/******************************************************************************* * Copyright (c) 2013, Intel Corporation * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * * Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * * THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************** * * Intel SHA Extensions optimized implementation of a SHA-256 update function * * The function takes a pointer to the current hash values, a pointer to the * input data, and a number of 64 byte blocks to process. Once all blocks have * been processed, the digest pointer is updated with the resulting hash value. * The function only processes complete blocks, there is no functionality to * store partial blocks. All message padding and hash value initialization must * be done outside the update function. * * The indented lines in the loop are instructions related to rounds processing. * The non-indented lines are instructions related to the message schedule. * * Author: Sean Gulley * Date: July 2013 * ******************************************************************************** * * Example complier command line: * icc intel_sha_extensions_sha256_intrinsic.c * gcc -msha -msse4 intel_sha_extensions_sha256_intrinsic.c * *******************************************************************************/ #include __FBSDID("$FreeBSD$"); #include #include #include #include void intel_sha256_step(uint32_t *digest, const char *data, uint32_t num_blks) { __m128i state0, state1; __m128i msg; __m128i msgtmp0, msgtmp1, msgtmp2, msgtmp3; __m128i tmp; __m128i shuf_mask; __m128i abef_save, cdgh_save; // Load initial hash values // Need to reorder these appropriately // DCBA, HGFE -> ABEF, CDGH tmp = _mm_loadu_si128((__m128i*) digest); state1 = _mm_loadu_si128((__m128i*) (digest+4)); tmp = _mm_shuffle_epi32(tmp, 0xB1); // CDAB state1 = _mm_shuffle_epi32(state1, 0x1B); // EFGH state0 = _mm_alignr_epi8(tmp, state1, 8); // ABEF state1 = _mm_blend_epi16(state1, tmp, 0xF0); // CDGH shuf_mask = _mm_set_epi64x(0x0c0d0e0f08090a0bull, 0x0405060700010203ull); while (num_blks > 0) { // Save hash values for addition after rounds abef_save = state0; cdgh_save = state1; // Rounds 0-3 msg = _mm_loadu_si128((const __m128i*) data); msgtmp0 = _mm_shuffle_epi8(msg, shuf_mask); msg = _mm_add_epi32(msgtmp0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFull, 0x71374491428A2F98ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Rounds 4-7 msgtmp1 = _mm_loadu_si128((const __m128i*) (data+16)); msgtmp1 = _mm_shuffle_epi8(msgtmp1, shuf_mask); msg = _mm_add_epi32(msgtmp1, _mm_set_epi64x(0xAB1C5ED5923F82A4ull, 0x59F111F13956C25Bull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1); // Rounds 8-11 msgtmp2 = _mm_loadu_si128((const __m128i*) (data+32)); msgtmp2 = _mm_shuffle_epi8(msgtmp2, shuf_mask); msg = _mm_add_epi32(msgtmp2, _mm_set_epi64x(0x550C7DC3243185BEull, 0x12835B01D807AA98ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2); // Rounds 12-15 msgtmp3 = _mm_loadu_si128((const __m128i*) (data+48)); msgtmp3 = _mm_shuffle_epi8(msgtmp3, shuf_mask); msg = _mm_add_epi32(msgtmp3, _mm_set_epi64x(0xC19BF1749BDC06A7ull, 0x80DEB1FE72BE5D74ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4); msgtmp0 = _mm_add_epi32(msgtmp0, tmp); msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3); // Rounds 16-19 msg = _mm_add_epi32(msgtmp0, _mm_set_epi64x(0x240CA1CC0FC19DC6ull, 0xEFBE4786E49B69C1ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4); msgtmp1 = _mm_add_epi32(msgtmp1, tmp); msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0); // Rounds 20-23 msg = _mm_add_epi32(msgtmp1, _mm_set_epi64x(0x76F988DA5CB0A9DCull, 0x4A7484AA2DE92C6Full)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4); msgtmp2 = _mm_add_epi32(msgtmp2, tmp); msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1); // Rounds 24-27 msg = _mm_add_epi32(msgtmp2, _mm_set_epi64x(0xBF597FC7B00327C8ull, 0xA831C66D983E5152ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4); msgtmp3 = _mm_add_epi32(msgtmp3, tmp); msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2); // Rounds 28-31 msg = _mm_add_epi32(msgtmp3, _mm_set_epi64x(0x1429296706CA6351ull, 0xD5A79147C6E00BF3ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4); msgtmp0 = _mm_add_epi32(msgtmp0, tmp); msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3); // Rounds 32-35 msg = _mm_add_epi32(msgtmp0, _mm_set_epi64x(0x53380D134D2C6DFCull, 0x2E1B213827B70A85ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4); msgtmp1 = _mm_add_epi32(msgtmp1, tmp); msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0); // Rounds 36-39 msg = _mm_add_epi32(msgtmp1, _mm_set_epi64x(0x92722C8581C2C92Eull, 0x766A0ABB650A7354ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4); msgtmp2 = _mm_add_epi32(msgtmp2, tmp); msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1); // Rounds 40-43 msg = _mm_add_epi32(msgtmp2, _mm_set_epi64x(0xC76C51A3C24B8B70ull, 0xA81A664BA2BFE8A1ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4); msgtmp3 = _mm_add_epi32(msgtmp3, tmp); msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2); // Rounds 44-47 msg = _mm_add_epi32(msgtmp3, _mm_set_epi64x(0x106AA070F40E3585ull, 0xD6990624D192E819ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4); msgtmp0 = _mm_add_epi32(msgtmp0, tmp); msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3); // Rounds 48-51 msg = _mm_add_epi32(msgtmp0, _mm_set_epi64x(0x34B0BCB52748774Cull, 0x1E376C0819A4C116ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4); msgtmp1 = _mm_add_epi32(msgtmp1, tmp); msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0); // Rounds 52-55 msg = _mm_add_epi32(msgtmp1, _mm_set_epi64x(0x682E6FF35B9CCA4Full, 0x4ED8AA4A391C0CB3ull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4); msgtmp2 = _mm_add_epi32(msgtmp2, tmp); msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Rounds 56-59 msg = _mm_add_epi32(msgtmp2, _mm_set_epi64x(0x8CC7020884C87814ull, 0x78A5636F748F82EEull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4); msgtmp3 = _mm_add_epi32(msgtmp3, tmp); msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Rounds 60-63 msg = _mm_add_epi32(msgtmp3, _mm_set_epi64x(0xC67178F2BEF9A3F7ull, 0xA4506CEB90BEFFFAull)); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Add current hash values with previously saved state0 = _mm_add_epi32(state0, abef_save); state1 = _mm_add_epi32(state1, cdgh_save); data += 64; num_blks--; } // Write hash values back in the correct order tmp = _mm_shuffle_epi32(state0, 0x1B); // FEBA state1 = _mm_shuffle_epi32(state1, 0xB1); // DCHG state0 = _mm_blend_epi16(tmp, state1, 0xF0); // DCBA state1 = _mm_alignr_epi8(state1, tmp, 8); // ABEF _mm_store_si128((__m128i*) digest, state0); _mm_store_si128((__m128i*) (digest+4), state1); }