/* * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ah_eeprom_v14.h" #include "ar5416/ar5416.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" #include "ar5416/ar5416.ini" static void ar5416ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore); static void ar5416WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan); static void ar5416SpurMitigate(struct ath_hal *ah, const struct ieee80211_channel *chan); static void ar5416AniSetup(struct ath_hal *ah) { static const struct ar5212AniParams aniparams = { .maxNoiseImmunityLevel = 4, /* levels 0..4 */ .totalSizeDesired = { -55, -55, -55, -55, -62 }, .coarseHigh = { -14, -14, -14, -14, -12 }, .coarseLow = { -64, -64, -64, -64, -70 }, .firpwr = { -78, -78, -78, -78, -80 }, .maxSpurImmunityLevel = 2, .cycPwrThr1 = { 2, 4, 6 }, .maxFirstepLevel = 2, /* levels 0..2 */ .firstep = { 0, 4, 8 }, .ofdmTrigHigh = 500, .ofdmTrigLow = 200, .cckTrigHigh = 200, .cckTrigLow = 100, .rssiThrHigh = 40, .rssiThrLow = 7, .period = 100, }; /* NB: disable ANI noise immmunity for reliable RIFS rx */ AH5416(ah)->ah_ani_function &= ~(1 << HAL_ANI_NOISE_IMMUNITY_LEVEL); ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE); } /* * AR5416 doesn't do OLC or temperature compensation. */ static void ar5416olcInit(struct ath_hal *ah) { } static void ar5416olcTempCompensation(struct ath_hal *ah) { } /* * Attach for an AR5416 part. */ void ar5416InitState(struct ath_hal_5416 *ahp5416, uint16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, HAL_STATUS *status) { struct ath_hal_5212 *ahp; struct ath_hal *ah; ahp = &ahp5416->ah_5212; ar5212InitState(ahp, devid, sc, st, sh, status); ah = &ahp->ah_priv.h; /* override 5212 methods for our needs */ ah->ah_magic = AR5416_MAGIC; ah->ah_getRateTable = ar5416GetRateTable; ah->ah_detach = ar5416Detach; /* Reset functions */ ah->ah_reset = ar5416Reset; ah->ah_phyDisable = ar5416PhyDisable; ah->ah_disable = ar5416Disable; ah->ah_configPCIE = ar5416ConfigPCIE; ah->ah_perCalibration = ar5416PerCalibration; ah->ah_perCalibrationN = ar5416PerCalibrationN, ah->ah_resetCalValid = ar5416ResetCalValid, ah->ah_setTxPowerLimit = ar5416SetTxPowerLimit; ah->ah_setTxPower = ar5416SetTransmitPower; ah->ah_setBoardValues = ar5416SetBoardValues; /* Transmit functions */ ah->ah_stopTxDma = ar5416StopTxDma; ah->ah_setupTxDesc = ar5416SetupTxDesc; ah->ah_setupXTxDesc = ar5416SetupXTxDesc; ah->ah_fillTxDesc = ar5416FillTxDesc; ah->ah_procTxDesc = ar5416ProcTxDesc; ah->ah_getTxCompletionRates = ar5416GetTxCompletionRates; ah->ah_setupTxQueue = ar5416SetupTxQueue; ah->ah_resetTxQueue = ar5416ResetTxQueue; /* Receive Functions */ ah->ah_getRxFilter = ar5416GetRxFilter; ah->ah_setRxFilter = ar5416SetRxFilter; ah->ah_startPcuReceive = ar5416StartPcuReceive; ah->ah_stopPcuReceive = ar5416StopPcuReceive; ah->ah_setupRxDesc = ar5416SetupRxDesc; ah->ah_procRxDesc = ar5416ProcRxDesc; ah->ah_rxMonitor = ar5416RxMonitor; ah->ah_aniPoll = ar5416AniPoll; ah->ah_procMibEvent = ar5416ProcessMibIntr; /* Misc Functions */ ah->ah_getCapability = ar5416GetCapability; ah->ah_getDiagState = ar5416GetDiagState; ah->ah_setLedState = ar5416SetLedState; ah->ah_gpioCfgOutput = ar5416GpioCfgOutput; ah->ah_gpioCfgInput = ar5416GpioCfgInput; ah->ah_gpioGet = ar5416GpioGet; ah->ah_gpioSet = ar5416GpioSet; ah->ah_gpioSetIntr = ar5416GpioSetIntr; ah->ah_getTsf64 = ar5416GetTsf64; ah->ah_resetTsf = ar5416ResetTsf; ah->ah_getRfGain = ar5416GetRfgain; ah->ah_setAntennaSwitch = ar5416SetAntennaSwitch; ah->ah_setDecompMask = ar5416SetDecompMask; ah->ah_setCoverageClass = ar5416SetCoverageClass; ah->ah_setQuiet = ar5416SetQuiet; ah->ah_resetKeyCacheEntry = ar5416ResetKeyCacheEntry; ah->ah_setKeyCacheEntry = ar5416SetKeyCacheEntry; /* DFS Functions */ ah->ah_enableDfs = ar5416EnableDfs; ah->ah_getDfsThresh = ar5416GetDfsThresh; ah->ah_procRadarEvent = ar5416ProcessRadarEvent; ah->ah_isFastClockEnabled = ar5416IsFastClockEnabled; /* Power Management Functions */ ah->ah_setPowerMode = ar5416SetPowerMode; /* Beacon Management Functions */ ah->ah_setBeaconTimers = ar5416SetBeaconTimers; ah->ah_beaconInit = ar5416BeaconInit; ah->ah_setStationBeaconTimers = ar5416SetStaBeaconTimers; ah->ah_resetStationBeaconTimers = ar5416ResetStaBeaconTimers; ah->ah_getNextTBTT = ar5416GetNextTBTT; /* 802.11n Functions */ ah->ah_chainTxDesc = ar5416ChainTxDesc; ah->ah_setupFirstTxDesc = ar5416SetupFirstTxDesc; ah->ah_setupLastTxDesc = ar5416SetupLastTxDesc; ah->ah_set11nRateScenario = ar5416Set11nRateScenario; ah->ah_set11nAggrMiddle = ar5416Set11nAggrMiddle; ah->ah_clr11nAggr = ar5416Clr11nAggr; ah->ah_set11nBurstDuration = ar5416Set11nBurstDuration; ah->ah_get11nExtBusy = ar5416Get11nExtBusy; ah->ah_set11nMac2040 = ar5416Set11nMac2040; ah->ah_get11nRxClear = ar5416Get11nRxClear; ah->ah_set11nRxClear = ar5416Set11nRxClear; /* Interrupt functions */ ah->ah_isInterruptPending = ar5416IsInterruptPending; ah->ah_getPendingInterrupts = ar5416GetPendingInterrupts; ah->ah_setInterrupts = ar5416SetInterrupts; ahp->ah_priv.ah_getWirelessModes= ar5416GetWirelessModes; ahp->ah_priv.ah_eepromRead = ar5416EepromRead; #ifdef AH_SUPPORT_WRITE_EEPROM ahp->ah_priv.ah_eepromWrite = ar5416EepromWrite; #endif ahp->ah_priv.ah_getChipPowerLimits = ar5416GetChipPowerLimits; /* Internal ops */ AH5416(ah)->ah_writeIni = ar5416WriteIni; AH5416(ah)->ah_spurMitigate = ar5416SpurMitigate; /* Internal baseband ops */ AH5416(ah)->ah_initPLL = ar5416InitPLL; /* Internal calibration ops */ AH5416(ah)->ah_cal_initcal = ar5416InitCalHardware; /* Internal TX power control related operations */ AH5416(ah)->ah_olcInit = ar5416olcInit; AH5416(ah)->ah_olcTempCompensation = ar5416olcTempCompensation; AH5416(ah)->ah_setPowerCalTable = ar5416SetPowerCalTable; /* * Start by setting all Owl devices to 2x2 */ AH5416(ah)->ah_rx_chainmask = AR5416_DEFAULT_RXCHAINMASK; AH5416(ah)->ah_tx_chainmask = AR5416_DEFAULT_TXCHAINMASK; /* Enable all ANI functions to begin with */ AH5416(ah)->ah_ani_function = 0xffffffff; /* Set overridable ANI methods */ AH5212(ah)->ah_aniControl = ar5416AniControl; } uint32_t ar5416GetRadioRev(struct ath_hal *ah) { uint32_t val; int i; /* Read Radio Chip Rev Extract */ OS_REG_WRITE(ah, AR_PHY(0x36), 0x00007058); for (i = 0; i < 8; i++) OS_REG_WRITE(ah, AR_PHY(0x20), 0x00010000); val = (OS_REG_READ(ah, AR_PHY(256)) >> 24) & 0xff; val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4); return ath_hal_reverseBits(val, 8); } /* * Attach for an AR5416 part. */ static struct ath_hal * ar5416Attach(uint16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *status) { struct ath_hal_5416 *ahp5416; struct ath_hal_5212 *ahp; struct ath_hal *ah; uint32_t val; HAL_STATUS ecode; HAL_BOOL rfStatus; HALDEBUG_G(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n", __func__, sc, (void*) st, (void*) sh); /* NB: memory is returned zero'd */ ahp5416 = ath_hal_malloc(sizeof (struct ath_hal_5416) + /* extra space for Owl 2.1/2.2 WAR */ sizeof(ar5416Addac) ); if (ahp5416 == AH_NULL) { HALDEBUG_G(AH_NULL, HAL_DEBUG_ANY, "%s: cannot allocate memory for state block\n", __func__); *status = HAL_ENOMEM; return AH_NULL; } ar5416InitState(ahp5416, devid, sc, st, sh, status); ahp = &ahp5416->ah_5212; ah = &ahp->ah_priv.h; if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n", __func__); ecode = HAL_EIO; goto bad; } if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n", __func__); ecode = HAL_EIO; goto bad; } /* Read Revisions from Chips before taking out of reset */ val = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID; AH_PRIVATE(ah)->ah_macVersion = val >> AR_SREV_ID_S; AH_PRIVATE(ah)->ah_macRev = val & AR_SREV_REVISION; AH_PRIVATE(ah)->ah_ispcie = (devid == AR5416_DEVID_PCIE); /* setup common ini data; rf backends handle remainder */ HAL_INI_INIT(&ahp->ah_ini_modes, ar5416Modes, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar5416Common, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bb_rfgain, ar5416BB_RfGain, 3); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank0, ar5416Bank0, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank1, ar5416Bank1, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank2, ar5416Bank2, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank3, ar5416Bank3, 3); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank6, ar5416Bank6, 3); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank7, ar5416Bank7, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_addac, ar5416Addac, 2); if (! IS_5416V2_2(ah)) { /* Owl 2.1/2.0 */ ath_hal_printf(ah, "[ath] Enabling CLKDRV workaround for AR5416 < v2.2\n"); struct ini { uint32_t *data; /* NB: !const */ int rows, cols; }; /* override CLKDRV value */ OS_MEMCPY(&AH5416(ah)[1], ar5416Addac, sizeof(ar5416Addac)); AH5416(ah)->ah_ini_addac.data = (uint32_t *) &AH5416(ah)[1]; HAL_INI_VAL((struct ini *)&AH5416(ah)->ah_ini_addac, 31, 1) = 0; } HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar5416PciePhy, 2); ar5416AttachPCIE(ah); ecode = ath_hal_v14EepromAttach(ah); if (ecode != HAL_OK) goto bad; if (!ar5416ChipReset(ah, AH_NULL)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); ecode = HAL_EIO; goto bad; } AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID); if (!ar5212ChipTest(ah)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n", __func__); ecode = HAL_ESELFTEST; goto bad; } /* * Set correct Baseband to analog shift * setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); /* Read Radio Chip Rev Extract */ AH_PRIVATE(ah)->ah_analog5GhzRev = ar5212GetRadioRev(ah); switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) { case AR_RAD5122_SREV_MAJOR: /* Fowl: 5G/2x2 */ case AR_RAD2122_SREV_MAJOR: /* Fowl: 2+5G/2x2 */ case AR_RAD2133_SREV_MAJOR: /* Fowl: 2G/3x3 */ case AR_RAD5133_SREV_MAJOR: /* Fowl: 2+5G/3x3 */ break; default: if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) { /* * When RF_Silen is used the analog chip is reset. * So when the system boots with radio switch off * the RF chip rev reads back as zero and we need * to use the mac+phy revs to set the radio rev. */ AH_PRIVATE(ah)->ah_analog5GhzRev = AR_RAD5133_SREV_MAJOR; break; } /* NB: silently accept anything in release code per Atheros */ #ifdef AH_DEBUG HALDEBUG(ah, HAL_DEBUG_ANY, "%s: 5G Radio Chip Rev 0x%02X is not supported by " "this driver\n", __func__, AH_PRIVATE(ah)->ah_analog5GhzRev); ecode = HAL_ENOTSUPP; goto bad; #endif } /* * Got everything we need now to setup the capabilities. */ if (!ar5416FillCapabilityInfo(ah)) { ecode = HAL_EEREAD; goto bad; } ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr); if (ecode != HAL_OK) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error getting mac address from EEPROM\n", __func__); goto bad; } /* XXX How about the serial number ? */ /* Read Reg Domain */ AH_PRIVATE(ah)->ah_currentRD = ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL); AH_PRIVATE(ah)->ah_currentRDext = ath_hal_eepromGet(ah, AR_EEP_REGDMN_1, AH_NULL); /* * ah_miscMode is populated by ar5416FillCapabilityInfo() * starting from griffin. Set here to make sure that * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is * placed into hardware. */ if (ahp->ah_miscMode != 0) OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode); rfStatus = ar2133RfAttach(ah, &ecode); if (!rfStatus) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n", __func__, ecode); goto bad; } ar5416AniSetup(ah); /* Anti Noise Immunity */ AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ; AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ; AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ; AH5416(ah)->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ; AH5416(ah)->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ; AH5416(ah)->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ; ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__); return ah; bad: if (ahp) ar5416Detach((struct ath_hal *) ahp); if (status) *status = ecode; return AH_NULL; } void ar5416Detach(struct ath_hal *ah) { HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s:\n", __func__); HALASSERT(ah != AH_NULL); HALASSERT(ah->ah_magic == AR5416_MAGIC); /* Make sure that chip is awake before writing to it */ if (! ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s: failed to wake up chip\n", __func__); ar5416AniDetach(ah); ar5212RfDetach(ah); ah->ah_disable(ah); ar5416SetPowerMode(ah, HAL_PM_FULL_SLEEP, AH_TRUE); ath_hal_eepromDetach(ah); ath_hal_free(ah); } void ar5416AttachPCIE(struct ath_hal *ah) { if (AH_PRIVATE(ah)->ah_ispcie) ath_hal_configPCIE(ah, AH_FALSE); else ath_hal_disablePCIE(ah); } static void ar5416ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore) { if (AH_PRIVATE(ah)->ah_ispcie && !restore) { ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0); OS_DELAY(1000); OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); OS_REG_WRITE(ah, AR_WA, AR_WA_DEFAULT); } } static void ar5416WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan) { u_int modesIndex, freqIndex; int regWrites = 0; /* Setup the indices for the next set of register array writes */ /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { freqIndex = 2; if (IEEE80211_IS_CHAN_HT40(chan)) modesIndex = 3; else if (IEEE80211_IS_CHAN_108G(chan)) modesIndex = 5; else modesIndex = 4; } else { freqIndex = 1; if (IEEE80211_IS_CHAN_HT40(chan) || IEEE80211_IS_CHAN_TURBO(chan)) modesIndex = 2; else modesIndex = 1; } /* Set correct Baseband to analog shift setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); /* * Write addac shifts */ OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); /* NB: only required for Sowl */ if (AR_SREV_SOWL(ah)) ar5416EepromSetAddac(ah, chan); regWrites = ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_addac, 1, regWrites); OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes, modesIndex, regWrites); regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common, 1, regWrites); /* XXX updated regWrites? */ AH5212(ah)->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites); } /* * Convert to baseband spur frequency given input channel frequency * and compute register settings below. */ static void ar5416SpurMitigate(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint16_t freq = ath_hal_gethwchannel(ah, chan); static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; static const int inc[4] = { 0, 100, 0, 0 }; int bb_spur = AR_NO_SPUR; int bin, cur_bin; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, new; int i; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan); OS_MEMZERO(mask_m, sizeof(mask_m)); OS_MEMZERO(mask_p, sizeof(mask_p)); /* * Need to verify range +/- 9.5 for static ht20, otherwise spur * is out-of-band and can be ignored. */ /* XXX ath9k changes */ for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz); if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - (freq * 10); if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) return; bin = bb_spur * 32; tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)); new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), new); new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(AR5416_SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); OS_REG_WRITE(ah, AR_PHY_SPUR_REG, new); /* * Should offset bb_spur by +/- 10 MHz for dynamic 2040 MHz * config, no offset for HT20. * spur_delta_phase = bb_spur/40 * 2**21 for static ht20, * /80 for dyn2040. */ spur_delta_phase = ((bb_spur * 524288) / 100) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; /* * in 11A mode the denominator of spur_freq_sd should be 40 and * it should be 44 in 11G */ denominator = IEEE80211_IS_CHAN_2GHZ(chan) ? 440 : 400; spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff; new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); OS_REG_WRITE(ah, AR_PHY_TIMING11, new); /* * ============================================ * pilot mask 1 [31:0] = +6..-26, no 0 bin * pilot mask 2 [19:0] = +26..+7 * * channel mask 1 [31:0] = +6..-26, no 0 bin * channel mask 2 [19:0] = +26..+7 */ //cur_bin = -26; cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask); } /* ================================================= * viterbi mask 1 based on channel magnitude * four levels 0-3 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c) * [1 2 2 1] for -9.6 or [1 2 1] for +16 * - enable_mask_ppm, all bins move with freq * * - mask_select, 8 bits for rates (reg 67,0x990c) * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c) * choose which mask to use mask or mask2 */ /* * viterbi mask 2 2nd set for per data rate puncturing * four levels 0-3 * - mask_select, 8 bits for rates (reg 67) * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994) * [1 2 2 1] for -9.6 or [1 2 1] for +16 */ cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { if ((abs(cur_vit_mask - bin)) < 75) { mask_amt = 1; } else { mask_amt = 0; } if (cur_vit_mask < 0) { mask_m[abs(cur_vit_mask / 100)] = mask_amt; } else { mask_p[cur_vit_mask / 100] = mask_amt; } } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28) | (mask_m[ 2] << 26) | (mask_m[ 3] << 24) | (mask_m[ 4] << 22) | (mask_m[ 5] << 20) | (mask_m[ 6] << 18) | (mask_m[ 7] << 16) | (mask_m[ 8] << 14) | (mask_m[ 9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[ 9] << 16) | (mask_p[ 8] << 14) | (mask_p[ 7] << 12) | (mask_p[ 6] << 10) | (mask_p[ 5] << 8) | (mask_p[ 4] << 6) | (mask_p[ 3] << 4) | (mask_p[ 2] << 2) | (mask_p[ 1] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } /* * Fill all software cached or static hardware state information. * Return failure if capabilities are to come from EEPROM and * cannot be read. */ HAL_BOOL ar5416FillCapabilityInfo(struct ath_hal *ah) { struct ath_hal_private *ahpriv = AH_PRIVATE(ah); HAL_CAPABILITIES *pCap = &ahpriv->ah_caps; uint16_t val; /* Construct wireless mode from EEPROM */ pCap->halWirelessModes = 0; if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) { pCap->halWirelessModes |= HAL_MODE_11A | HAL_MODE_11NA_HT20 | HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS ; } if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE)) { pCap->halWirelessModes |= HAL_MODE_11G | HAL_MODE_11NG_HT20 | HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS ; pCap->halWirelessModes |= HAL_MODE_11A | HAL_MODE_11NA_HT20 | HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS ; } pCap->halLow2GhzChan = 2312; pCap->halHigh2GhzChan = 2732; pCap->halLow5GhzChan = 4915; pCap->halHigh5GhzChan = 6100; pCap->halCipherCkipSupport = AH_FALSE; pCap->halCipherTkipSupport = AH_TRUE; pCap->halCipherAesCcmSupport = ath_hal_eepromGetFlag(ah, AR_EEP_AES); pCap->halMicCkipSupport = AH_FALSE; pCap->halMicTkipSupport = AH_TRUE; pCap->halMicAesCcmSupport = ath_hal_eepromGetFlag(ah, AR_EEP_AES); /* * Starting with Griffin TX+RX mic keys can be combined * in one key cache slot. */ pCap->halTkipMicTxRxKeySupport = AH_TRUE; pCap->halChanSpreadSupport = AH_TRUE; pCap->halSleepAfterBeaconBroken = AH_TRUE; pCap->halCompressSupport = AH_FALSE; pCap->halBurstSupport = AH_TRUE; pCap->halFastFramesSupport = AH_FALSE; /* XXX? */ pCap->halChapTuningSupport = AH_TRUE; pCap->halTurboPrimeSupport = AH_TRUE; pCap->halTurboGSupport = pCap->halWirelessModes & HAL_MODE_108G; pCap->halPSPollBroken = AH_TRUE; /* XXX fixed in later revs? */ pCap->halVEOLSupport = AH_TRUE; pCap->halBssIdMaskSupport = AH_TRUE; pCap->halMcastKeySrchSupport = AH_TRUE; /* Works on AR5416 and later */ pCap->halTsfAddSupport = AH_TRUE; pCap->hal4AddrAggrSupport = AH_FALSE; /* Broken in Owl */ if (ath_hal_eepromGet(ah, AR_EEP_MAXQCU, &val) == HAL_OK) pCap->halTotalQueues = val; else pCap->halTotalQueues = HAL_NUM_TX_QUEUES; if (ath_hal_eepromGet(ah, AR_EEP_KCENTRIES, &val) == HAL_OK) pCap->halKeyCacheSize = val; else pCap->halKeyCacheSize = AR5416_KEYTABLE_SIZE; /* XXX not needed */ pCap->halChanHalfRate = AH_FALSE; /* XXX ? */ pCap->halChanQuarterRate = AH_FALSE; /* XXX ? */ pCap->halTstampPrecision = 32; pCap->halHwPhyCounterSupport = AH_TRUE; pCap->halIntrMask = HAL_INT_COMMON | HAL_INT_RX | HAL_INT_TX | HAL_INT_FATAL | HAL_INT_BNR | HAL_INT_BMISC | HAL_INT_DTIMSYNC | HAL_INT_TSFOOR | HAL_INT_CST | HAL_INT_GTT ; pCap->halFastCCSupport = AH_TRUE; pCap->halNumGpioPins = 6; pCap->halWowSupport = AH_FALSE; pCap->halWowMatchPatternExact = AH_FALSE; pCap->halBtCoexSupport = AH_FALSE; /* XXX need support */ pCap->halAutoSleepSupport = AH_FALSE; pCap->hal4kbSplitTransSupport = AH_TRUE; /* Disable this so Block-ACK works correctly */ pCap->halHasRxSelfLinkedTail = AH_FALSE; #if 0 /* XXX not yet */ pCap->halNumAntCfg2GHz = ar5416GetNumAntConfig(ahp, HAL_FREQ_BAND_2GHZ); pCap->halNumAntCfg5GHz = ar5416GetNumAntConfig(ahp, HAL_FREQ_BAND_5GHZ); #endif pCap->halHTSupport = AH_TRUE; pCap->halTxChainMask = ath_hal_eepromGet(ah, AR_EEP_TXMASK, AH_NULL); /* XXX CB71 uses GPIO 0 to indicate 3 rx chains */ pCap->halRxChainMask = ath_hal_eepromGet(ah, AR_EEP_RXMASK, AH_NULL); /* AR5416 may have 3 antennas but is a 2x2 stream device */ pCap->halTxStreams = 2; pCap->halRxStreams = 2; pCap->halRtsAggrLimit = 8*1024; /* Owl 2.0 limit */ pCap->halMbssidAggrSupport = AH_FALSE; /* Broken on Owl */ pCap->halForcePpmSupport = AH_TRUE; pCap->halEnhancedPmSupport = AH_TRUE; pCap->halBssidMatchSupport = AH_TRUE; pCap->halGTTSupport = AH_TRUE; pCap->halCSTSupport = AH_TRUE; pCap->halEnhancedDfsSupport = AH_FALSE; /* Hardware supports 32 bit TSF values in the RX descriptor */ pCap->halHasLongRxDescTsf = AH_TRUE; if (ath_hal_eepromGetFlag(ah, AR_EEP_RFKILL) && ath_hal_eepromGet(ah, AR_EEP_RFSILENT, &ahpriv->ah_rfsilent) == HAL_OK) { /* NB: enabled by default */ ahpriv->ah_rfkillEnabled = AH_TRUE; pCap->halRfSilentSupport = AH_TRUE; } ahpriv->ah_rxornIsFatal = AH_FALSE; return AH_TRUE; } static const char* ar5416Probe(uint16_t vendorid, uint16_t devid) { if (vendorid == ATHEROS_VENDOR_ID && (devid == AR5416_DEVID_PCI || devid == AR5416_DEVID_PCIE)) return "Atheros 5416"; return AH_NULL; } AH_CHIP(AR5416, ar5416Probe, ar5416Attach);