/* * Copyright (c) 2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "opt_ah.h" #include "ah.h" #include "ah_desc.h" #include "ah_internal.h" #include "ar9300/ar9300desc.h" #include "ar9300/ar9300.h" #include "ar9300/ar9300reg.h" #include "ar9300/ar9300phy.h" #include "ah_devid.h" #if AH_BYTE_ORDER == AH_BIG_ENDIAN static void ar9300_swap_tx_desc(void *ds); #endif void ar9300_tx_req_intr_desc(struct ath_hal *ah, void *ds) { HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s:Desc Interrupt not supported\n", __func__); } static inline u_int16_t ar9300_calc_ptr_chk_sum(struct ar9300_txc *ads) { u_int checksum; u_int16_t ptrchecksum; /* checksum = __bswap32(ads->ds_info) + ads->ds_link */ checksum = ads->ds_info + ads->ds_link + ads->ds_data0 + ads->ds_ctl3 + ads->ds_data1 + ads->ds_ctl5 + ads->ds_data2 + ads->ds_ctl7 + ads->ds_data3 + ads->ds_ctl9; ptrchecksum = ((checksum & 0xffff) + (checksum >> 16)) & AR_tx_ptr_chk_sum; return ptrchecksum; } HAL_BOOL ar9300_fill_tx_desc( struct ath_hal *ah, void *ds, HAL_DMA_ADDR *buf_addr, u_int32_t *seg_len, u_int desc_id, u_int qcu, HAL_KEY_TYPE key_type, HAL_BOOL first_seg, HAL_BOOL last_seg, const void *ds0) { struct ar9300_txc *ads = AR9300TXC(ds); /* Fill TXC info field */ ads->ds_info = TXC_INFO(qcu); /* Set the buffer addresses */ ads->ds_data0 = buf_addr[0]; ads->ds_data1 = buf_addr[1]; ads->ds_data2 = buf_addr[2]; ads->ds_data3 = buf_addr[3]; /* Set the buffer lengths */ ads->ds_ctl3 = (seg_len[0] << AR_buf_len_S) & AR_buf_len; ads->ds_ctl5 = (seg_len[1] << AR_buf_len_S) & AR_buf_len; ads->ds_ctl7 = (seg_len[2] << AR_buf_len_S) & AR_buf_len; ads->ds_ctl9 = (seg_len[3] << AR_buf_len_S) & AR_buf_len; /* Fill in pointer checksum and descriptor id */ ads->ds_ctl10 = (desc_id << AR_tx_desc_id_S) | ar9300_calc_ptr_chk_sum(ads); if (first_seg) { /* * First descriptor, don't clobber xmit control data * setup by ar9300_set_11n_tx_desc. * * Note: AR_encr_type is already setup in the first descriptor by * set_11n_tx_desc(). */ ads->ds_ctl12 |= (last_seg ? 0 : AR_tx_more); } else if (last_seg) { /* !first_seg && last_seg */ /* * Last descriptor in a multi-descriptor frame, * copy the multi-rate transmit parameters from * the first frame for processing on completion. */ ads->ds_ctl11 = 0; ads->ds_ctl12 = 0; #ifdef AH_NEED_DESC_SWAP ads->ds_ctl13 = __bswap32(AR9300TXC_CONST(ds0)->ds_ctl13); ads->ds_ctl14 = __bswap32(AR9300TXC_CONST(ds0)->ds_ctl14); ads->ds_ctl17 = __bswap32(SM(key_type, AR_encr_type)); #else ads->ds_ctl13 = AR9300TXC_CONST(ds0)->ds_ctl13; ads->ds_ctl14 = AR9300TXC_CONST(ds0)->ds_ctl14; ads->ds_ctl17 = SM(key_type, AR_encr_type); #endif } else { /* !first_seg && !last_seg */ /* * XXX Intermediate descriptor in a multi-descriptor frame. */ ads->ds_ctl11 = 0; ads->ds_ctl12 = AR_tx_more; ads->ds_ctl13 = 0; ads->ds_ctl14 = 0; ads->ds_ctl17 = SM(key_type, AR_encr_type); } return AH_TRUE; } void ar9300_set_desc_link(struct ath_hal *ah, void *ds, u_int32_t link) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_link = link; /* TODO - checksum is calculated twice for subframes * Once in filldesc and again when linked. Need to fix. */ /* Fill in pointer checksum. Preserve descriptor id */ ads->ds_ctl10 &= ~AR_tx_ptr_chk_sum; ads->ds_ctl10 |= ar9300_calc_ptr_chk_sum(ads); } void ar9300_get_desc_link_ptr(struct ath_hal *ah, void *ds, u_int32_t **link) { struct ar9300_txc *ads = AR9300TXC(ds); *link = &ads->ds_link; } void ar9300_clear_tx_desc_status(struct ath_hal *ah, void *ds) { struct ar9300_txs *ads = AR9300TXS(ds); ads->status1 = ads->status2 = 0; ads->status3 = ads->status4 = 0; ads->status5 = ads->status6 = 0; ads->status7 = ads->status8 = 0; } #ifdef ATH_SWRETRY void ar9300_clear_dest_mask(struct ath_hal *ah, void *ds) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl11 |= AR_clr_dest_mask; } #endif #if AH_BYTE_ORDER == AH_BIG_ENDIAN /* XXX what words need swapping */ /* Swap transmit descriptor */ static __inline void ar9300_swap_tx_desc(void *dsp) { struct ar9300_txs *ds = (struct ar9300_txs *)dsp; ds->ds_info = __bswap32(ds->ds_info); ds->status1 = __bswap32(ds->status1); ds->status2 = __bswap32(ds->status2); ds->status3 = __bswap32(ds->status3); ds->status4 = __bswap32(ds->status4); ds->status5 = __bswap32(ds->status5); ds->status6 = __bswap32(ds->status6); ds->status7 = __bswap32(ds->status7); ds->status8 = __bswap32(ds->status8); } #endif /* * Extract the transmit rate code. */ void ar9300_get_tx_rate_code(struct ath_hal *ah, void *ds, struct ath_tx_status *ts) { struct ar9300_txc *ads = AR9300TXC(ds); switch (ts->ts_finaltsi) { case 0: ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate0); break; case 1: ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate1); break; case 2: ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate2); break; case 3: ts->ts_rate = MS(ads->ds_ctl14, AR_xmit_rate3); break; } ar9300_set_selfgenrate_limit(ah, ts->ts_rate); } /* * Get TX Status descriptor contents. */ void ar9300_get_raw_tx_desc(struct ath_hal *ah, u_int32_t *txstatus) { struct ath_hal_9300 *ahp = AH9300(ah); struct ar9300_txs *ads; ads = &ahp->ts_ring[ahp->ts_tail]; OS_MEMCPY(txstatus, ads, sizeof(struct ar9300_txs)); } /* * Processing of HW TX descriptor. */ HAL_STATUS ar9300_proc_tx_desc(struct ath_hal *ah, void *txstatus) { struct ath_hal_9300 *ahp = AH9300(ah); struct ar9300_txs *ads; struct ath_tx_status *ts = (struct ath_tx_status *)txstatus; u_int32_t dsinfo; ads = &ahp->ts_ring[ahp->ts_tail]; if ((ads->status8 & AR_tx_done) == 0) { return HAL_EINPROGRESS; } /* * Sanity check */ #if 0 ath_hal_printf(ah, "CHH: tail=%d\n", ahp->ts_tail); ath_hal_printf(ah, "CHH: ds_info 0x%x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", ads->ds_info, ads->status1, ads->status2, ads->status3, ads->status4, ads->status5, ads->status6, ads->status7, ads->status8); #endif /* Increment the tail to point to the next status element. */ ahp->ts_tail = (ahp->ts_tail + 1) & (ahp->ts_size-1); /* ** For big endian systems, ds_info is not swapped as the other ** registers are. Ensure we use the bswap32 version (which is ** defined to "nothing" in little endian systems */ dsinfo = ads->ds_info; if ((MS(dsinfo, AR_desc_id) != ATHEROS_VENDOR_ID) || (MS(dsinfo, AR_tx_rx_desc) != 1)) { HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "%s: Tx Descriptor error %x\n", __func__, dsinfo); HALASSERT(0); /* Zero out the status for reuse */ OS_MEMZERO(ads, sizeof(struct ar9300_txs)); return HAL_EIO; } /* Update software copies of the HW status */ ts->ts_queue_id = MS(dsinfo, AR_tx_qcu_num); ts->ts_desc_id = MS(ads->status1, AR_tx_desc_id); ts->ts_seqnum = MS(ads->status8, AR_seq_num); ts->ts_tstamp = ads->status4; ts->ts_status = 0; ts->ts_flags = 0; if (ads->status3 & AR_excessive_retries) { ts->ts_status |= HAL_TXERR_XRETRY; } if (ads->status3 & AR_filtered) { ts->ts_status |= HAL_TXERR_FILT; } if (ads->status3 & AR_fifounderrun) { ts->ts_status |= HAL_TXERR_FIFO; ar9300_update_tx_trig_level(ah, AH_TRUE); } if (ads->status8 & AR_tx_op_exceeded) { ts->ts_status |= HAL_TXERR_XTXOP; } if (ads->status3 & AR_tx_timer_expired) { ts->ts_status |= HAL_TXERR_TIMER_EXPIRED; } if (ads->status3 & AR_desc_cfg_err) { ts->ts_flags |= HAL_TX_DESC_CFG_ERR; } if (ads->status3 & AR_tx_data_underrun) { ts->ts_flags |= HAL_TX_DATA_UNDERRUN; ar9300_update_tx_trig_level(ah, AH_TRUE); } if (ads->status3 & AR_tx_delim_underrun) { ts->ts_flags |= HAL_TX_DELIM_UNDERRUN; ar9300_update_tx_trig_level(ah, AH_TRUE); } if (ads->status2 & AR_tx_ba_status) { ts->ts_flags |= HAL_TX_BA; ts->ts_ba_low = ads->status5; ts->ts_ba_high = ads->status6; } /* * Extract the transmit rate. */ ts->ts_finaltsi = MS(ads->status8, AR_final_tx_idx); ts->ts_rssi = MS(ads->status7, AR_tx_rssi_combined); ts->ts_rssi_ctl[0] = MS(ads->status2, AR_tx_rssi_ant00); ts->ts_rssi_ctl[1] = MS(ads->status2, AR_tx_rssi_ant01); ts->ts_rssi_ctl[2] = MS(ads->status2, AR_tx_rssi_ant02); ts->ts_rssi_ext[0] = MS(ads->status7, AR_tx_rssi_ant10); ts->ts_rssi_ext[1] = MS(ads->status7, AR_tx_rssi_ant11); ts->ts_rssi_ext[2] = MS(ads->status7, AR_tx_rssi_ant12); ts->ts_shortretry = MS(ads->status3, AR_rts_fail_cnt); ts->ts_longretry = MS(ads->status3, AR_data_fail_cnt); ts->ts_virtcol = MS(ads->status3, AR_virt_retry_cnt); ts->ts_antenna = 0; /* extract TID from block ack */ ts->ts_tid = MS(ads->status8, AR_tx_tid); /* Zero out the status for reuse */ OS_MEMZERO(ads, sizeof(struct ar9300_txs)); return HAL_OK; } /* * Calculate air time of a transmit packet * if comp_wastedt is 1, calculate air time only for failed subframes * this is required for VOW_DCS ( dynamic channel selection ) */ u_int32_t ar9300_calc_tx_airtime(struct ath_hal *ah, void *ds, struct ath_tx_status *ts, HAL_BOOL comp_wastedt, u_int8_t nbad, u_int8_t nframes ) { struct ar9300_txc *ads = AR9300TXC(ds); int finalindex_tries; u_int32_t airtime, lastrate_dur; /* * Number of attempts made on the final index * Note: If no BA was recv, then the data_fail_cnt is the number of tries * made on the final index. If BA was recv, then add 1 to account for the * successful attempt. */ if ( !comp_wastedt ){ finalindex_tries = ts->ts_longretry + (ts->ts_flags & HAL_TX_BA)? 1 : 0; } else { finalindex_tries = ts->ts_longretry ; } /* * Calculate time of transmit on air for packet including retries * at different rates. */ switch (ts->ts_finaltsi) { case 0: lastrate_dur = MS(ads->ds_ctl15, AR_packet_dur0); airtime = (lastrate_dur * finalindex_tries); break; case 1: lastrate_dur = MS(ads->ds_ctl15, AR_packet_dur1); airtime = (lastrate_dur * finalindex_tries) + (MS(ads->ds_ctl13, AR_xmit_data_tries0) * MS(ads->ds_ctl15, AR_packet_dur0)); break; case 2: lastrate_dur = MS(ads->ds_ctl16, AR_packet_dur2); airtime = (lastrate_dur * finalindex_tries) + (MS(ads->ds_ctl13, AR_xmit_data_tries1) * MS(ads->ds_ctl15, AR_packet_dur1)) + (MS(ads->ds_ctl13, AR_xmit_data_tries0) * MS(ads->ds_ctl15, AR_packet_dur0)); break; case 3: lastrate_dur = MS(ads->ds_ctl16, AR_packet_dur3); airtime = (lastrate_dur * finalindex_tries) + (MS(ads->ds_ctl13, AR_xmit_data_tries2) * MS(ads->ds_ctl16, AR_packet_dur2)) + (MS(ads->ds_ctl13, AR_xmit_data_tries1) * MS(ads->ds_ctl15, AR_packet_dur1)) + (MS(ads->ds_ctl13, AR_xmit_data_tries0) * MS(ads->ds_ctl15, AR_packet_dur0)); break; default: HALASSERT(0); return 0; } if ( comp_wastedt && (ts->ts_flags & HAL_TX_BA)){ airtime += nbad?((lastrate_dur*nbad) / nframes):0; } return airtime; } #ifdef AH_PRIVATE_DIAG void ar9300__cont_tx_mode(struct ath_hal *ah, void *ds, int mode) { #if 0 static int qnum = 0; int i; unsigned int qbits, val, val1, val2; int prefetch; struct ar9300_txs *ads = AR9300TXS(ds); if (mode == 10) { return; } if (mode == 7) { /* print status from the cont tx desc */ if (ads) { val1 = ads->ds_txstatus1; val2 = ads->ds_txstatus2; HALDEBUG(ah, HAL_DEBUG_TXDESC, "s0(%x) s1(%x)\n", (unsigned)val1, (unsigned)val2); } HALDEBUG(ah, HAL_DEBUG_TXDESC, "txe(%x) txd(%x)\n", OS_REG_READ(ah, AR_Q_TXE), OS_REG_READ(ah, AR_Q_TXD) ); for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { val = OS_REG_READ(ah, AR_QTXDP(i)); val2 = OS_REG_READ(ah, AR_QSTS(i)) & AR_Q_STS_PEND_FR_CNT; HALDEBUG(ah, HAL_DEBUG_TXDESC, "[%d] %x %d\n", i, val, val2); } return; } if (mode == 8) { /* set TXE for qnum */ OS_REG_WRITE(ah, AR_Q_TXE, 1 << qnum); return; } if (mode == 9) { prefetch = (int)ds; return; } if (mode >= 1) { /* initiate cont tx operation */ /* Disable AGC to A2 */ qnum = (int) ds; OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR) ); OS_REG_WRITE(ah, 0x9864, OS_REG_READ(ah, 0x9864) | 0x7f000); OS_REG_WRITE(ah, 0x9924, OS_REG_READ(ah, 0x9924) | 0x7f00fe); OS_REG_WRITE(ah, AR_DIAG_SW, (OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_FORCE_RX_CLEAR + AR_DIAG_IGNORE_VIRT_CS)) ); OS_REG_WRITE(ah, AR_CR, AR_CR_RXD); /* set receive disable */ if (mode == 3 || mode == 4) { int txcfg; if (mode == 3) { OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0); OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff); OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 100); OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 100); OS_REG_WRITE(ah, AR_TIME_OUT, 2); OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, 100); } OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff); /* enable prefetch on qnum */ OS_REG_WRITE(ah, AR_D_FPCTL, 0x10 | qnum); txcfg = 5 | (6 << AR_FTRIG_S); OS_REG_WRITE(ah, AR_TXCFG, txcfg); OS_REG_WRITE(ah, AR_QMISC(qnum), /* set QCU modes */ AR_Q_MISC_DCU_EARLY_TERM_REQ + AR_Q_MISC_FSP_ASAP + AR_Q_MISC_CBR_INCR_DIS1 + AR_Q_MISC_CBR_INCR_DIS0 ); /* stop tx dma all all except qnum */ qbits = 0x3ff; qbits &= ~(1 << qnum); for (i = 0; i < 10; i++) { if (i == qnum) { continue; } OS_REG_WRITE(ah, AR_Q_TXD, 1 << i); } OS_REG_WRITE(ah, AR_Q_TXD, qbits); /* clear and freeze MIB counters */ OS_REG_WRITE(ah, AR_MIBC, AR_MIBC_CMC); OS_REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC); OS_REG_WRITE(ah, AR_DMISC(qnum), (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S) + (AR_D_MISC_ARB_LOCKOUT_IGNORE) + (AR_D_MISC_POST_FR_BKOFF_DIS) + (AR_D_MISC_VIR_COL_HANDLING_IGNORE << AR_D_MISC_VIR_COL_HANDLING_S)); for (i = 0; i < HAL_NUM_TX_QUEUES + 2; i++) { /* disconnect QCUs */ if (i == qnum) { continue; } OS_REG_WRITE(ah, AR_DQCUMASK(i), 0); } } } if (mode == 0) { OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) & ~PHY_AGC_CLR)); OS_REG_WRITE(ah, AR_DIAG_SW, (OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_FORCE_RX_CLEAR + AR_DIAG_IGNORE_VIRT_CS))); } #endif } #endif void ar9300_set_paprd_tx_desc(struct ath_hal *ah, void *ds, int chain_num) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 |= SM((1 << chain_num), AR_paprd_chain_mask); } HAL_STATUS ar9300_is_tx_done(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); struct ar9300_txs *ads; ads = &ahp->ts_ring[ahp->ts_tail]; if (ads->status8 & AR_tx_done) { return HAL_OK; } return HAL_EINPROGRESS; } void ar9300_set_11n_tx_desc( struct ath_hal *ah, void *ds, u_int pkt_len, HAL_PKT_TYPE type, u_int tx_power, u_int key_ix, HAL_KEY_TYPE key_type, u_int flags) { struct ar9300_txc *ads = AR9300TXC(ds); struct ath_hal_9300 *ahp = AH9300(ah); HALASSERT(is_valid_pkt_type(type)); HALASSERT(is_valid_key_type(key_type)); tx_power += ahp->ah_tx_power_index_offset; if (tx_power > 63) { tx_power = 63; } ads->ds_ctl11 = (pkt_len & AR_frame_len) | (flags & HAL_TXDESC_VMF ? AR_virt_more_frag : 0) | SM(tx_power, AR_xmit_power0) | (flags & HAL_TXDESC_VEOL ? AR_veol : 0) | (flags & HAL_TXDESC_CLRDMASK ? AR_clr_dest_mask : 0) | (key_ix != HAL_TXKEYIX_INVALID ? AR_dest_idx_valid : 0) | (flags & HAL_TXDESC_LOWRXCHAIN ? AR_low_rx_chain : 0); ads->ds_ctl12 = (key_ix != HAL_TXKEYIX_INVALID ? SM(key_ix, AR_dest_idx) : 0) | SM(type, AR_frame_type) | (flags & HAL_TXDESC_NOACK ? AR_no_ack : 0) | (flags & HAL_TXDESC_EXT_ONLY ? AR_ext_only : 0) | (flags & HAL_TXDESC_EXT_AND_CTL ? AR_ext_and_ctl : 0); ads->ds_ctl17 = SM(key_type, AR_encr_type) | (flags & HAL_TXDESC_LDPC ? AR_ldpc : 0); ads->ds_ctl18 = 0; ads->ds_ctl19 = AR_not_sounding; /* set not sounding for normal frame */ /* * Clear Ness1/2/3 (Number of Extension Spatial Streams) fields. * Ness0 is cleared in ctl19. See EV66059 (BB panic). */ ads->ds_ctl20 = 0; ads->ds_ctl21 = 0; ads->ds_ctl22 = 0; } void ar9300_set_rx_chainmask(struct ath_hal *ah, int rxchainmask) { OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rxchainmask); } void ar9300_update_loc_ctl_reg(struct ath_hal *ah, int pos_bit) { u_int32_t reg_val; reg_val = OS_REG_READ(ah, AR_LOC_CTL_REG); if (pos_bit) { if (!(reg_val & AR_LOC_CTL_REG_FS)) { /* set fast timestamp bit in the regiter */ OS_REG_WRITE(ah, AR_LOC_CTL_REG, (reg_val | AR_LOC_CTL_REG_FS)); OS_REG_WRITE(ah, AR_LOC_TIMER_REG, 0); } } else { OS_REG_WRITE(ah, AR_LOC_CTL_REG, (reg_val & ~AR_LOC_CTL_REG_FS)); } } #if 0 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) static const u_int8_t ba_duration_delta[] = { 24, /* 0: BPSK */ 12, /* 1: QPSK 1/2 */ 12, /* 2: QPSK 3/4 */ 4, /* 3: 16-QAM 1/2 */ 4, /* 4: 16-QAM 3/4 */ 4, /* 5: 64-QAM 2/3 */ 4, /* 6: 64-QAM 3/4 */ 4, /* 7: 64-QAM 5/6 */ 24, /* 8: BPSK */ 12, /* 9: QPSK 1/2 */ 12, /* 10: QPSK 3/4 */ 4, /* 11: 16-QAM 1/2 */ 4, /* 12: 16-QAM 3/4 */ 4, /* 13: 64-QAM 2/3 */ 4, /* 14: 64-QAM 3/4 */ 4, /* 15: 64-QAM 5/6 */ }; #endif static u_int8_t ar9300_get_tx_mode(u_int rate_flags) { /* Check whether STBC is enabled if TxBF is not enabled */ if (rate_flags & HAL_RATESERIES_STBC){ return AR9300_STBC_MODE; } return AR9300_DEF_MODE; } void ar9300_set_11n_rate_scenario( struct ath_hal *ah, void *ds, void *lastds, u_int dur_update_en, u_int rts_cts_rate, u_int rts_cts_duration, HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags, u_int32_t smart_antenna) { struct ath_hal_private *ap = AH_PRIVATE(ah); struct ar9300_txc *ads = AR9300TXC(ds); struct ar9300_txc *last_ads = AR9300TXC(lastds); u_int32_t ds_ctl11; u_int8_t ant, cal_pkt = 0; u_int mode, tx_mode = AR9300_DEF_MODE; HALASSERT(nseries == 4); (void)nseries; (void)rts_cts_duration; /* use H/W to calculate RTSCTSDuration */ ds_ctl11 = ads->ds_ctl11; /* * Rate control settings override */ if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { if (flags & HAL_TXDESC_RTSENA) { ds_ctl11 &= ~AR_cts_enable; ds_ctl11 |= AR_rts_enable; } else { ds_ctl11 &= ~AR_rts_enable; ds_ctl11 |= AR_cts_enable; } } else { ds_ctl11 = (ds_ctl11 & ~(AR_rts_enable | AR_cts_enable)); } mode = ath_hal_get_curmode(ah, ap->ah_curchan); cal_pkt = (ads->ds_ctl12 & AR_paprd_chain_mask)?1:0; if (ah->ah_config.ath_hal_desc_tpc) { int16_t txpower; if (!cal_pkt) { /* Series 0 TxPower */ tx_mode = ar9300_get_tx_mode(series[0].RateFlags); txpower = ar9300_get_rate_txpower(ah, mode, series[0].RateIndex, series[0].ChSel, tx_mode); } else { txpower = AH9300(ah)->paprd_training_power; } ds_ctl11 &= ~AR_xmit_power0; ds_ctl11 |= set_11n_tx_power(0, AH_MIN(txpower, series[0].tx_power_cap)); } ads->ds_ctl11 = ds_ctl11; ads->ds_ctl13 = set_11n_tries(series, 0) | set_11n_tries(series, 1) | set_11n_tries(series, 2) | set_11n_tries(series, 3) | (dur_update_en ? AR_dur_update_ena : 0) | SM(0, AR_burst_dur); ads->ds_ctl14 = set_11n_rate(series, 0) | set_11n_rate(series, 1) | set_11n_rate(series, 2) | set_11n_rate(series, 3); ads->ds_ctl15 = set_11n_pkt_dur_rts_cts(series, 0) | set_11n_pkt_dur_rts_cts(series, 1); ads->ds_ctl16 = set_11n_pkt_dur_rts_cts(series, 2) | set_11n_pkt_dur_rts_cts(series, 3); ads->ds_ctl18 = set_11n_rate_flags(series, 0) | set_11n_rate_flags(series, 1) | set_11n_rate_flags(series, 2) | set_11n_rate_flags(series, 3) | SM(rts_cts_rate, AR_rts_cts_rate); /* set not sounding for normal frame */ ads->ds_ctl19 = AR_not_sounding; if (ah->ah_config.ath_hal_desc_tpc) { int16_t txpower; if (!cal_pkt) { /* Series 1 TxPower */ tx_mode = ar9300_get_tx_mode(series[1].RateFlags); txpower = ar9300_get_rate_txpower( ah, mode, series[1].RateIndex, series[1].ChSel, tx_mode); } else { txpower = AH9300(ah)->paprd_training_power; } ads->ds_ctl20 |= set_11n_tx_power(1, AH_MIN(txpower, series[1].tx_power_cap)); /* Series 2 TxPower */ if (!cal_pkt) { tx_mode = ar9300_get_tx_mode(series[2].RateFlags); txpower = ar9300_get_rate_txpower( ah, mode, series[2].RateIndex, series[2].ChSel, tx_mode); } else { txpower = AH9300(ah)->paprd_training_power; } ads->ds_ctl21 |= set_11n_tx_power(2, AH_MIN(txpower, series[2].tx_power_cap)); /* Series 3 TxPower */ if (!cal_pkt) { tx_mode = ar9300_get_tx_mode(series[3].RateFlags); txpower = ar9300_get_rate_txpower( ah, mode, series[3].RateIndex, series[3].ChSel, tx_mode); } else { txpower = AH9300(ah)->paprd_training_power; } ads->ds_ctl22 |= set_11n_tx_power(3, AH_MIN(txpower, series[3].tx_power_cap)); } if (smart_antenna != 0xffffffff) { /* TX DESC dword 19 to 23 are used for smart antenna configuaration * ctl19 for rate series 0 ... ctrl22 for series 3 * bits[2:0] used to configure smart anntenna */ ant = (smart_antenna&0x000000ff); ads->ds_ctl19 |= ant; /* rateseries 0 */ ant = (smart_antenna&0x0000ff00) >> 8; ads->ds_ctl20 |= ant; /* rateseries 1 */ ant = (smart_antenna&0x00ff0000) >> 16; ads->ds_ctl21 |= ant; /* rateseries 2 */ ant = (smart_antenna&0xff000000) >> 24; ads->ds_ctl22 |= ant; /* rateseries 3 */ } #ifdef AH_NEED_DESC_SWAP last_ads->ds_ctl13 = __bswap32(ads->ds_ctl13); last_ads->ds_ctl14 = __bswap32(ads->ds_ctl14); #else last_ads->ds_ctl13 = ads->ds_ctl13; last_ads->ds_ctl14 = ads->ds_ctl14; #endif } void ar9300_set_11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds, u_int aggr_len, u_int num_delims) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 |= (AR_is_aggr | AR_more_aggr); ads->ds_ctl17 &= ~AR_aggr_len; ads->ds_ctl17 &= ~AR_pad_delim; /* XXX should use a stack variable! */ ads->ds_ctl17 |= SM(aggr_len, AR_aggr_len); ads->ds_ctl17 |= SM(num_delims, AR_pad_delim); } void ar9300_set_11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds, u_int num_delims) { struct ar9300_txc *ads = AR9300TXC(ds); unsigned int ctl17; ads->ds_ctl12 |= (AR_is_aggr | AR_more_aggr); /* * We use a stack variable to manipulate ctl6 to reduce uncached * read modify, modfiy, write. */ ctl17 = ads->ds_ctl17; ctl17 &= ~AR_pad_delim; ctl17 |= SM(num_delims, AR_pad_delim); ads->ds_ctl17 = ctl17; } void ar9300_set_11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 |= AR_is_aggr; ads->ds_ctl12 &= ~AR_more_aggr; ads->ds_ctl17 &= ~AR_pad_delim; } void ar9300_clr_11n_aggr(struct ath_hal *ah, struct ath_desc *ds) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 &= (~AR_is_aggr & ~AR_more_aggr); } void ar9300_set_11n_burst_duration(struct ath_hal *ah, struct ath_desc *ds, u_int burst_duration) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl13 &= ~AR_burst_dur; ads->ds_ctl13 |= SM(burst_duration, AR_burst_dur); } void ar9300_set_11n_rifs_burst_middle(struct ath_hal *ah, void *ds) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 |= AR_more_rifs | AR_no_ack; } void ar9300_set_11n_rifs_burst_last(struct ath_hal *ah, void *ds) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 &= (~AR_more_aggr & ~AR_more_rifs); } void ar9300_clr_11n_rifs_burst(struct ath_hal *ah, void *ds) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 &= (~AR_more_rifs & ~AR_no_ack); } void ar9300_set_11n_aggr_rifs_burst(struct ath_hal *ah, void *ds) { struct ar9300_txc *ads = AR9300TXC(ds); ads->ds_ctl12 |= AR_no_ack; ads->ds_ctl12 &= ~AR_more_rifs; } void ar9300_set_11n_virtual_more_frag(struct ath_hal *ah, struct ath_desc *ds, u_int vmf) { struct ar9300_txc *ads = AR9300TXC(ds); if (vmf) { ads->ds_ctl11 |= AR_virt_more_frag; } else { ads->ds_ctl11 &= ~AR_virt_more_frag; } } void ar9300_get_desc_info(struct ath_hal *ah, HAL_DESC_INFO *desc_info) { desc_info->txctl_numwords = TXCTL_NUMWORDS(ah); desc_info->txctl_offset = TXCTL_OFFSET(ah); desc_info->txstatus_numwords = TXSTATUS_NUMWORDS(ah); desc_info->txstatus_offset = TXSTATUS_OFFSET(ah); desc_info->rxctl_numwords = RXCTL_NUMWORDS(ah); desc_info->rxctl_offset = RXCTL_OFFSET(ah); desc_info->rxstatus_numwords = RXSTATUS_NUMWORDS(ah); desc_info->rxstatus_offset = RXSTATUS_OFFSET(ah); }