/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #include "opt_ah.h" #include "ah.h" #include "ah_desc.h" #include "ah_internal.h" #include "ar5416/ar5416.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" #include "ar5416/ar5416desc.h" /* * Stop transmit on the specified queue */ HAL_BOOL ar5416StopTxDma(struct ath_hal *ah, u_int q) { #define STOP_DMA_TIMEOUT 4000 /* us */ #define STOP_DMA_ITER 100 /* us */ u_int i; HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { if (ar5212NumTxPending(ah, q) == 0) break; OS_DELAY(STOP_DMA_ITER); } #ifdef AH_DEBUG if (i == 0) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: queue %u DMA did not stop in 400 msec\n", __func__, q); HALDEBUG(ah, HAL_DEBUG_ANY, "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", __func__, OS_REG_READ(ah, AR_QMISC(q)), OS_REG_READ(ah, AR_QRDYTIMECFG(q)), OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); } #endif /* AH_DEBUG */ /* ar5416 and up can kill packets at the PCU level */ if (ar5212NumTxPending(ah, q)) { uint32_t j; HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: Num of pending TX Frames %d on Q %d\n", __func__, ar5212NumTxPending(ah, q), q); /* Kill last PCU Tx Frame */ /* TODO - save off and restore current values of Q1/Q2? */ for (j = 0; j < 2; j++) { uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32); OS_REG_WRITE(ah, AR_QUIET2, SM(10, AR_QUIET2_QUIET_DUR)); OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100); OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10); OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10)) break; HALDEBUG(ah, HAL_DEBUG_ANY, "%s: TSF moved while trying to set quiet time " "TSF: 0x%08x\n", __func__, tsfLow); HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */ } OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); /* Allow the quiet mechanism to do its work */ OS_DELAY(200); OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); /* Verify the transmit q is empty */ for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) { if (ar5212NumTxPending(ah, q) == 0) break; OS_DELAY(STOP_DMA_ITER); } if (i == 0) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Failed to stop Tx DMA in %d msec after killing" " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000); } OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE); } OS_REG_WRITE(ah, AR_Q_TXD, 0); return (i != 0); #undef STOP_DMA_ITER #undef STOP_DMA_TIMEOUT } #define VALID_KEY_TYPES \ ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\ (1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP)) #define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES) #define set11nTries(_series, _index) \ (SM((_series)[_index].Tries, AR_XmitDataTries##_index)) #define set11nRate(_series, _index) \ (SM((_series)[_index].Rate, AR_XmitRate##_index)) #define set11nPktDurRTSCTS(_series, _index) \ (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\ ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\ AR_RTSCTSQual##_index : 0)) #define set11nRateFlags(_series, _index) \ ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \ |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \ |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \ |SM((_series)[_index].ChSel, AR_ChainSel##_index) /* * Descriptor Access Functions */ #define VALID_PKT_TYPES \ ((1<ah_ratesArray[rate1l]); case /* 2 Mb */ 0x1a: return (AH5416(ah)->ah_ratesArray[rate2l]); case /* 2 MbS*/ 0x1a | 0x4: return (AH5416(ah)->ah_ratesArray[rate2s]); case /* 5.5 Mb */ 0x19: return (AH5416(ah)->ah_ratesArray[rate5_5l]); case /* 5.5 MbS*/ 0x19 | 0x4: return (AH5416(ah)->ah_ratesArray[rate5_5s]); case /* 11 Mb */ 0x18: return (AH5416(ah)->ah_ratesArray[rate11l]); case /* 11 MbS*/ 0x18 | 0x4: return (AH5416(ah)->ah_ratesArray[rate11s]); } /* OFDM rates */ switch (rate) { case /* 6 Mb */ 0x0b: return (AH5416(ah)->ah_ratesArray[rate6mb]); case /* 9 Mb */ 0x0f: return (AH5416(ah)->ah_ratesArray[rate9mb]); case /* 12 Mb */ 0x0a: return (AH5416(ah)->ah_ratesArray[rate12mb]); case /* 18 Mb */ 0x0e: return (AH5416(ah)->ah_ratesArray[rate18mb]); case /* 24 Mb */ 0x09: return (AH5416(ah)->ah_ratesArray[rate24mb]); case /* 36 Mb */ 0x0d: return (AH5416(ah)->ah_ratesArray[rate36mb]); case /* 48 Mb */ 0x08: return (AH5416(ah)->ah_ratesArray[rate48mb]); case /* 54 Mb */ 0x0c: return (AH5416(ah)->ah_ratesArray[rate54mb]); } /* * Handle HT20/HT40 - we only have to do MCS0-7; * there's no stream differences. */ if ((rate & 0x80) && is_ht40) { return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]); } else if (rate & 0x80) { return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]); } /* XXX default (eg XR, bad bad person!) */ return (AH5416(ah)->ah_ratesArray[rate6mb]); } /* * Return the TX power to be used for the given rate/chains/TX power. * * There are a bunch of tweaks to make to a given TX power based on * the current configuration, so... */ static uint16_t ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask, uint16_t txPower, HAL_BOOL is_ht40) { int n_txpower, max_txpower; const int cck_ofdm_delta = 2; #define EEP_MINOR(_ah) \ (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) /* Take a copy ; we may underflow and thus need to clamp things */ n_txpower = txPower; /* HT40? Need to adjust the TX power by this */ if (is_ht40) n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc; /* * Merlin? Offset the target TX power offset - it defaults to * starting at -5.0dBm, but that can change! * * Kiwi/Kite? Always -5.0dBm offset. */ if (AR_SREV_KIWI_10_OR_LATER(ah)) { n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2); } else if (AR_SREV_MERLIN_20_OR_LATER(ah)) { int8_t pwr_table_offset = 0; /* This is in dBm, convert to 1/2 dBm */ (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, &pwr_table_offset); n_txpower -= (pwr_table_offset * 2); } /* * If Open-loop TX power control is used, the CCK rates need * to be offset by that. * * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L * * XXX Odd, we don't have a PHY table entry for long preamble * 1mbit CCK? */ if (AR_SREV_MERLIN_20_OR_LATER(ah) && ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { if (rate == 0x19 || rate == 0x1a || rate == 0x1b || rate == (0x19 | 0x04) || rate == (0x1a | 0x04) || rate == (0x1b | 0x04)) { n_txpower -= cck_ofdm_delta; } } /* * We're now offset by the same amount that the static maximum * PHY power tables are. So, clamp the value based on that rate. */ max_txpower = ar5416RateToRateTable(ah, rate, is_ht40); #if 0 ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, " "rate = 0x%x , is_ht40 = %d\n", __func__, n_txpower, max_txpower, rate, is_ht40); #endif n_txpower = MIN(max_txpower, n_txpower); /* * We don't have to offset the TX power for two or three * chain operation here - it's done by the AR_PHY_POWER_TX_SUB * register setting via the EEPROM. * * So for vendors that programmed the maximum target power assuming * that 2/3 chains are always on, things will just plain work. * (They won't reach that target power if only one chain is on, but * that's a different problem.) */ /* Over/underflow? Adjust */ if (n_txpower < 0) n_txpower = 0; else if (n_txpower > 63) n_txpower = 63; /* * For some odd reason the AR9160 with txpower=0 results in a * much higher (max?) TX power. So, if it's a chipset before * AR9220/AR9280, just clamp the minimum value at 1. */ if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0)) n_txpower = 1; return (n_txpower); #undef EEP_MINOR #undef IS_EEP_MINOR_V2 } HAL_BOOL ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds, u_int pktLen, u_int hdrLen, HAL_PKT_TYPE type, u_int txPower, u_int txRate0, u_int txTries0, u_int keyIx, u_int antMode, u_int flags, u_int rtsctsRate, u_int rtsctsDuration, u_int compicvLen, u_int compivLen, u_int comp) { #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) struct ar5416_desc *ads = AR5416DESC(ds); struct ath_hal_5416 *ahp = AH5416(ah); (void) hdrLen; HALASSERT(txTries0 != 0); HALASSERT(isValidPktType(type)); HALASSERT(isValidTxRate(txRate0)); HALASSERT((flags & RTSCTS) != RTSCTS); /* XXX validate antMode */ txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset); if (txPower > 63) txPower = 63; /* * XXX For now, just assume that this isn't a HT40 frame. */ if (AH5212(ah)->ah_tpcEnabled) { txPower = ar5416GetTxRatePower(ah, txRate0, ahp->ah_tx_chainmask, txPower, AH_FALSE); } ads->ds_ctl0 = (pktLen & AR_FrameLen) | (txPower << AR_XmitPower_S) | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0) ; ads->ds_ctl1 = (type << AR_FrameType_S) | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0) ; ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0) | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0) ; ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S) ; ads->ds_ctl4 = 0; ads->ds_ctl5 = 0; ads->ds_ctl6 = 0; ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0) | SM(ahp->ah_tx_chainmask, AR_ChainSel1) | SM(ahp->ah_tx_chainmask, AR_ChainSel2) | SM(ahp->ah_tx_chainmask, AR_ChainSel3) ; ads->ds_ctl8 = SM(0, AR_AntCtl0); ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); if (keyIx != HAL_TXKEYIX_INVALID) { /* XXX validate key index */ ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); ads->ds_ctl0 |= AR_DestIdxValid; ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); } if (flags & RTSCTS) { if (!isValidTxRate(rtsctsRate)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid rts/cts rate 0x%x\n", __func__, rtsctsRate); return AH_FALSE; } /* XXX validate rtsctsDuration */ ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0) ; ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S); } /* * Set the TX antenna to 0 for Kite * To preserve existing behaviour, also set the TPC bits to 0; * when TPC is enabled these should be filled in appropriately. * * XXX TODO: when doing TPC, set the TX power up appropriately? */ if (AR_SREV_KITE(ah)) { ads->ds_ctl8 = SM(0, AR_AntCtl0); ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); } return AH_TRUE; #undef RTSCTS } HAL_BOOL ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds, u_int txRate1, u_int txTries1, u_int txRate2, u_int txTries2, u_int txRate3, u_int txTries3) { struct ar5416_desc *ads = AR5416DESC(ds); if (txTries1) { HALASSERT(isValidTxRate(txRate1)); ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1); ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S); } if (txTries2) { HALASSERT(isValidTxRate(txRate2)); ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2); ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S); } if (txTries3) { HALASSERT(isValidTxRate(txRate3)); ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3); ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S); } return AH_TRUE; } HAL_BOOL ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds, HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId, u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg, const struct ath_desc *ds0) { struct ar5416_desc *ads = AR5416DESC(ds); uint32_t segLen = segLenList[0]; HALASSERT((segLen &~ AR_BufLen) == 0); ds->ds_data = bufAddrList[0]; if (firstSeg) { /* * First descriptor, don't clobber xmit control data * setup by ar5212SetupTxDesc. */ ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); } else if (lastSeg) { /* !firstSeg && lastSeg */ /* * Last descriptor in a multi-descriptor frame, * copy the multi-rate transmit parameters from * the first frame for processing on completion. */ ads->ds_ctl1 = segLen; #ifdef AH_NEED_DESC_SWAP ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) & AR_TxIntrReq; ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); /* ctl6 - we only need encrtype; the rest are blank */ ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); #else ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; /* ctl6 - we only need encrtype; the rest are blank */ ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; #endif } else { /* !firstSeg && !lastSeg */ /* * Intermediate descriptor in a multi-descriptor frame. */ #ifdef AH_NEED_DESC_SWAP ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0) & AR_TxIntrReq; ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType); #else ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq; ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType; #endif ads->ds_ctl1 = segLen | AR_TxMore; ads->ds_ctl2 = 0; ads->ds_ctl3 = 0; } /* XXX only on last descriptor? */ OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status)); return AH_TRUE; } /* * NB: cipher is no longer used, it's calculated. */ HAL_BOOL ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds, HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int pktLen, u_int hdrLen, HAL_PKT_TYPE type, u_int keyIx, HAL_CIPHER cipher, uint8_t delims, HAL_BOOL firstSeg, HAL_BOOL lastSeg, HAL_BOOL lastAggr) { struct ar5416_desc *ads = AR5416DESC(ds); uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); struct ath_hal_5416 *ahp = AH5416(ah); u_int segLen = segLenList[0]; int isaggr = 0; uint32_t last_aggr = 0; (void) hdrLen; (void) ah; HALASSERT((segLen &~ AR_BufLen) == 0); ds->ds_data = bufAddrList[0]; HALASSERT(isValidPktType(type)); if (type == HAL_PKT_TYPE_AMPDU) { type = HAL_PKT_TYPE_NORMAL; isaggr = 1; if (lastAggr == AH_FALSE) last_aggr = AR_MoreAggr; } /* * Since this function is called before any of the other * descriptor setup functions (at least in this particular * 802.11n aggregation implementation), always bzero() the * descriptor. Previously this would be done for all but * the first segment. * XXX TODO: figure out why; perhaps I'm using this slightly * XXX incorrectly. */ OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ); /* * Note: VEOL should only be for the last descriptor in the chain. */ ads->ds_ctl0 = (pktLen & AR_FrameLen); /* * For aggregates: * + IsAggr must be set for all descriptors of all subframes of * the aggregate * + MoreAggr must be set for all descriptors of all subframes * of the aggregate EXCEPT the last subframe; * + MoreAggr must be _CLEAR_ for all descrpitors of the last * subframe of the aggregate. */ ads->ds_ctl1 = (type << AR_FrameType_S) | (isaggr ? (AR_IsAggr | last_aggr) : 0); ads->ds_ctl2 = 0; ads->ds_ctl3 = 0; if (keyIx != HAL_TXKEYIX_INVALID) { /* XXX validate key index */ ads->ds_ctl1 |= SM(keyIx, AR_DestIdx); ads->ds_ctl0 |= AR_DestIdxValid; } ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType); if (isaggr) { ads->ds_ctl6 |= SM(delims, AR_PadDelim); } if (firstSeg) { ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); } else if (lastSeg) { /* !firstSeg && lastSeg */ ads->ds_ctl0 = 0; ads->ds_ctl1 |= segLen; } else { /* !firstSeg && !lastSeg */ /* * Intermediate descriptor in a multi-descriptor frame. */ ads->ds_ctl0 = 0; ads->ds_ctl1 |= segLen | AR_TxMore; } ds_txstatus[0] = ds_txstatus[1] = 0; ds_txstatus[9] &= ~AR_TxDone; return AH_TRUE; } HAL_BOOL ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen, u_int flags, u_int txPower, u_int txRate0, u_int txTries0, u_int antMode, u_int rtsctsRate, u_int rtsctsDuration) { #define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA) struct ar5416_desc *ads = AR5416DESC(ds); struct ath_hal_5212 *ahp = AH5212(ah); HALASSERT(txTries0 != 0); HALASSERT(isValidTxRate(txRate0)); HALASSERT((flags & RTSCTS) != RTSCTS); /* XXX validate antMode */ txPower = (txPower + ahp->ah_txPowerIndexOffset ); if(txPower > 63) txPower=63; ads->ds_ctl0 |= (txPower << AR_XmitPower_S) | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0) | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0); ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0); ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0); ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S); ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0) | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1) | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2) | SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3); /* NB: no V1 WAR */ ads->ds_ctl8 = SM(0, AR_AntCtl0); ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); ads->ds_ctl6 &= ~(0xffff); ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); if (flags & RTSCTS) { /* XXX validate rtsctsDuration */ ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0) | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0); } /* * Set the TX antenna to 0 for Kite * To preserve existing behaviour, also set the TPC bits to 0; * when TPC is enabled these should be filled in appropriately. */ if (AR_SREV_KITE(ah)) { ads->ds_ctl8 = SM(0, AR_AntCtl0); ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1); ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2); ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3); } return AH_TRUE; #undef RTSCTS } HAL_BOOL ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds, const struct ath_desc *ds0) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_ctl1 &= ~AR_MoreAggr; ads->ds_ctl6 &= ~AR_PadDelim; /* hack to copy rate info to last desc for later processing */ #ifdef AH_NEED_DESC_SWAP ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2); ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3); #else ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; #endif return AH_TRUE; } #ifdef AH_NEED_DESC_SWAP /* Swap transmit descriptor */ static __inline void ar5416SwapTxDesc(struct ath_desc *ds) { ds->ds_data = __bswap32(ds->ds_data); ds->ds_ctl0 = __bswap32(ds->ds_ctl0); ds->ds_ctl1 = __bswap32(ds->ds_ctl1); ds->ds_hw[0] = __bswap32(ds->ds_hw[0]); ds->ds_hw[1] = __bswap32(ds->ds_hw[1]); ds->ds_hw[2] = __bswap32(ds->ds_hw[2]); ds->ds_hw[3] = __bswap32(ds->ds_hw[3]); } #endif /* * Processing of HW TX descriptor. */ HAL_STATUS ar5416ProcTxDesc(struct ath_hal *ah, struct ath_desc *ds, struct ath_tx_status *ts) { struct ar5416_desc *ads = AR5416DESC(ds); uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); #ifdef AH_NEED_DESC_SWAP if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0) return HAL_EINPROGRESS; ar5416SwapTxDesc(ds); #else if ((ds_txstatus[9] & AR_TxDone) == 0) return HAL_EINPROGRESS; #endif /* Update software copies of the HW status */ ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum); ts->ts_tstamp = AR_SendTimestamp(ds_txstatus); ts->ts_tid = MS(ds_txstatus[9], AR_TxTid); ts->ts_status = 0; if (ds_txstatus[1] & AR_ExcessiveRetries) ts->ts_status |= HAL_TXERR_XRETRY; if (ds_txstatus[1] & AR_Filtered) ts->ts_status |= HAL_TXERR_FILT; if (ds_txstatus[1] & AR_FIFOUnderrun) ts->ts_status |= HAL_TXERR_FIFO; if (ds_txstatus[9] & AR_TxOpExceeded) ts->ts_status |= HAL_TXERR_XTXOP; if (ds_txstatus[1] & AR_TxTimerExpired) ts->ts_status |= HAL_TXERR_TIMER_EXPIRED; ts->ts_flags = 0; if (ds_txstatus[0] & AR_TxBaStatus) { ts->ts_flags |= HAL_TX_BA; ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus); ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus); } if (ds->ds_ctl1 & AR_IsAggr) ts->ts_flags |= HAL_TX_AGGR; if (ds_txstatus[1] & AR_DescCfgErr) ts->ts_flags |= HAL_TX_DESC_CFG_ERR; if (ds_txstatus[1] & AR_TxDataUnderrun) ts->ts_flags |= HAL_TX_DATA_UNDERRUN; if (ds_txstatus[1] & AR_TxDelimUnderrun) ts->ts_flags |= HAL_TX_DELIM_UNDERRUN; /* * Extract the transmit rate used and mark the rate as * ``alternate'' if it wasn't the series 0 rate. */ ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx); switch (ts->ts_finaltsi) { case 0: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0); break; case 1: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1); break; case 2: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2); break; case 3: ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3); break; } ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined); ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00); ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01); ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02); ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10); ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11); ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12); ts->ts_evm0 = AR_TxEVM0(ds_txstatus); ts->ts_evm1 = AR_TxEVM1(ds_txstatus); ts->ts_evm2 = AR_TxEVM2(ds_txstatus); ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt); ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt); /* * The retry count has the number of un-acked tries for the * final series used. When doing multi-rate retry we must * fixup the retry count by adding in the try counts for * each series that was fully-processed. Beware that this * takes values from the try counts in the final descriptor. * These are not required by the hardware. We assume they * are placed there by the driver as otherwise we have no * access and the driver can't do the calculation because it * doesn't know the descriptor format. */ switch (ts->ts_finaltsi) { case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2); case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1); case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0); } /* * These fields are not used. Zero these to preserve compatability * with existing drivers. */ ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt); ts->ts_antenna = 0; /* We don't switch antennas on Owl*/ /* handle tx trigger level changes internally */ if ((ts->ts_status & HAL_TXERR_FIFO) || (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN))) ar5212UpdateTxTrigLevel(ah, AH_TRUE); return HAL_OK; } HAL_BOOL ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu) { struct ath_hal_5416 *ahp = AH5416(ah); if (tu > 0xFFFF) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n", __func__, tu); /* restore default handling */ ahp->ah_globaltxtimeout = (u_int) -1; return AH_FALSE; } OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); ahp->ah_globaltxtimeout = tu; return AH_TRUE; } u_int ar5416GetGlobalTxTimeout(struct ath_hal *ah) { return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT); } #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) static const u_int8_t baDurationDelta[] = { 24, // 0: BPSK 12, // 1: QPSK 1/2 12, // 2: QPSK 3/4 4, // 3: 16-QAM 1/2 4, // 4: 16-QAM 3/4 4, // 5: 64-QAM 2/3 4, // 6: 64-QAM 3/4 4, // 7: 64-QAM 5/6 24, // 8: BPSK 12, // 9: QPSK 1/2 12, // 10: QPSK 3/4 4, // 11: 16-QAM 1/2 4, // 12: 16-QAM 3/4 4, // 13: 64-QAM 2/3 4, // 14: 64-QAM 3/4 4, // 15: 64-QAM 5/6 }; void ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds, u_int durUpdateEn, u_int rtsctsRate, HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags) { struct ar5416_desc *ads = AR5416DESC(ds); uint32_t ds_ctl0; HALASSERT(nseries == 4); (void)nseries; /* * Only one of RTS and CTS enable must be set. * If a frame has both set, just do RTS protection - * that's enough to satisfy legacy protection. */ if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { ds_ctl0 = ads->ds_ctl0; if (flags & HAL_TXDESC_RTSENA) { ds_ctl0 &= ~AR_CTSEnable; ds_ctl0 |= AR_RTSEnable; } else { ds_ctl0 &= ~AR_RTSEnable; ds_ctl0 |= AR_CTSEnable; } ads->ds_ctl0 = ds_ctl0; } else { ads->ds_ctl0 = (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable)); } ads->ds_ctl2 = set11nTries(series, 0) | set11nTries(series, 1) | set11nTries(series, 2) | set11nTries(series, 3) | (durUpdateEn ? AR_DurUpdateEn : 0); ads->ds_ctl3 = set11nRate(series, 0) | set11nRate(series, 1) | set11nRate(series, 2) | set11nRate(series, 3); ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0) | set11nPktDurRTSCTS(series, 1); ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2) | set11nPktDurRTSCTS(series, 3); ads->ds_ctl7 = set11nRateFlags(series, 0) | set11nRateFlags(series, 1) | set11nRateFlags(series, 2) | set11nRateFlags(series, 3) | SM(rtsctsRate, AR_RTSCTSRate); /* * Doing per-packet TPC - update the TX power for the first * field; program in the other series. */ if (AH5212(ah)->ah_tpcEnabled) { uint32_t ds_ctl0; uint16_t txPower; /* Modify the tx power field for rate 0 */ txPower = ar5416GetTxRatePower(ah, series[0].Rate, series[0].ChSel, series[0].tx_power_cap, !! (series[0].RateFlags & HAL_RATESERIES_2040)); ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower; ds_ctl0 |= (txPower << AR_XmitPower_S); ads->ds_ctl0 = ds_ctl0; /* * Override the whole descriptor field for each TX power. * * This will need changing if we ever support antenna control * programming. */ txPower = ar5416GetTxRatePower(ah, series[1].Rate, series[1].ChSel, series[1].tx_power_cap, !! (series[1].RateFlags & HAL_RATESERIES_2040)); ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1); txPower = ar5416GetTxRatePower(ah, series[2].Rate, series[2].ChSel, series[2].tx_power_cap, !! (series[2].RateFlags & HAL_RATESERIES_2040)); ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2); txPower = ar5416GetTxRatePower(ah, series[3].Rate, series[3].ChSel, series[3].tx_power_cap, !! (series[3].RateFlags & HAL_RATESERIES_2040)); ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3); } } /* * Note: this should be called before calling ar5416SetBurstDuration() * (if it is indeed called) in order to ensure that the burst duration * is correctly updated with the BA delta workaround. */ void ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen, u_int numDelims) { struct ar5416_desc *ads = AR5416DESC(ds); uint32_t flags; uint32_t burstDur; uint8_t rate; ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim); ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { /* * XXX It'd be nice if I were passed in the rate scenario * at this point.. */ rate = MS(ads->ds_ctl3, AR_XmitRate0); flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable); /* * WAR - MAC assumes normal ACK time instead of * block ACK while computing packet duration. * Add this delta to the burst duration in the descriptor. */ if (flags && (ads->ds_ctl1 & AR_IsAggr)) { burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; ads->ds_ctl2 &= ~(AR_BurstDur); ads->ds_ctl2 |= SM(burstDur, AR_BurstDur); } } } void ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims) { struct ar5416_desc *ads = AR5416DESC(ds); uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads); ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); ads->ds_ctl6 &= ~AR_PadDelim; ads->ds_ctl6 |= SM(numDelims, AR_PadDelim); ads->ds_ctl6 &= ~AR_AggrLen; /* * Clear the TxDone status here, may need to change * func name to reflect this */ ds_txstatus[9] &= ~AR_TxDone; } void ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_ctl1 |= AR_IsAggr; ads->ds_ctl1 &= ~AR_MoreAggr; ads->ds_ctl6 &= ~AR_PadDelim; } void ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr); ads->ds_ctl6 &= ~AR_PadDelim; ads->ds_ctl6 &= ~AR_AggrLen; } void ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds, u_int vmf) { struct ar5416_desc *ads = AR5416DESC(ds); if (vmf) ads->ds_ctl0 |= AR_VirtMoreFrag; else ads->ds_ctl0 &= ~AR_VirtMoreFrag; } /* * Program the burst duration, with the included BA delta if it's * applicable. */ void ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds, u_int burstDuration) { struct ar5416_desc *ads = AR5416DESC(ds); uint32_t burstDur = 0; uint8_t rate; if (! AR_SREV_MERLIN_10_OR_LATER(ah)) { /* * XXX It'd be nice if I were passed in the rate scenario * at this point.. */ rate = MS(ads->ds_ctl3, AR_XmitDataTries0); /* * WAR - MAC assumes normal ACK time instead of * block ACK while computing packet duration. * Add this delta to the burst duration in the descriptor. */ if (ads->ds_ctl1 & AR_IsAggr) { burstDur = baDurationDelta[HT_RC_2_MCS(rate)]; } } ads->ds_ctl2 &= ~AR_BurstDur; ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur); } /* * Retrieve the rate table from the given TX completion descriptor */ HAL_BOOL ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries) { const struct ar5416_desc *ads = AR5416DESC_CONST(ds0); rates[0] = MS(ads->ds_ctl3, AR_XmitRate0); rates[1] = MS(ads->ds_ctl3, AR_XmitRate1); rates[2] = MS(ads->ds_ctl3, AR_XmitRate2); rates[3] = MS(ads->ds_ctl3, AR_XmitRate3); tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0); tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1); tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2); tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3); return AH_TRUE; } /* * TX queue management routines - AR5416 and later chipsets */ /* * Allocate and initialize a tx DCU/QCU combination. */ int ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type, const HAL_TXQ_INFO *qInfo) { struct ath_hal_5212 *ahp = AH5212(ah); HAL_TX_QUEUE_INFO *qi; HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; int q, defqflags; /* by default enable OK+ERR+DESC+URN interrupts */ defqflags = HAL_TXQ_TXOKINT_ENABLE | HAL_TXQ_TXERRINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE | HAL_TXQ_TXURNINT_ENABLE; /* XXX move queue assignment to driver */ switch (type) { case HAL_TX_QUEUE_BEACON: q = pCap->halTotalQueues-1; /* highest priority */ defqflags |= HAL_TXQ_DBA_GATED | HAL_TXQ_CBR_DIS_QEMPTY | HAL_TXQ_ARB_LOCKOUT_GLOBAL | HAL_TXQ_BACKOFF_DISABLE; break; case HAL_TX_QUEUE_CAB: q = pCap->halTotalQueues-2; /* next highest priority */ defqflags |= HAL_TXQ_DBA_GATED | HAL_TXQ_CBR_DIS_QEMPTY | HAL_TXQ_CBR_DIS_BEMPTY | HAL_TXQ_ARB_LOCKOUT_GLOBAL | HAL_TXQ_BACKOFF_DISABLE; break; case HAL_TX_QUEUE_PSPOLL: q = 1; /* lowest priority */ defqflags |= HAL_TXQ_DBA_GATED | HAL_TXQ_CBR_DIS_QEMPTY | HAL_TXQ_CBR_DIS_BEMPTY | HAL_TXQ_ARB_LOCKOUT_GLOBAL | HAL_TXQ_BACKOFF_DISABLE; break; case HAL_TX_QUEUE_UAPSD: q = pCap->halTotalQueues-3; /* nextest highest priority */ if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no available UAPSD tx queue\n", __func__); return -1; } break; case HAL_TX_QUEUE_DATA: for (q = 0; q < pCap->halTotalQueues; q++) if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) break; if (q == pCap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no available tx queue\n", __func__); return -1; } break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad tx queue type %u\n", __func__, type); return -1; } HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); qi = &ahp->ah_txq[q]; if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n", __func__, q); return -1; } OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO)); qi->tqi_type = type; if (qInfo == AH_NULL) { qi->tqi_qflags = defqflags; qi->tqi_aifs = INIT_AIFS; qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */ qi->tqi_cwmax = INIT_CWMAX; qi->tqi_shretry = INIT_SH_RETRY; qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_physCompBuf = 0; } else { qi->tqi_physCompBuf = qInfo->tqi_compBuf; (void) ar5212SetTxQueueProps(ah, q, qInfo); } /* NB: must be followed by ar5212ResetTxQueue */ return q; } /* * Update the h/w interrupt registers to reflect a tx q's configuration. */ static void setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi) { struct ath_hal_5212 *ahp = AH5212(ah); HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__, ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask); OS_REG_WRITE(ah, AR_IMR_S0, SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK) | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC) ); OS_REG_WRITE(ah, AR_IMR_S1, SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR) | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL) ); OS_REG_RMW_FIELD(ah, AR_IMR_S2, AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask); } /* * Set the retry, aifs, cwmin/max, readyTime regs for specified queue * Assumes: * phwChannel has been set to point to the current channel */ #define TU_TO_USEC(_tu) ((_tu) << 10) HAL_BOOL ar5416ResetTxQueue(struct ath_hal *ah, u_int q) { struct ath_hal_5212 *ahp = AH5212(ah); HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; HAL_TX_QUEUE_INFO *qi; uint32_t cwMin, chanCwMin, qmisc, dmisc; if (q >= pCap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n", __func__, q); return AH_TRUE; /* XXX??? */ } HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q); if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) { /* * Select cwmin according to channel type. * NB: chan can be NULL during attach */ if (chan && IEEE80211_IS_CHAN_B(chan)) chanCwMin = INIT_CWMIN_11B; else chanCwMin = INIT_CWMIN; /* make sure that the CWmin is of the form (2^n - 1) */ for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1) ; } else cwMin = qi->tqi_cwmin; /* set cwMin/Max and AIFS values */ OS_REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN) | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); /* Set retry limit values */ OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG) | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH) ); /* NB: always enable early termination on the QCU */ qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP); /* NB: always enable DCU to wait for next fragment from QCU */ dmisc = AR_D_MISC_FRAG_WAIT_EN; /* Enable exponential backoff window */ dmisc |= AR_D_MISC_BKOFF_PERSISTENCE; /* * The chip reset default is to use a DCU backoff threshold of 0x2. * Restore this when programming the DCU MISC register. */ dmisc |= 0x2; /* multiqueue support */ if (qi->tqi_cbrPeriod) { OS_REG_WRITE(ah, AR_QCBRCFG(q), SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL) | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH)); qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR; if (qi->tqi_cbrOverflowLimit) qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT; } if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) { OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) | AR_Q_RDYTIMECFG_ENA); } OS_REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); if (qi->tqi_readyTime && (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE)) qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY; if (qi->tqi_qflags & HAL_TXQ_DBA_GATED) qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED; if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) { /* * These are meangingful only when not scheduled asap. */ if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY) qmisc |= AR_Q_MISC_CBR_INCR_DIS0; else qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0; if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY) qmisc |= AR_Q_MISC_CBR_INCR_DIS1; else qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1; } if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) dmisc |= AR_D_MISC_FRAG_BKOFF_EN; if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL) dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL); else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA) dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR, AR_D_MISC_ARB_LOCKOUT_CNTRL); if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL) dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE, AR_D_MISC_VIR_COL_HANDLING); if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS) dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS; /* * Fillin type-dependent bits. Most of this can be * removed by specifying the queue parameters in the * driver; it's here for backwards compatibility. */ switch (qi->tqi_type) { case HAL_TX_QUEUE_BEACON: /* beacon frames */ qmisc |= AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1; dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS; break; case HAL_TX_QUEUE_CAB: /* CAB frames */ /* * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY, * There is an issue with the CAB Queue * not properly refreshing the Tx descriptor if * the TXE clear setting is used. */ qmisc |= AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0; HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n", __func__, qi->tqi_readyTime); if (qi->tqi_readyTime) { HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: using tqi_readyTime\n", __func__); OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) | AR_Q_RDYTIMECFG_ENA); } else { int value; /* * NB: don't set default ready time if driver * has explicitly specified something. This is * here solely for backwards compatibility. */ /* * XXX for now, hard-code a CAB interval of 70% * XXX of the total beacon interval. * * XXX This keeps Merlin and later based MACs * XXX quite a bit happier (stops stuck beacons, * XXX which I gather is because of such a long * XXX cabq time.) */ value = (ahp->ah_beaconInterval * 50 / 100) - ah->ah_config.ah_additional_swba_backoff - ah->ah_config.ah_sw_beacon_response_time + ah->ah_config.ah_dma_beacon_response_time; /* * XXX Ensure it isn't too low - nothing lower * XXX than 10 TU */ if (value < 10) value = 10; HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: defaulting to rdytime = %d uS\n", __func__, value); OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) | AR_Q_RDYTIMECFG_ENA); } dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL); break; case HAL_TX_QUEUE_PSPOLL: qmisc |= AR_Q_MISC_CBR_INCR_DIS1; break; case HAL_TX_QUEUE_UAPSD: dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS; break; default: /* NB: silence compiler */ break; } OS_REG_WRITE(ah, AR_QMISC(q), qmisc); OS_REG_WRITE(ah, AR_DMISC(q), dmisc); /* Setup compression scratchpad buffer */ /* * XXX: calling this asynchronously to queue operation can * cause unexpected behavior!!! */ if (qi->tqi_physCompBuf) { HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA || qi->tqi_type == HAL_TX_QUEUE_UAPSD); OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q)); OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf); OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024); OS_REG_WRITE(ah, AR_Q0_MISC + 4*q, OS_REG_READ(ah, AR_Q0_MISC + 4*q) | AR_Q_MISC_QCU_COMP_EN); } /* * Always update the secondary interrupt mask registers - this * could be a new queue getting enabled in a running system or * hw getting re-initialized during a reset! * * Since we don't differentiate between tx interrupts corresponding * to individual queues - secondary tx mask regs are always unmasked; * tx interrupts are enabled/disabled for all queues collectively * using the primary mask reg */ if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) ahp->ah_txOkInterruptMask |= 1 << q; else ahp->ah_txOkInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) ahp->ah_txErrInterruptMask |= 1 << q; else ahp->ah_txErrInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE) ahp->ah_txDescInterruptMask |= 1 << q; else ahp->ah_txDescInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) ahp->ah_txEolInterruptMask |= 1 << q; else ahp->ah_txEolInterruptMask &= ~(1 << q); if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) ahp->ah_txUrnInterruptMask |= 1 << q; else ahp->ah_txUrnInterruptMask &= ~(1 << q); setTxQInterrupts(ah, qi); return AH_TRUE; } #undef TU_TO_USEC