETLED, arg)); case KDSETREPEAT: /* set keyboard repeat rate (new * interface) */ if (!KBD_HAS_DEVICE(kbd)) { return (0); } if (((int *)arg)[1] < 0) { return (EINVAL); } if (((int *)arg)[0] < 0) { return (EINVAL); } if (((int *)arg)[0] < 200) /* fastest possible value */ kbd->kb_delay1 = 200; else kbd->kb_delay1 = ((int *)arg)[0]; kbd->kb_delay2 = ((int *)arg)[1]; return (0); case KDSETRAD: /* set keyboard repeat rate (old * interface) */ return (ckb_set_typematic(kbd, *(int *)arg)); case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table * (compat) */ case PIO_KEYMAPENT: /* set keyboard translation table * entry */ case PIO_DEADKEYMAP: /* set accent key translation table */ sc->sc_accents = 0; /* FALLTHROUGH */ default: return (genkbd_commonioctl(kbd, cmd, arg)); } return (0); } static int ckb_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { int result; /* * XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any * context where printf(9) can be called, which among other things * includes interrupt filters and threads with any kinds of locks * already held. For this reason it would be dangerous to acquire * the Giant here unconditionally. On the other hand we have to * have it to handle the ioctl. * So we make our best effort to auto-detect whether we can grab * the Giant or not. Blame syscons(4) for this. */ switch (cmd) { case KDGKBSTATE: case KDSKBSTATE: case KDSETLED: if (!mtx_owned(&Giant) && !SCHEDULER_STOPPED()) return (EDEADLK); /* best I could come up with */ /* FALLTHROUGH */ default: CKB_LOCK(); result = ckb_ioctl_locked(kbd, cmd, arg); CKB_UNLOCK(); return (result); } } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int ckb_enable(keyboard_t *kbd) { CKB_LOCK(); KBD_ACTIVATE(kbd); CKB_UNLOCK(); return (0); } /* disallow the access to the device */ static int ckb_disable(keyboard_t *kbd) { CKB_LOCK(); KBD_DEACTIVATE(kbd); CKB_UNLOCK(); return (0); } /* local functions */ static int ckb_set_typematic(keyboard_t *kbd, int code) { static const int delays[] = {250, 500, 750, 1000}; static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504}; if (code & ~0x7f) { return (EINVAL); } kbd->kb_delay1 = delays[(code >> 5) & 3]; kbd->kb_delay2 = rates[code & 0x1f]; return (0); } static int ckb_poll(keyboard_t *kbd, int on) { struct ckb_softc *sc; sc = kbd->kb_data; CKB_LOCK(); if (on) { sc->sc_flags |= CKB_FLAG_POLLING; sc->sc_poll_thread = curthread; } else { sc->sc_flags &= ~CKB_FLAG_POLLING; } CKB_UNLOCK(); return (0); } /* local functions */ static int dummy_kbd_configure(int flags); keyboard_switch_t ckbdsw = { .probe = &ckb__probe, .init = &ckb_init, .term = &ckb_term, .intr = &ckb_intr, .test_if = &ckb_test_if, .enable = &ckb_enable, .disable = &ckb_disable, .read = &ckb_read, .check = &ckb_check, .read_char = &ckb_read_char, .check_char = &ckb_check_char, .ioctl = &ckb_ioctl, .lock = &ckb_lock, .clear_state = &ckb_clear_state, .get_state = &ckb_get_state, .set_state = &ckb_set_state, .get_fkeystr = &genkbd_get_fkeystr, .poll = &ckb_poll, .diag = &genkbd_diag, }; static int dummy_kbd_configure(int flags) { return (0); } KEYBOARD_DRIVER(ckbd, ckbdsw, dummy_kbd_configure); /* * Parses 'keymap' into sc->keymap. * Requires sc->cols and sc->rows to be set. */ static int parse_keymap(struct ckb_softc *sc, pcell_t *keymap, size_t len) { int i; sc->keymap = malloc(sc->cols * sc->rows * sizeof(sc->keymap[0]), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->keymap == NULL) { return (ENOMEM); } for (i = 0; i < len; i++) { /* * Return value is ignored, we just write whatever fits into * specified number of rows and columns and silently ignore * everything else. * Keymap entries follow this format: 0xRRCCKKKK * RR - row number, CC - column number, KKKK - key code */ keymap_write(sc, (keymap[i] >> 16) & 0xff, (keymap[i] >> 24) & 0xff, keymap[i] & 0xffff); } return (0); } /* Allocates a new array for keymap and returns it in 'keymap'. */ static int read_keymap(phandle_t node, const char *prop, pcell_t **keymap, size_t *len) { if ((*len = OF_getproplen(node, prop)) <= 0) { return (ENXIO); } if ((*keymap = malloc(*len, M_DEVBUF, M_NOWAIT)) == NULL) { return (ENOMEM); } if (OF_getencprop(node, prop, *keymap, *len) != *len) { return (ENXIO); } return (0); } static int parse_dts(struct ckb_softc *sc) { phandle_t node; pcell_t dts_value; pcell_t *keymap; int len, ret; const char *keymap_prop = NULL; if ((node = ofw_bus_get_node(sc->dev)) == -1) return (ENXIO); if ((len = OF_getproplen(node, "google,key-rows")) <= 0) return (ENXIO); OF_getencprop(node, "google,key-rows", &dts_value, len); sc->rows = dts_value; if ((len = OF_getproplen(node, "google,key-columns")) <= 0) return (ENXIO); OF_getencprop(node, "google,key-columns", &dts_value, len); sc->cols = dts_value; if ((len = OF_getproplen(node, "freebsd,intr-gpio")) <= 0) return (ENXIO); OF_getencprop(node, "freebsd,intr-gpio", &dts_value, len); sc->gpio = dts_value; if (OF_hasprop(node, "freebsd,keymap")) { keymap_prop = "freebsd,keymap"; device_printf(sc->dev, "using FreeBSD-specific keymap from FDT\n"); } else if (OF_hasprop(node, "linux,keymap")) { keymap_prop = "linux,keymap"; device_printf(sc->dev, "using Linux keymap from FDT\n"); } else { device_printf(sc->dev, "using built-in keymap\n"); } if (keymap_prop != NULL) { if ((ret = read_keymap(node, keymap_prop, &keymap, &len))) { device_printf(sc->dev, "failed to read keymap from FDT: %d\n", ret); return (ret); } ret = parse_keymap(sc, keymap, len); free(keymap, M_DEVBUF); if (ret) { return (ret); } } else { if ((ret = parse_keymap(sc, default_keymap, KEYMAP_LEN))) { return (ret); } } if ((sc->rows == 0) || (sc->cols == 0) || (sc->gpio == 0)) return (ENXIO); return (0); } void ckb_ec_intr(void *arg) { struct ckb_softc *sc; sc = arg; if (sc->sc_flags & CKB_FLAG_POLLING) return; ec_command(EC_CMD_MKBP_STATE, sc->scan, sc->cols, sc->scan, sc->cols); (sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); }; static int chrome_kb_attach(device_t dev) { struct ckb_softc *sc; keyboard_t *kbd; int error; int rid; int i; sc = device_get_softc(dev); sc->dev = dev; sc->keymap = NULL; if ((error = parse_dts(sc)) != 0) return error; sc->gpio_dev = devclass_get_device(devclass_find("gpio"), 0); if (sc->gpio_dev == NULL) { device_printf(sc->dev, "Can't find gpio device.\n"); return (ENXIO); } #if 0 device_printf(sc->dev, "Keyboard matrix [%dx%d]\n", sc->cols, sc->rows); #endif pad_setup_intr(sc->gpio, ckb_ec_intr, sc); kbd = &sc->sc_kbd; rid = 0; sc->scan_local = malloc(sc->cols, M_DEVBUF, M_NOWAIT); sc->scan = malloc(sc->cols, M_DEVBUF, M_NOWAIT); for (i = 0; i < sc->cols; i++) { sc->scan_local[i] = 0; sc->scan[i] = 0; } kbd_init_struct(kbd, KBD_DRIVER_NAME, KB_OTHER, device_get_unit(dev), 0, 0, 0); kbd->kb_data = (void *)sc; sc->sc_keymap = key_map; sc->sc_accmap = accent_map; for (i = 0; i < CKB_NFKEY; i++) { sc->sc_fkeymap[i] = fkey_tab[i]; } kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap, sc->sc_fkeymap, CKB_NFKEY); KBD_FOUND_DEVICE(kbd); ckb_clear_state(kbd); KBD_PROBE_DONE(kbd); callout_init(&sc->sc_repeat_callout, 0); KBD_INIT_DONE(kbd); if (kbd_register(kbd) < 0) { return (ENXIO); } KBD_CONFIG_DONE(kbd); return (0); } static int chrome_kb_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_is_compatible(dev, "google,cros-ec-keyb") || ofw_bus_is_compatible(dev, "google,mkbp-keyb")) { device_set_desc(dev, "Chrome EC Keyboard"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int chrome_kb_detach(device_t dev) { struct ckb_softc *sc; sc = device_get_softc(dev); if (sc->keymap != NULL) { free(sc->keymap, M_DEVBUF); } return 0; } static device_method_t chrome_kb_methods[] = { DEVMETHOD(device_probe, chrome_kb_probe), DEVMETHOD(device_attach, chrome_kb_attach), DEVMETHOD(device_detach, chrome_kb_detach), { 0, 0 } }; static driver_t chrome_kb_driver = { "chrome_kb", chrome_kb_methods, sizeof(struct ckb_softc), }; static devclass_t chrome_kb_devclass; DRIVER_MODULE(chrome_kb, simplebus, chrome_kb_driver, chrome_kb_devclass, 0, 0);