/*- * Copyright (c) 1998 Michael Smith * Copyright (c) 2007 Semihalf, Rafal Jaworowski * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include "api_public.h" #include "glue.h" #include "libuboot.h" /* * MD primitives supporting placement of module data */ #ifdef __arm__ #define KERN_ALIGN (2 * 1024 * 1024) #else #define KERN_ALIGN PAGE_SIZE #endif /* * Avoid low memory, u-boot puts things like args and dtb blobs there. */ #define KERN_MINADDR max(KERN_ALIGN, (1024 * 1024)) extern void _start(void); /* ubldr entry point address. */ /* * This is called for every object loaded (kernel, module, dtb file, etc). The * expected return value is the next address at or after the given addr which is * appropriate for loading the given object described by type and data. On each * call the addr is the next address following the previously loaded object. * * The first call is for loading the kernel, and the addr argument will be zero, * and we search for a big block of ram to load the kernel and modules. * * On subsequent calls the addr will be non-zero, and we just round it up so * that each object begins on a page boundary. */ uint64_t uboot_loadaddr(u_int type, void *data, uint64_t addr) { struct sys_info *si; uint64_t sblock, eblock, subldr, eubldr; uint64_t biggest_block, this_block; uint64_t biggest_size, this_size; int i; char *envstr; if (addr == 0) { /* * If the loader_kernaddr environment variable is set, blindly * honor it. It had better be right. We force interpretation * of the value in base-16 regardless of any leading 0x prefix, * because that's the U-Boot convention. */ envstr = ub_env_get("loader_kernaddr"); if (envstr != NULL) return (strtoul(envstr, NULL, 16)); /* * Find addr/size of largest DRAM block. Carve our own address * range out of the block, because loading the kernel over the * top ourself is a poor memory-conservation strategy. Avoid * memory at beginning of the first block of physical ram, * since u-boot likes to pass args and data there. Assume that * u-boot has moved itself to the very top of ram and * optimistically assume that we won't run into it up there. */ if ((si = ub_get_sys_info()) == NULL) panic("could not retrieve system info"); biggest_block = 0; biggest_size = 0; subldr = rounddown2((uintptr_t)_start, KERN_ALIGN); eubldr = roundup2((uint64_t)uboot_heap_end, KERN_ALIGN); for (i = 0; i < si->mr_no; i++) { if (si->mr[i].flags != MR_ATTR_DRAM) continue; sblock = roundup2((uint64_t)si->mr[i].start, KERN_ALIGN); eblock = rounddown2((uint64_t)si->mr[i].start + si->mr[i].size, KERN_ALIGN); if (biggest_size == 0) sblock += KERN_MINADDR; if (subldr >= sblock && subldr < eblock) { if (subldr - sblock > eblock - eubldr) { this_block = sblock; this_size = subldr - sblock; } else { this_block = eubldr; this_size = eblock - eubldr; } } if (biggest_size < this_size) { biggest_block = this_block; biggest_size = this_size; } } if (biggest_size == 0) panic("Not enough DRAM to load kernel\n"); #if 0 printf("Loading kernel into region 0x%08jx-0x%08jx (%ju MiB)\n", (uintmax_t)biggest_block, (uintmax_t)biggest_block + biggest_size - 1, (uintmax_t)biggest_size / 1024 / 1024); #endif return (biggest_block); } return roundup2(addr, PAGE_SIZE); } ssize_t uboot_copyin(const void *src, vm_offset_t dest, const size_t len) { bcopy(src, (void *)dest, len); return (len); } ssize_t uboot_copyout(const vm_offset_t src, void *dest, const size_t len) { bcopy((void *)src, dest, len); return (len); } ssize_t uboot_readin(const int fd, vm_offset_t dest, const size_t len) { return (read(fd, (void *)dest, len)); }