/***********************license start*************** * Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS * OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH * RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY * REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT * DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES * OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR * PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET * POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT * OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU. * * * For any questions regarding licensing please contact marketing@caviumnetworks.com * ***********************license end**************************************/ /** * @file * Simple allocate only memory allocator. Used to allocate memory at application * start time. * *
$Revision: 41586 $
* */ #include "cvmx.h" #include "cvmx-spinlock.h" #include "cvmx-bootmem.h" //#define DEBUG #undef MAX #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #undef MIN #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #define ALIGN_ADDR_UP(addr, align) (((addr) + (~(align))) & (align)) static CVMX_SHARED cvmx_bootmem_desc_t *cvmx_bootmem_desc = NULL; /* See header file for descriptions of functions */ /* Wrapper functions are provided for reading/writing the size and next block ** values as these may not be directly addressible (in 32 bit applications, for instance.) */ /* Offsets of data elements in bootmem list, must match cvmx_bootmem_block_header_t */ #define NEXT_OFFSET 0 #define SIZE_OFFSET 8 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size) { cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size); } static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next) { cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next); } static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr) { return(cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63))); } static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr) { return(cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63))); } /* This functions takes an address range and adjusts it as necessary to ** match the ABI that is currently being used. This is required to ensure ** that bootmem_alloc* functions only return valid pointers for 32 bit ABIs */ static int __cvmx_validate_mem_range(uint64_t *min_addr_ptr, uint64_t *max_addr_ptr) { #if defined(__linux__) && defined(CVMX_ABI_N32) { extern uint64_t linux_mem32_min; extern uint64_t linux_mem32_max; /* For 32 bit Linux apps, we need to restrict the allocations to the range ** of memory configured for access from userspace. Also, we need to add mappings ** for the data structures that we access.*/ /* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc() ** will reject inconsistent req_size/range requests, so we don't repeat those checks here. ** If max unspecified, set to 32 bit maximum. */ *min_addr_ptr = MIN(MAX(*min_addr_ptr, linux_mem32_min), linux_mem32_max); if (!*max_addr_ptr) *max_addr_ptr = linux_mem32_max; else *max_addr_ptr = MAX(MIN(*max_addr_ptr, linux_mem32_max), linux_mem32_min); } #elif defined(CVMX_ABI_N32) { uint32_t max_phys = 0x0FFFFFFF; /* Max physical address when 1-1 mappings not used */ #if CVMX_USE_1_TO_1_TLB_MAPPINGS max_phys = 0x7FFFFFFF; #endif /* We are are running standalone simple executive, so we need to limit the range ** that we allocate from */ /* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc() ** will reject inconsistent req_size/range requests, so we don't repeat those checks here. ** If max unspecified, set to 32 bit maximum. */ *min_addr_ptr = MIN(MAX(*min_addr_ptr, 0x0), max_phys); if (!*max_addr_ptr) *max_addr_ptr = max_phys; else *max_addr_ptr = MAX(MIN(*max_addr_ptr, max_phys), 0x0); } #endif return 0; } void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, uint64_t min_addr, uint64_t max_addr) { int64_t address; __cvmx_validate_mem_range(&min_addr, &max_addr); address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0); if (address > 0) return cvmx_phys_to_ptr(address); else return NULL; } void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, uint64_t alignment) { return cvmx_bootmem_alloc_range(size, alignment, address, address + size); } void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment) { return cvmx_bootmem_alloc_range(size, alignment, 0, 0); } void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, char *name) { int64_t addr; __cvmx_validate_mem_range(&min_addr, &max_addr); addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, 0); if (addr >= 0) return cvmx_phys_to_ptr(addr); else return NULL; } void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address, char *name) { return(cvmx_bootmem_alloc_named_range(size, address, address + size, 0, name)); } void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name) { return(cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name)); } int cvmx_bootmem_free_named(char *name) { return(cvmx_bootmem_phy_named_block_free(name, 0)); } cvmx_bootmem_named_block_desc_t * cvmx_bootmem_find_named_block(char *name) { return(cvmx_bootmem_phy_named_block_find(name, 0)); } void cvmx_bootmem_print_named(void) { cvmx_bootmem_phy_named_block_print(); } #if defined(__linux__) && defined(CVMX_ABI_N32) cvmx_bootmem_named_block_desc_t *linux32_named_block_array_ptr; #endif int cvmx_bootmem_init(void *mem_desc_ptr) { /* Verify that the size of cvmx_spinlock_t meets our assumptions */ if (sizeof(cvmx_spinlock_t) != 4) { cvmx_dprintf("ERROR: Unexpected size of cvmx_spinlock_t\n"); return(-1); } /* Here we set the global pointer to the bootmem descriptor block. This pointer will ** be used directly, so we will set it up to be directly usable by the application. ** It is set up as follows for the various runtime/ABI combinations: ** Linux 64 bit: Set XKPHYS bit ** Linux 32 bit: use mmap to create mapping, use virtual address ** CVMX 64 bit: use physical address directly ** CVMX 32 bit: use physical address directly ** Note that the CVMX environment assumes the use of 1-1 TLB mappings so that the physical addresses ** can be used directly */ if (!cvmx_bootmem_desc) { #if defined(CVMX_BUILD_FOR_LINUX_USER) && defined(CVMX_ABI_N32) void *base_ptr; /* For 32 bit, we need to use mmap to create a mapping for the bootmem descriptor */ int dm_fd = open("/dev/mem", O_RDWR); if (dm_fd < 0) { cvmx_dprintf("ERROR opening /dev/mem for boot descriptor mapping\n"); return(-1); } base_ptr = mmap(NULL, sizeof(cvmx_bootmem_desc_t) + sysconf(_SC_PAGESIZE), PROT_READ | PROT_WRITE, MAP_SHARED, dm_fd, ((off_t)mem_desc_ptr) & ~(sysconf(_SC_PAGESIZE) - 1)); if (MAP_FAILED == base_ptr) { cvmx_dprintf("Error mapping bootmem descriptor!\n"); close(dm_fd); return(-1); } /* Adjust pointer to point to bootmem_descriptor, rather than start of page it is in */ cvmx_bootmem_desc = (cvmx_bootmem_desc_t*)((char*)base_ptr + (((off_t)mem_desc_ptr) & (sysconf(_SC_PAGESIZE) - 1))); /* Also setup mapping for named memory block desc. while we are at it. Here we must keep another ** pointer around, as the value in the bootmem descriptor is shared with other applications. */ base_ptr = mmap(NULL, sizeof(cvmx_bootmem_named_block_desc_t) * cvmx_bootmem_desc->named_block_num_blocks + sysconf(_SC_PAGESIZE), PROT_READ | PROT_WRITE, MAP_SHARED, dm_fd, ((off_t)cvmx_bootmem_desc->named_block_array_addr) & ~(sysconf(_SC_PAGESIZE) - 1)); close(dm_fd); if (MAP_FAILED == base_ptr) { cvmx_dprintf("Error mapping named block descriptor!\n"); return(-1); } /* Adjust pointer to point to named block array, rather than start of page it is in */ linux32_named_block_array_ptr = (cvmx_bootmem_named_block_desc_t*)((char*)base_ptr + (((off_t)cvmx_bootmem_desc->named_block_array_addr) & (sysconf(_SC_PAGESIZE) - 1))); #elif (defined(CVMX_BUILD_FOR_LINUX_KERNEL) || defined(CVMX_BUILD_FOR_LINUX_USER)) && defined(CVMX_ABI_64) /* Set XKPHYS bit */ cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr)); #else cvmx_bootmem_desc = (cvmx_bootmem_desc_t*)mem_desc_ptr; #endif } return(0); } uint64_t cvmx_bootmem_available_mem(uint64_t min_block_size) { return(cvmx_bootmem_phy_available_mem(min_block_size)); } /********************************************************************* ** The cvmx_bootmem_phy* functions below return 64 bit physical addresses, ** and expose more features that the cvmx_bootmem_functions above. These are ** required for full memory space access in 32 bit applications, as well as for ** using some advance features. ** Most applications should not need to use these. ** **/ int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, uint64_t address_max, uint64_t alignment, uint32_t flags) { uint64_t head_addr; uint64_t ent_addr; uint64_t prev_addr = 0; /* points to previous list entry, NULL current entry is head of list */ uint64_t new_ent_addr = 0; uint64_t desired_min_addr; uint64_t alignment_mask = ~(alignment - 1); #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n", (unsigned long long)req_size, (unsigned long long)address_min, (unsigned long long)address_max, (unsigned long long)alignment); #endif if (cvmx_bootmem_desc->major_version > 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); goto error_out; } /* Do a variety of checks to validate the arguments. The allocator code will later assume ** that these checks have been made. We validate that the requested constraints are not ** self-contradictory before we look through the list of available memory */ /* 0 is not a valid req_size for this allocator */ if (!req_size) goto error_out; /* Round req_size up to mult of minimum alignment bytes */ req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); /* Convert !0 address_min and 0 address_max to special case of range that specifies an exact ** memory block to allocate. Do this before other checks and adjustments so that this tranformation will be validated */ if (address_min && !address_max) address_max = address_min + req_size; else if (!address_min && !address_max) address_max = ~0ull; /* If no limits given, use max limits */ /* Enforce minimum alignment (this also keeps the minimum free block ** req_size the same as the alignment req_size */ if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE) { alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE; } alignment_mask = ~(alignment - 1); /* Adjust address minimum based on requested alignment (round up to meet alignment). Do this here so we can ** reject impossible requests up front. (NOP for address_min == 0) */ if (alignment) address_min = (address_min + (alignment - 1)) & ~(alignment - 1); /* Reject inconsistent args. We have adjusted these, so this may fail due to our internal changes ** even if this check would pass for the values the user supplied. */ if (req_size > address_max - address_min) goto error_out; /* Walk through the list entries - first fit found is returned */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); head_addr = cvmx_bootmem_desc->head_addr; ent_addr = head_addr; while (ent_addr) { uint64_t usable_base, usable_max; uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr); if (cvmx_bootmem_phy_get_next(ent_addr) && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) { cvmx_dprintf("Internal bootmem_alloc() error: ent: 0x%llx, next: 0x%llx\n", (unsigned long long)ent_addr, (unsigned long long)cvmx_bootmem_phy_get_next(ent_addr)); goto error_out; } /* Determine if this is an entry that can satisify the request */ /* Check to make sure entry is large enough to satisfy request */ usable_base = ALIGN_ADDR_UP(MAX(address_min, ent_addr), alignment_mask); usable_max = MIN(address_max, ent_addr + ent_size); /* We should be able to allocate block at address usable_base */ desired_min_addr = usable_base; /* Determine if request can be satisfied from the current entry */ if ((((ent_addr + ent_size) > usable_base && ent_addr < address_max)) && req_size <= usable_max - usable_base) { /* We have found an entry that has room to satisfy the request, so allocate it from this entry */ /* If end CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from the end of this block ** rather than the beginning */ if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) { desired_min_addr = usable_max - req_size; /* Align desired address down to required alignment */ desired_min_addr &= alignment_mask; } /* Match at start of entry */ if (desired_min_addr == ent_addr) { if (req_size < ent_size) { /* big enough to create a new block from top portion of block */ new_ent_addr = ent_addr + req_size; cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, ent_size - req_size); /* Adjust next pointer as following code uses this */ cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); } /* adjust prev ptr or head to remove this entry from list */ if (prev_addr) { cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr)); } else { /* head of list being returned, so update head ptr */ cvmx_bootmem_desc->head_addr = cvmx_bootmem_phy_get_next(ent_addr); } if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(desired_min_addr); } /* block returned doesn't start at beginning of entry, so we know ** that we will be splitting a block off the front of this one. Create a new block ** from the beginning, add to list, and go to top of loop again. ** ** create new block from high portion of block, so that top block ** starts at desired addr **/ new_ent_addr = desired_min_addr; cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, cvmx_bootmem_phy_get_size(ent_addr) - (desired_min_addr - ent_addr)); cvmx_bootmem_phy_set_size(ent_addr, desired_min_addr - ent_addr); cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); /* Loop again to handle actual alloc from new block */ } prev_addr = ent_addr; ent_addr = cvmx_bootmem_phy_get_next(ent_addr); } error_out: /* We didn't find anything, so return error */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(-1); } int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags) { uint64_t cur_addr; uint64_t prev_addr = 0; /* zero is invalid */ int retval = 0; #ifdef DEBUG cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", (unsigned long long)phy_addr, (unsigned long long)size); #endif if (cvmx_bootmem_desc->major_version > 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); return(0); } /* 0 is not a valid size for this allocator */ if (!size) return(0); if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); cur_addr = cvmx_bootmem_desc->head_addr; if (cur_addr == 0 || phy_addr < cur_addr) { /* add at front of list - special case with changing head ptr */ if (cur_addr && phy_addr + size > cur_addr) goto bootmem_free_done; /* error, overlapping section */ else if (phy_addr + size == cur_addr) { /* Add to front of existing first block */ cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr)); cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size); cvmx_bootmem_desc->head_addr = phy_addr; } else { /* New block before first block */ cvmx_bootmem_phy_set_next(phy_addr, cur_addr); /* OK if cur_addr is 0 */ cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_desc->head_addr = phy_addr; } retval = 1; goto bootmem_free_done; } /* Find place in list to add block */ while (cur_addr && phy_addr > cur_addr) { prev_addr = cur_addr; cur_addr = cvmx_bootmem_phy_get_next(cur_addr); } if (!cur_addr) { /* We have reached the end of the list, add on to end, checking ** to see if we need to combine with last block **/ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size); } else { cvmx_bootmem_phy_set_next(prev_addr, phy_addr); cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, 0); } retval = 1; goto bootmem_free_done; } else { /* insert between prev and cur nodes, checking for merge with either/both */ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { /* Merge with previous */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size); if (phy_addr + size == cur_addr) { /* Also merge with current */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr)); cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr)); } retval = 1; goto bootmem_free_done; } else if (phy_addr + size == cur_addr) { /* Merge with current */ cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size); cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr)); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); retval = 1; goto bootmem_free_done; } /* It is a standalone block, add in between prev and cur */ cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, cur_addr); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); } retval = 1; bootmem_free_done: if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(retval); } void cvmx_bootmem_phy_list_print(void) { uint64_t addr; addr = cvmx_bootmem_desc->head_addr; cvmx_dprintf("\n\n\nPrinting bootmem block list, descriptor: %p, head is 0x%llx\n", cvmx_bootmem_desc, (unsigned long long)addr); cvmx_dprintf("Descriptor version: %d.%d\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version); if (cvmx_bootmem_desc->major_version > 3) { cvmx_dprintf("Warning: Bootmem descriptor version is newer than expected\n"); } if (!addr) { cvmx_dprintf("mem list is empty!\n"); } while (addr) { cvmx_dprintf("Block address: 0x%08qx, size: 0x%08qx, next: 0x%08qx\n", (unsigned long long)addr, (unsigned long long)cvmx_bootmem_phy_get_size(addr), (unsigned long long)cvmx_bootmem_phy_get_next(addr)); addr = cvmx_bootmem_phy_get_next(addr); } cvmx_dprintf("\n\n"); } uint64_t cvmx_bootmem_phy_available_mem(uint64_t min_block_size) { uint64_t addr; uint64_t available_mem = 0; cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); addr = cvmx_bootmem_desc->head_addr; while (addr) { if (cvmx_bootmem_phy_get_size(addr) >= min_block_size) available_mem += cvmx_bootmem_phy_get_size(addr); addr = cvmx_bootmem_phy_get_next(addr); } cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(available_mem); } cvmx_bootmem_named_block_desc_t * cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags) { unsigned int i; cvmx_bootmem_named_block_desc_t *named_block_array_ptr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name); #endif /* Lock the structure to make sure that it is not being changed while we are ** examining it. */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); #if defined(__linux__) && !defined(CONFIG_OCTEON_U_BOOT) #ifdef CVMX_ABI_N32 /* Need to use mmapped named block pointer in 32 bit linux apps */ extern cvmx_bootmem_named_block_desc_t *linux32_named_block_array_ptr; named_block_array_ptr = linux32_named_block_array_ptr; #else /* Use XKPHYS for 64 bit linux */ named_block_array_ptr = (cvmx_bootmem_named_block_desc_t *)cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr); #endif #else /* Simple executive case. (and u-boot) ** This could be in the low 1 meg of memory that is not 1-1 mapped, so we need use XKPHYS/KSEG0 addressing for it */ named_block_array_ptr = CASTPTR(cvmx_bootmem_named_block_desc_t, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,cvmx_bootmem_desc->named_block_array_addr)); #endif #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n", named_block_array_ptr); #endif if (cvmx_bootmem_desc->major_version == 3) { for (i = 0; i < cvmx_bootmem_desc->named_block_num_blocks; i++) { if ((name && named_block_array_ptr[i].size && !strncmp(name, named_block_array_ptr[i].name, cvmx_bootmem_desc->named_block_name_len - 1)) || (!name && !named_block_array_ptr[i].size)) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(&(named_block_array_ptr[i])); } } } else { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); } if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(NULL); } int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags) { cvmx_bootmem_named_block_desc_t *named_block_ptr; if (cvmx_bootmem_desc->major_version != 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); return(0); } #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name); #endif /* Take lock here, as name lookup/block free/name free need to be atomic */ cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); named_block_ptr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_ptr) { #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s, base: 0x%llx, size: 0x%llx\n", name, (unsigned long long)named_block_ptr->base_addr, (unsigned long long)named_block_ptr->size); #endif __cvmx_bootmem_phy_free(named_block_ptr->base_addr, named_block_ptr->size, CVMX_BOOTMEM_FLAG_NO_LOCKING); named_block_ptr->size = 0; /* Set size to zero to indicate block not used. */ } cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(!!named_block_ptr); /* 0 on failure, 1 on success */ } int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t alignment, char *name, uint32_t flags) { int64_t addr_allocated; cvmx_bootmem_named_block_desc_t *named_block_desc_ptr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n", (unsigned long long)size, (unsigned long long)min_addr, (unsigned long long)max_addr, (unsigned long long)alignment, name); #endif if (cvmx_bootmem_desc->major_version != 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); return(-1); } /* Take lock here, as name lookup/block alloc/name add need to be atomic */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); /* Get pointer to first available named block descriptor */ named_block_desc_ptr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); /* Check to see if name already in use, return error if name ** not available or no more room for blocks. */ if (cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(-1); } /* Round size up to mult of minimum alignment bytes ** We need the actual size allocated to allow for blocks to be coallesced ** when they are freed. The alloc routine does the same rounding up ** on all allocations. */ size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (addr_allocated >= 0) { named_block_desc_ptr->base_addr = addr_allocated; named_block_desc_ptr->size = size; strncpy(named_block_desc_ptr->name, name, cvmx_bootmem_desc->named_block_name_len); named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0; } if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return(addr_allocated); } void cvmx_bootmem_phy_named_block_print(void) { unsigned int i; int printed = 0; #if defined(__linux__) && !defined(CONFIG_OCTEON_U_BOOT) #ifdef CVMX_ABI_N32 /* Need to use mmapped named block pointer in 32 bit linux apps */ extern cvmx_bootmem_named_block_desc_t *linux32_named_block_array_ptr; cvmx_bootmem_named_block_desc_t *named_block_array_ptr = linux32_named_block_array_ptr; #else /* Use XKPHYS for 64 bit linux */ cvmx_bootmem_named_block_desc_t *named_block_array_ptr = (cvmx_bootmem_named_block_desc_t *)cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr); #endif #else /* Simple executive case. (and u-boot) ** This could be in the low 1 meg of memory that is not 1-1 mapped, so we need use XKPHYS/KSEG0 addressing for it */ cvmx_bootmem_named_block_desc_t *named_block_array_ptr = CASTPTR(cvmx_bootmem_named_block_desc_t, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,cvmx_bootmem_desc->named_block_array_addr)); #endif #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_print, desc addr: %p\n", cvmx_bootmem_desc); #endif if (cvmx_bootmem_desc->major_version != 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); return; } cvmx_dprintf("List of currently allocated named bootmem blocks:\n"); for (i = 0; i < cvmx_bootmem_desc->named_block_num_blocks; i++) { if (named_block_array_ptr[i].size) { printed++; cvmx_dprintf("Name: %s, address: 0x%08qx, size: 0x%08qx, index: %d\n", named_block_array_ptr[i].name, (unsigned long long)named_block_array_ptr[i].base_addr, (unsigned long long)named_block_array_ptr[i].size, i); } } if (!printed) { cvmx_dprintf("No named bootmem blocks exist.\n"); } } /* Real physical addresses of memory regions */ #define OCTEON_DDR0_BASE (0x0ULL) #define OCTEON_DDR0_SIZE (0x010000000ULL) #define OCTEON_DDR1_BASE (0x410000000ULL) #define OCTEON_DDR1_SIZE (0x010000000ULL) #define OCTEON_DDR2_BASE (0x020000000ULL) #define OCTEON_DDR2_SIZE (0x3e0000000ULL) #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL) int64_t cvmx_bootmem_phy_mem_list_init(uint64_t mem_size, uint32_t low_reserved_bytes, cvmx_bootmem_desc_t *desc_buffer) { uint64_t cur_block_addr; int64_t addr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: %p)\n", desc_buffer, cvmx_bootmem_desc); #endif /* Descriptor buffer needs to be in 32 bit addressable space to be compatible with ** 32 bit applications */ if (!desc_buffer) { cvmx_dprintf("ERROR: no memory for cvmx_bootmem descriptor provided\n"); return 0; } if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { mem_size = OCTEON_MAX_PHY_MEM_SIZE; cvmx_dprintf("ERROR: requested memory size too large, truncating to maximum size\n"); } if (cvmx_bootmem_desc) return 1; /* Initialize cvmx pointer to descriptor */ cvmx_bootmem_init(desc_buffer); /* Set up global pointer to start of list, exclude low 64k for exception vectors, space for global descriptor */ memset(cvmx_bootmem_desc, 0x0, sizeof(cvmx_bootmem_desc_t)); /* Set version of bootmem descriptor */ cvmx_bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER; cvmx_bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER; cur_block_addr = cvmx_bootmem_desc->head_addr = (OCTEON_DDR0_BASE + low_reserved_bytes); cvmx_bootmem_desc->head_addr = 0; if (mem_size <= OCTEON_DDR0_SIZE) { __cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0); goto frees_done; } __cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0); mem_size -= OCTEON_DDR0_SIZE; /* Add DDR2 block next if present */ if (mem_size > OCTEON_DDR1_SIZE) { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0); } else { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); } frees_done: /* Initialize the named block structure */ cvmx_bootmem_desc->named_block_name_len = CVMX_BOOTMEM_NAME_LEN; cvmx_bootmem_desc->named_block_num_blocks = CVMX_BOOTMEM_NUM_NAMED_BLOCKS; cvmx_bootmem_desc->named_block_array_addr = 0; /* Allocate this near the top of the low 256 MBytes of memory */ addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t),0, 0x10000000, 0 ,CVMX_BOOTMEM_FLAG_END_ALLOC); if (addr >= 0) cvmx_bootmem_desc->named_block_array_addr = addr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n", (unsigned long long)cvmx_bootmem_desc->named_block_array_addr); #endif if (!cvmx_bootmem_desc->named_block_array_addr) { cvmx_dprintf("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n"); return(0); } memset((void *)(unsigned long)cvmx_bootmem_desc->named_block_array_addr, 0x0, CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t)); return(1); } void cvmx_bootmem_lock(void) { cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); } void cvmx_bootmem_unlock(void) { cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); } void *__cvmx_bootmem_internal_get_desc_ptr(void) { return(cvmx_bootmem_desc); }