/*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "t4_ioctl.h" #include "t4_l2t.h" /* T4 bus driver interface */ static int t4_probe(device_t); static int t4_attach(device_t); static int t4_detach(device_t); static device_method_t t4_methods[] = { DEVMETHOD(device_probe, t4_probe), DEVMETHOD(device_attach, t4_attach), DEVMETHOD(device_detach, t4_detach), DEVMETHOD_END }; static driver_t t4_driver = { "t4nex", t4_methods, sizeof(struct adapter) }; /* T4 port (cxgbe) interface */ static int cxgbe_probe(device_t); static int cxgbe_attach(device_t); static int cxgbe_detach(device_t); static device_method_t cxgbe_methods[] = { DEVMETHOD(device_probe, cxgbe_probe), DEVMETHOD(device_attach, cxgbe_attach), DEVMETHOD(device_detach, cxgbe_detach), { 0, 0 } }; static driver_t cxgbe_driver = { "cxgbe", cxgbe_methods, sizeof(struct port_info) }; static d_ioctl_t t4_ioctl; static d_open_t t4_open; static d_close_t t4_close; static struct cdevsw t4_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = t4_open, .d_close = t4_close, .d_ioctl = t4_ioctl, .d_name = "t4nex", }; /* ifnet + media interface */ static void cxgbe_init(void *); static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); static int cxgbe_transmit(struct ifnet *, struct mbuf *); static void cxgbe_qflush(struct ifnet *); static int cxgbe_media_change(struct ifnet *); static void cxgbe_media_status(struct ifnet *, struct ifmediareq *); MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4 Ethernet driver and services"); /* * Correct lock order when you need to acquire multiple locks is t4_list_lock, * then ADAPTER_LOCK, then t4_uld_list_lock. */ static struct mtx t4_list_lock; static SLIST_HEAD(, adapter) t4_list; #ifdef TCP_OFFLOAD static struct mtx t4_uld_list_lock; static SLIST_HEAD(, uld_info) t4_uld_list; #endif /* * Tunables. See tweak_tunables() too. */ /* * Number of queues for tx and rx, 10G and 1G, NIC and offload. */ #define NTXQ_10G 16 static int t4_ntxq10g = -1; TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g); #define NRXQ_10G 8 static int t4_nrxq10g = -1; TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g); #define NTXQ_1G 4 static int t4_ntxq1g = -1; TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g); #define NRXQ_1G 2 static int t4_nrxq1g = -1; TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g); #ifdef TCP_OFFLOAD #define NOFLDTXQ_10G 8 static int t4_nofldtxq10g = -1; TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g); #define NOFLDRXQ_10G 2 static int t4_nofldrxq10g = -1; TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g); #define NOFLDTXQ_1G 2 static int t4_nofldtxq1g = -1; TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g); #define NOFLDRXQ_1G 1 static int t4_nofldrxq1g = -1; TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g); #endif /* * Holdoff parameters for 10G and 1G ports. */ #define TMR_IDX_10G 1 static int t4_tmr_idx_10g = TMR_IDX_10G; TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g); #define PKTC_IDX_10G (-1) static int t4_pktc_idx_10g = PKTC_IDX_10G; TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g); #define TMR_IDX_1G 1 static int t4_tmr_idx_1g = TMR_IDX_1G; TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g); #define PKTC_IDX_1G (-1) static int t4_pktc_idx_1g = PKTC_IDX_1G; TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g); /* * Size (# of entries) of each tx and rx queue. */ static unsigned int t4_qsize_txq = TX_EQ_QSIZE; TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq); static unsigned int t4_qsize_rxq = RX_IQ_QSIZE; TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq); /* * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). */ static int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types); /* * Configuration file. */ static char t4_cfg_file[32] = "default"; TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file)); /* * ASIC features that will be used. Disable the ones you don't want so that the * chip resources aren't wasted on features that will not be used. */ static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed); static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC; TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed); static int t4_toecaps_allowed = -1; TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed); static int t4_rdmacaps_allowed = 0; TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed); static int t4_iscsicaps_allowed = 0; TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed); static int t4_fcoecaps_allowed = 0; TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed); struct intrs_and_queues { int intr_type; /* INTx, MSI, or MSI-X */ int nirq; /* Number of vectors */ int intr_flags; int ntxq10g; /* # of NIC txq's for each 10G port */ int nrxq10g; /* # of NIC rxq's for each 10G port */ int ntxq1g; /* # of NIC txq's for each 1G port */ int nrxq1g; /* # of NIC rxq's for each 1G port */ #ifdef TCP_OFFLOAD int nofldtxq10g; /* # of TOE txq's for each 10G port */ int nofldrxq10g; /* # of TOE rxq's for each 10G port */ int nofldtxq1g; /* # of TOE txq's for each 1G port */ int nofldrxq1g; /* # of TOE rxq's for each 1G port */ #endif }; struct filter_entry { uint32_t valid:1; /* filter allocated and valid */ uint32_t locked:1; /* filter is administratively locked */ uint32_t pending:1; /* filter action is pending firmware reply */ uint32_t smtidx:8; /* Source MAC Table index for smac */ struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ struct t4_filter_specification fs; }; enum { XGMAC_MTU = (1 << 0), XGMAC_PROMISC = (1 << 1), XGMAC_ALLMULTI = (1 << 2), XGMAC_VLANEX = (1 << 3), XGMAC_UCADDR = (1 << 4), XGMAC_MCADDRS = (1 << 5), XGMAC_ALL = 0xffff }; static int map_bars(struct adapter *); static void setup_memwin(struct adapter *); static int cfg_itype_and_nqueues(struct adapter *, int, int, struct intrs_and_queues *); static int prep_firmware(struct adapter *); static int upload_config_file(struct adapter *, const struct firmware *, uint32_t *, uint32_t *); static int partition_resources(struct adapter *, const struct firmware *); static int get_params__pre_init(struct adapter *); static int get_params__post_init(struct adapter *); static void t4_set_desc(struct adapter *); static void build_medialist(struct port_info *); static int update_mac_settings(struct port_info *, int); static int cxgbe_init_locked(struct port_info *); static int cxgbe_init_synchronized(struct port_info *); static int cxgbe_uninit_locked(struct port_info *); static int cxgbe_uninit_synchronized(struct port_info *); static int adapter_full_init(struct adapter *); static int adapter_full_uninit(struct adapter *); static int port_full_init(struct port_info *); static int port_full_uninit(struct port_info *); static void quiesce_eq(struct adapter *, struct sge_eq *); static void quiesce_iq(struct adapter *, struct sge_iq *); static void quiesce_fl(struct adapter *, struct sge_fl *); static int t4_alloc_irq(struct adapter *, struct irq *, int rid, driver_intr_t *, void *, char *); static int t4_free_irq(struct adapter *, struct irq *); static void reg_block_dump(struct adapter *, uint8_t *, unsigned int, unsigned int); static void t4_get_regs(struct adapter *, struct t4_regdump *, uint8_t *); static void cxgbe_tick(void *); static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t); static int cpl_not_handled(struct sge_iq *, const struct rss_header *, struct mbuf *); static int an_not_handled(struct sge_iq *, const struct rsp_ctrl *); static int t4_sysctls(struct adapter *); static int cxgbe_sysctls(struct port_info *); static int sysctl_int_array(SYSCTL_HANDLER_ARGS); static int sysctl_bitfield(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); #ifdef SBUF_DRAIN static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_devlog(SYSCTL_HANDLER_ARGS); static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tids(SYSCTL_HANDLER_ARGS); static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); #endif static inline void txq_start(struct ifnet *, struct sge_txq *); static uint32_t fconf_to_mode(uint32_t); static uint32_t mode_to_fconf(uint32_t); static uint32_t fspec_to_fconf(struct t4_filter_specification *); static int get_filter_mode(struct adapter *, uint32_t *); static int set_filter_mode(struct adapter *, uint32_t); static inline uint64_t get_filter_hits(struct adapter *, uint32_t); static int get_filter(struct adapter *, struct t4_filter *); static int set_filter(struct adapter *, struct t4_filter *); static int del_filter(struct adapter *, struct t4_filter *); static void clear_filter(struct filter_entry *); static int set_filter_wr(struct adapter *, int); static int del_filter_wr(struct adapter *, int); static int filter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); static int get_sge_context(struct adapter *, struct t4_sge_context *); static int read_card_mem(struct adapter *, struct t4_mem_range *); #ifdef TCP_OFFLOAD static int toe_capability(struct port_info *, int); #endif static int t4_mod_event(module_t, int, void *); struct t4_pciids { uint16_t device; char *desc; } t4_pciids[] = { {0xa000, "Chelsio Terminator 4 FPGA"}, {0x4400, "Chelsio T440-dbg"}, {0x4401, "Chelsio T420-CR"}, {0x4402, "Chelsio T422-CR"}, {0x4403, "Chelsio T440-CR"}, {0x4404, "Chelsio T420-BCH"}, {0x4405, "Chelsio T440-BCH"}, {0x4406, "Chelsio T440-CH"}, {0x4407, "Chelsio T420-SO"}, {0x4408, "Chelsio T420-CX"}, {0x4409, "Chelsio T420-BT"}, {0x440a, "Chelsio T404-BT"}, }; #ifdef TCP_OFFLOAD /* * service_iq() has an iq and needs the fl. Offset of fl from the iq should be * exactly the same for both rxq and ofld_rxq. */ CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); #endif static int t4_probe(device_t dev) { int i; uint16_t v = pci_get_vendor(dev); uint16_t d = pci_get_device(dev); uint8_t f = pci_get_function(dev); if (v != PCI_VENDOR_ID_CHELSIO) return (ENXIO); /* Attach only to PF0 of the FPGA */ if (d == 0xa000 && f != 0) return (ENXIO); for (i = 0; i < ARRAY_SIZE(t4_pciids); i++) { if (d == t4_pciids[i].device) { device_set_desc(dev, t4_pciids[i].desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int t4_attach(device_t dev) { struct adapter *sc; int rc = 0, i, n10g, n1g, rqidx, tqidx; struct intrs_and_queues iaq; struct sge *s; #ifdef TCP_OFFLOAD int ofld_rqidx, ofld_tqidx; #endif sc = device_get_softc(dev); sc->dev = dev; pci_enable_busmaster(dev); if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { uint32_t v; pci_set_max_read_req(dev, 4096); v = pci_read_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, 2); v |= PCIM_EXP_CTL_RELAXED_ORD_ENABLE; pci_write_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, v, 2); } snprintf(sc->lockname, sizeof(sc->lockname), "%s", device_get_nameunit(dev)); mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); mtx_lock(&t4_list_lock); SLIST_INSERT_HEAD(&t4_list, sc, link); mtx_unlock(&t4_list_lock); mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); TAILQ_INIT(&sc->sfl); callout_init(&sc->sfl_callout, CALLOUT_MPSAFE); rc = map_bars(sc); if (rc != 0) goto done; /* error message displayed already */ /* * This is the real PF# to which we're attaching. Works from within PCI * passthrough environments too, where pci_get_function() could return a * different PF# depending on the passthrough configuration. We need to * use the real PF# in all our communication with the firmware. */ sc->pf = G_SOURCEPF(t4_read_reg(sc, A_PL_WHOAMI)); sc->mbox = sc->pf; memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); sc->an_handler = an_not_handled; for (i = 0; i < ARRAY_SIZE(sc->cpl_handler); i++) sc->cpl_handler[i] = cpl_not_handled; t4_register_cpl_handler(sc, CPL_SET_TCB_RPL, filter_rpl); /* Prepare the adapter for operation */ rc = -t4_prep_adapter(sc); if (rc != 0) { device_printf(dev, "failed to prepare adapter: %d.\n", rc); goto done; } /* * Do this really early, with the memory windows set up even before the * character device. The userland tool's register i/o and mem read * will work even in "recovery mode". */ setup_memwin(sc); sc->cdev = make_dev(&t4_cdevsw, device_get_unit(dev), UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); sc->cdev->si_drv1 = sc; /* Go no further if recovery mode has been requested. */ if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { device_printf(dev, "recovery mode.\n"); goto done; } /* Prepare the firmware for operation */ rc = prep_firmware(sc); if (rc != 0) goto done; /* error message displayed already */ rc = get_params__pre_init(sc); if (rc != 0) goto done; /* error message displayed already */ rc = t4_sge_init(sc); if (rc != 0) goto done; /* error message displayed already */ if (sc->flags & MASTER_PF) { /* get basic stuff going */ rc = -t4_fw_initialize(sc, sc->mbox); if (rc != 0) { device_printf(dev, "early init failed: %d.\n", rc); goto done; } } rc = get_params__post_init(sc); if (rc != 0) goto done; /* error message displayed already */ if (sc->flags & MASTER_PF) { /* final tweaks to some settings */ t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); t4_set_reg_field(sc, A_TP_PARA_REG3, F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 | F_TUNNELCNGDROP3, 0); t4_set_reg_field(sc, A_TP_PARA_REG5, V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET, V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET); } else { /* * XXX: Verify that we can live with whatever the master driver * has done so far, and hope that it doesn't change any global * setting from underneath us in the future. */ } t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &sc->filter_mode, 1, A_TP_VLAN_PRI_MAP); for (i = 0; i < NCHAN; i++) sc->params.tp.tx_modq[i] = i; rc = t4_create_dma_tag(sc); if (rc != 0) goto done; /* error message displayed already */ /* * First pass over all the ports - allocate VIs and initialize some * basic parameters like mac address, port type, etc. We also figure * out whether a port is 10G or 1G and use that information when * calculating how many interrupts to attempt to allocate. */ n10g = n1g = 0; for_each_port(sc, i) { struct port_info *pi; pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); sc->port[i] = pi; /* These must be set before t4_port_init */ pi->adapter = sc; pi->port_id = i; /* Allocate the vi and initialize parameters like mac addr */ rc = -t4_port_init(pi, sc->mbox, sc->pf, 0); if (rc != 0) { device_printf(dev, "unable to initialize port %d: %d\n", i, rc); free(pi, M_CXGBE); sc->port[i] = NULL; goto done; } snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", device_get_nameunit(dev), i); mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); if (is_10G_port(pi)) { n10g++; pi->tmr_idx = t4_tmr_idx_10g; pi->pktc_idx = t4_pktc_idx_10g; } else { n1g++; pi->tmr_idx = t4_tmr_idx_1g; pi->pktc_idx = t4_pktc_idx_1g; } pi->xact_addr_filt = -1; pi->qsize_rxq = t4_qsize_rxq; pi->qsize_txq = t4_qsize_txq; pi->dev = device_add_child(dev, "cxgbe", -1); if (pi->dev == NULL) { device_printf(dev, "failed to add device for port %d.\n", i); rc = ENXIO; goto done; } device_set_softc(pi->dev, pi); } /* * Interrupt type, # of interrupts, # of rx/tx queues, etc. */ rc = cfg_itype_and_nqueues(sc, n10g, n1g, &iaq); if (rc != 0) goto done; /* error message displayed already */ sc->intr_type = iaq.intr_type; sc->intr_count = iaq.nirq; sc->flags |= iaq.intr_flags; s = &sc->sge; s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g; s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g; s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */ s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ #ifdef TCP_OFFLOAD if (is_offload(sc)) { s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g; s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g; s->neq += s->nofldtxq + s->nofldrxq; s->niq += s->nofldrxq; s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); } #endif s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE, M_ZERO | M_WAITOK); s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, M_ZERO | M_WAITOK); s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, M_ZERO | M_WAITOK); s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, M_ZERO | M_WAITOK); s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, M_ZERO | M_WAITOK); sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, M_ZERO | M_WAITOK); t4_init_l2t(sc, M_WAITOK); /* * Second pass over the ports. This time we know the number of rx and * tx queues that each port should get. */ rqidx = tqidx = 0; #ifdef TCP_OFFLOAD ofld_rqidx = ofld_tqidx = 0; #endif for_each_port(sc, i) { struct port_info *pi = sc->port[i]; if (pi == NULL) continue; pi->first_rxq = rqidx; pi->first_txq = tqidx; if (is_10G_port(pi)) { pi->nrxq = iaq.nrxq10g; pi->ntxq = iaq.ntxq10g; } else { pi->nrxq = iaq.nrxq1g; pi->ntxq = iaq.ntxq1g; } rqidx += pi->nrxq; tqidx += pi->ntxq; #ifdef TCP_OFFLOAD if (is_offload(sc)) { pi->first_ofld_rxq = ofld_rqidx; pi->first_ofld_txq = ofld_tqidx; if (is_10G_port(pi)) { pi->nofldrxq = iaq.nofldrxq10g; pi->nofldtxq = iaq.nofldtxq10g; } else { pi->nofldrxq = iaq.nofldrxq1g; pi->nofldtxq = iaq.nofldtxq1g; } ofld_rqidx += pi->nofldrxq; ofld_tqidx += pi->nofldtxq; } #endif } rc = bus_generic_attach(dev); if (rc != 0) { device_printf(dev, "failed to attach all child ports: %d\n", rc); goto done; } device_printf(dev, "PCIe x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", sc->params.pci.width, sc->params.nports, sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); t4_set_desc(sc); done: if (rc != 0 && sc->cdev) { /* cdev was created and so cxgbetool works; recover that way. */ device_printf(dev, "error during attach, adapter is now in recovery mode.\n"); rc = 0; } if (rc != 0) t4_detach(dev); else t4_sysctls(sc); return (rc); } /* * Idempotent */ static int t4_detach(device_t dev) { struct adapter *sc; struct port_info *pi; int i, rc; sc = device_get_softc(dev); if (sc->flags & FULL_INIT_DONE) t4_intr_disable(sc); if (sc->cdev) { destroy_dev(sc->cdev); sc->cdev = NULL; } rc = bus_generic_detach(dev); if (rc) { device_printf(dev, "failed to detach child devices: %d\n", rc); return (rc); } for (i = 0; i < MAX_NPORTS; i++) { pi = sc->port[i]; if (pi) { t4_free_vi(pi->adapter, sc->mbox, sc->pf, 0, pi->viid); if (pi->dev) device_delete_child(dev, pi->dev); mtx_destroy(&pi->pi_lock); free(pi, M_CXGBE); } } if (sc->flags & FULL_INIT_DONE) adapter_full_uninit(sc); if (sc->flags & FW_OK) t4_fw_bye(sc, sc->mbox); if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) pci_release_msi(dev); if (sc->regs_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, sc->regs_res); if (sc->msix_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, sc->msix_res); if (sc->l2t) t4_free_l2t(sc->l2t); #ifdef TCP_OFFLOAD free(sc->sge.ofld_rxq, M_CXGBE); free(sc->sge.ofld_txq, M_CXGBE); #endif free(sc->irq, M_CXGBE); free(sc->sge.rxq, M_CXGBE); free(sc->sge.txq, M_CXGBE); free(sc->sge.ctrlq, M_CXGBE); free(sc->sge.iqmap, M_CXGBE); free(sc->sge.eqmap, M_CXGBE); free(sc->tids.ftid_tab, M_CXGBE); t4_destroy_dma_tag(sc); if (mtx_initialized(&sc->sc_lock)) { mtx_lock(&t4_list_lock); SLIST_REMOVE(&t4_list, sc, adapter, link); mtx_unlock(&t4_list_lock); mtx_destroy(&sc->sc_lock); } if (mtx_initialized(&sc->sfl_lock)) mtx_destroy(&sc->sfl_lock); bzero(sc, sizeof(*sc)); return (0); } static int cxgbe_probe(device_t dev) { char buf[128]; struct port_info *pi = device_get_softc(dev); snprintf(buf, sizeof(buf), "port %d", pi->port_id); device_set_desc_copy(dev, buf); return (BUS_PROBE_DEFAULT); } #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6) #define T4_CAP_ENABLE (T4_CAP) static int cxgbe_attach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct ifnet *ifp; /* Allocate an ifnet and set it up */ ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "Cannot allocate ifnet\n"); return (ENOMEM); } pi->ifp = ifp; ifp->if_softc = pi; callout_init(&pi->tick, CALLOUT_MPSAFE); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = cxgbe_init; ifp->if_ioctl = cxgbe_ioctl; ifp->if_transmit = cxgbe_transmit; ifp->if_qflush = cxgbe_qflush; ifp->if_capabilities = T4_CAP; #ifdef TCP_OFFLOAD if (is_offload(pi->adapter)) ifp->if_capabilities |= IFCAP_TOE4; #endif ifp->if_capenable = T4_CAP_ENABLE; ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | CSUM_UDP_IPV6 | CSUM_TCP_IPV6; /* Initialize ifmedia for this port */ ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, cxgbe_media_status); build_medialist(pi); pi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp, EVENTHANDLER_PRI_ANY); ether_ifattach(ifp, pi->hw_addr); #ifdef TCP_OFFLOAD if (is_offload(pi->adapter)) { device_printf(dev, "%d txq, %d rxq (NIC); %d txq, %d rxq (TOE)\n", pi->ntxq, pi->nrxq, pi->nofldtxq, pi->nofldrxq); } else #endif device_printf(dev, "%d txq, %d rxq\n", pi->ntxq, pi->nrxq); cxgbe_sysctls(pi); return (0); } static int cxgbe_detach(device_t dev) { struct port_info *pi = device_get_softc(dev); struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; /* Tell if_ioctl and if_init that the port is going away */ ADAPTER_LOCK(sc); SET_DOOMED(pi); wakeup(&sc->flags); while (IS_BUSY(sc)) mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); SET_BUSY(sc); ADAPTER_UNLOCK(sc); if (pi->vlan_c) EVENTHANDLER_DEREGISTER(vlan_config, pi->vlan_c); PORT_LOCK(pi); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; callout_stop(&pi->tick); PORT_UNLOCK(pi); callout_drain(&pi->tick); /* Let detach proceed even if these fail. */ cxgbe_uninit_synchronized(pi); port_full_uninit(pi); ifmedia_removeall(&pi->media); ether_ifdetach(pi->ifp); if_free(pi->ifp); ADAPTER_LOCK(sc); CLR_BUSY(sc); wakeup_one(&sc->flags); ADAPTER_UNLOCK(sc); return (0); } static void cxgbe_init(void *arg) { struct port_info *pi = arg; struct adapter *sc = pi->adapter; ADAPTER_LOCK(sc); cxgbe_init_locked(pi); /* releases adapter lock */ ADAPTER_LOCK_ASSERT_NOTOWNED(sc); } static int cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) { int rc = 0, mtu, flags; struct port_info *pi = ifp->if_softc; struct adapter *sc = pi->adapter; struct ifreq *ifr = (struct ifreq *)data; uint32_t mask; switch (cmd) { case SIOCSIFMTU: ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc) { fail: ADAPTER_UNLOCK(sc); return (rc); } mtu = ifr->ifr_mtu; if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) { rc = EINVAL; } else { ifp->if_mtu = mtu; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { t4_update_fl_bufsize(ifp); PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_MTU); PORT_UNLOCK(pi); } } ADAPTER_UNLOCK(sc); break; case SIOCSIFFLAGS: ADAPTER_LOCK(sc); if (IS_DOOMED(pi)) { rc = ENXIO; goto fail; } if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { flags = pi->if_flags; if ((ifp->if_flags ^ flags) & (IFF_PROMISC | IFF_ALLMULTI)) { if (IS_BUSY(sc)) { rc = EBUSY; goto fail; } PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_PROMISC | XGMAC_ALLMULTI); PORT_UNLOCK(pi); } ADAPTER_UNLOCK(sc); } else rc = cxgbe_init_locked(pi); pi->if_flags = ifp->if_flags; } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) rc = cxgbe_uninit_locked(pi); else ADAPTER_UNLOCK(sc); ADAPTER_LOCK_ASSERT_NOTOWNED(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* these two can be called with a mutex held :-( */ ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc) goto fail; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_MCADDRS); PORT_UNLOCK(pi); } ADAPTER_UNLOCK(sc); break; case SIOCSIFCAP: ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc) goto fail; mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); if (IFCAP_TSO4 & ifp->if_capenable && !(IFCAP_TXCSUM & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO4; if_printf(ifp, "tso4 disabled due to -txcsum.\n"); } } if (mask & IFCAP_TXCSUM_IPV6) { ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); if (IFCAP_TSO6 & ifp->if_capenable && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { ifp->if_capenable &= ~IFCAP_TSO6; if_printf(ifp, "tso6 disabled due to -txcsum6.\n"); } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_RXCSUM_IPV6) ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; /* * Note that we leave CSUM_TSO alone (it is always set). The * kernel takes both IFCAP_TSOx and CSUM_TSO into account before * sending a TSO request our way, so it's sufficient to toggle * IFCAP_TSOx only. */ if (mask & IFCAP_TSO4) { if (!(IFCAP_TSO4 & ifp->if_capenable) && !(IFCAP_TXCSUM & ifp->if_capenable)) { if_printf(ifp, "enable txcsum first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO4; } if (mask & IFCAP_TSO6) { if (!(IFCAP_TSO6 & ifp->if_capenable) && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { if_printf(ifp, "enable txcsum6 first.\n"); rc = EAGAIN; goto fail; } ifp->if_capenable ^= IFCAP_TSO6; } if (mask & IFCAP_LRO) { #if defined(INET) || defined(INET6) int i; struct sge_rxq *rxq; ifp->if_capenable ^= IFCAP_LRO; for_each_rxq(pi, i, rxq) { if (ifp->if_capenable & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; else rxq->iq.flags &= ~IQ_LRO_ENABLED; } #endif } #ifdef TCP_OFFLOAD if (mask & IFCAP_TOE) { int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; rc = toe_capability(pi, enable); if (rc != 0) goto fail; ifp->if_capenable ^= mask; } #endif if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_VLANEX); PORT_UNLOCK(pi); } } if (mask & IFCAP_VLAN_MTU) { ifp->if_capenable ^= IFCAP_VLAN_MTU; /* Need to find out how to disable auto-mtu-inflation */ } if (mask & IFCAP_VLAN_HWTSO) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if (mask & IFCAP_VLAN_HWCSUM) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; #ifdef VLAN_CAPABILITIES VLAN_CAPABILITIES(ifp); #endif ADAPTER_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: ifmedia_ioctl(ifp, ifr, &pi->media, cmd); break; default: rc = ether_ioctl(ifp, cmd, data); } return (rc); } static int cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) { struct port_info *pi = ifp->if_softc; struct adapter *sc = pi->adapter; struct sge_txq *txq = &sc->sge.txq[pi->first_txq]; struct buf_ring *br; int rc; M_ASSERTPKTHDR(m); if (__predict_false(pi->link_cfg.link_ok == 0)) { m_freem(m); return (ENETDOWN); } if (m->m_flags & M_FLOWID) txq += (m->m_pkthdr.flowid % pi->ntxq); br = txq->br; if (TXQ_TRYLOCK(txq) == 0) { struct sge_eq *eq = &txq->eq; /* * It is possible that t4_eth_tx finishes up and releases the * lock between the TRYLOCK above and the drbr_enqueue here. We * need to make sure that this mbuf doesn't just sit there in * the drbr. */ rc = drbr_enqueue(ifp, br, m); if (rc == 0 && callout_pending(&eq->tx_callout) == 0 && !(eq->flags & EQ_DOOMED)) callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); return (rc); } /* * txq->m is the mbuf that is held up due to a temporary shortage of * resources and it should be put on the wire first. Then what's in * drbr and finally the mbuf that was just passed in to us. * * Return code should indicate the fate of the mbuf that was passed in * this time. */ TXQ_LOCK_ASSERT_OWNED(txq); if (drbr_needs_enqueue(ifp, br) || txq->m) { /* Queued for transmission. */ rc = drbr_enqueue(ifp, br, m); m = txq->m ? txq->m : drbr_dequeue(ifp, br); (void) t4_eth_tx(ifp, txq, m); TXQ_UNLOCK(txq); return (rc); } /* Direct transmission. */ rc = t4_eth_tx(ifp, txq, m); if (rc != 0 && txq->m) rc = 0; /* held, will be transmitted soon (hopefully) */ TXQ_UNLOCK(txq); return (rc); } static void cxgbe_qflush(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; struct sge_txq *txq; int i; struct mbuf *m; /* queues do not exist if !PORT_INIT_DONE. */ if (pi->flags & PORT_INIT_DONE) { for_each_txq(pi, i, txq) { TXQ_LOCK(txq); m_freem(txq->m); txq->m = NULL; while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) m_freem(m); TXQ_UNLOCK(txq); } } if_qflush(ifp); } static int cxgbe_media_change(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; device_printf(pi->dev, "%s unimplemented.\n", __func__); return (EOPNOTSUPP); } static void cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct port_info *pi = ifp->if_softc; struct ifmedia_entry *cur = pi->media.ifm_cur; int speed = pi->link_cfg.speed; int data = (pi->port_type << 8) | pi->mod_type; if (cur->ifm_data != data) { build_medialist(pi); cur = pi->media.ifm_cur; } ifmr->ifm_status = IFM_AVALID; if (!pi->link_cfg.link_ok) return; ifmr->ifm_status |= IFM_ACTIVE; /* active and current will differ iff current media is autoselect. */ if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO) return; ifmr->ifm_active = IFM_ETHER | IFM_FDX; if (speed == SPEED_10000) ifmr->ifm_active |= IFM_10G_T; else if (speed == SPEED_1000) ifmr->ifm_active |= IFM_1000_T; else if (speed == SPEED_100) ifmr->ifm_active |= IFM_100_TX; else if (speed == SPEED_10) ifmr->ifm_active |= IFM_10_T; else KASSERT(0, ("%s: link up but speed unknown (%u)", __func__, speed)); } void t4_fatal_err(struct adapter *sc) { t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0); t4_intr_disable(sc); log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n", device_get_nameunit(sc->dev)); } static int map_bars(struct adapter *sc) { sc->regs_rid = PCIR_BAR(0); sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->regs_rid, RF_ACTIVE); if (sc->regs_res == NULL) { device_printf(sc->dev, "cannot map registers.\n"); return (ENXIO); } sc->bt = rman_get_bustag(sc->regs_res); sc->bh = rman_get_bushandle(sc->regs_res); sc->mmio_len = rman_get_size(sc->regs_res); sc->msix_rid = PCIR_BAR(4); sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->msix_rid, RF_ACTIVE); if (sc->msix_res == NULL) { device_printf(sc->dev, "cannot map MSI-X BAR.\n"); return (ENXIO); } return (0); } static void setup_memwin(struct adapter *sc) { uint32_t bar0; /* * Read low 32b of bar0 indirectly via the hardware backdoor mechanism. * Works from within PCI passthrough environments too, where * rman_get_start() can return a different value. We need to program * the memory window decoders with the actual addresses that will be * coming across the PCIe link. */ bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 0), (bar0 + MEMWIN0_BASE) | V_BIR(0) | V_WINDOW(ilog2(MEMWIN0_APERTURE) - 10)); t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 1), (bar0 + MEMWIN1_BASE) | V_BIR(0) | V_WINDOW(ilog2(MEMWIN1_APERTURE) - 10)); t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2), (bar0 + MEMWIN2_BASE) | V_BIR(0) | V_WINDOW(ilog2(MEMWIN2_APERTURE) - 10)); /* flush */ t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); } static int cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, struct intrs_and_queues *iaq) { int rc, itype, navail, nrxq10g, nrxq1g, n; int nofldrxq10g = 0, nofldrxq1g = 0; bzero(iaq, sizeof(*iaq)); iaq->ntxq10g = t4_ntxq10g; iaq->ntxq1g = t4_ntxq1g; iaq->nrxq10g = nrxq10g = t4_nrxq10g; iaq->nrxq1g = nrxq1g = t4_nrxq1g; #ifdef TCP_OFFLOAD if (is_offload(sc)) { iaq->nofldtxq10g = t4_nofldtxq10g; iaq->nofldtxq1g = t4_nofldtxq1g; iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g; iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g; } #endif for (itype = INTR_MSIX; itype; itype >>= 1) { if ((itype & t4_intr_types) == 0) continue; /* not allowed */ if (itype == INTR_MSIX) navail = pci_msix_count(sc->dev); else if (itype == INTR_MSI) navail = pci_msi_count(sc->dev); else navail = 1; restart: if (navail == 0) continue; iaq->intr_type = itype; iaq->intr_flags = 0; /* * Best option: an interrupt vector for errors, one for the * firmware event queue, and one each for each rxq (NIC as well * as offload). */ iaq->nirq = T4_EXTRA_INTR; iaq->nirq += n10g * (nrxq10g + nofldrxq10g); iaq->nirq += n1g * (nrxq1g + nofldrxq1g); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) { iaq->intr_flags |= INTR_DIRECT; goto allocate; } /* * Second best option: an interrupt vector for errors, one for * the firmware event queue, and one each for either NIC or * offload rxq's. */ iaq->nirq = T4_EXTRA_INTR; iaq->nirq += n10g * max(nrxq10g, nofldrxq10g); iaq->nirq += n1g * max(nrxq1g, nofldrxq1g); if (iaq->nirq <= navail && (itype != INTR_MSI || powerof2(iaq->nirq))) goto allocate; /* * Next best option: an interrupt vector for errors, one for the * firmware event queue, and at least one per port. At this * point we know we'll have to downsize nrxq or nofldrxq to fit * what's available to us. */ iaq->nirq = T4_EXTRA_INTR; iaq->nirq += n10g + n1g; if (iaq->nirq <= navail) { int leftover = navail - iaq->nirq; if (n10g > 0) { int target = max(nrxq10g, nofldrxq10g); n = 1; while (n < target && leftover >= n10g) { leftover -= n10g; iaq->nirq += n10g; n++; } iaq->nrxq10g = min(n, nrxq10g); #ifdef TCP_OFFLOAD if (is_offload(sc)) iaq->nofldrxq10g = min(n, nofldrxq10g); #endif } if (n1g > 0) { int target = max(nrxq1g, nofldrxq1g); n = 1; while (n < target && leftover >= n1g) { leftover -= n1g; iaq->nirq += n1g; n++; } iaq->nrxq1g = min(n, nrxq1g); #ifdef TCP_OFFLOAD if (is_offload(sc)) iaq->nofldrxq1g = min(n, nofldrxq1g); #endif } if (itype != INTR_MSI || powerof2(iaq->nirq)) goto allocate; } /* * Least desirable option: one interrupt vector for everything. */ iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1; #ifdef TCP_OFFLOAD if (is_offload(sc)) iaq->nofldrxq10g = iaq->nofldrxq1g = 1; #endif allocate: navail = iaq->nirq; rc = 0; if (itype == INTR_MSIX) rc = pci_alloc_msix(sc->dev, &navail); else if (itype == INTR_MSI) rc = pci_alloc_msi(sc->dev, &navail); if (rc == 0) { if (navail == iaq->nirq) return (0); /* * Didn't get the number requested. Use whatever number * the kernel is willing to allocate (it's in navail). */ device_printf(sc->dev, "fewer vectors than requested, " "type=%d, req=%d, rcvd=%d; will downshift req.\n", itype, iaq->nirq, navail); pci_release_msi(sc->dev); goto restart; } device_printf(sc->dev, "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", itype, rc, iaq->nirq, navail); } device_printf(sc->dev, "failed to find a usable interrupt type. " "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, pci_msix_count(sc->dev), pci_msi_count(sc->dev)); return (ENXIO); } /* * Install a compatible firmware (if required), establish contact with it (by * saying hello), and reset the device. If we end up as the master driver, * partition adapter resources by providing a configuration file to the * firmware. */ static int prep_firmware(struct adapter *sc) { const struct firmware *fw = NULL, *cfg = NULL, *default_cfg; int rc; enum dev_state state; default_cfg = firmware_get(T4_CFGNAME); /* Check firmware version and install a different one if necessary */ rc = t4_check_fw_version(sc); snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); if (rc != 0) { uint32_t v = 0; fw = firmware_get(T4_FWNAME); if (fw != NULL) { const struct fw_hdr *hdr = (const void *)fw->data; v = ntohl(hdr->fw_ver); /* * The firmware module will not be used if it isn't the * same major version as what the driver was compiled * with. */ if (G_FW_HDR_FW_VER_MAJOR(v) != FW_VERSION_MAJOR) { device_printf(sc->dev, "Found firmware image but version %d " "can not be used with this driver (%d)\n", G_FW_HDR_FW_VER_MAJOR(v), FW_VERSION_MAJOR); firmware_put(fw, FIRMWARE_UNLOAD); fw = NULL; } } if (fw == NULL && rc < 0) { device_printf(sc->dev, "No usable firmware. " "card has %d.%d.%d, driver compiled with %d.%d.%d", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); rc = EAGAIN; goto done; } /* * Always upgrade, even for minor/micro/build mismatches. * Downgrade only for a major version mismatch or if * force_firmware_install was specified. */ if (fw != NULL && (rc < 0 || v > sc->params.fw_vers)) { device_printf(sc->dev, "installing firmware %d.%d.%d.%d on card.\n", G_FW_HDR_FW_VER_MAJOR(v), G_FW_HDR_FW_VER_MINOR(v), G_FW_HDR_FW_VER_MICRO(v), G_FW_HDR_FW_VER_BUILD(v)); rc = -t4_load_fw(sc, fw->data, fw->datasize); if (rc != 0) { device_printf(sc->dev, "failed to install firmware: %d\n", rc); goto done; } else { /* refresh */ (void) t4_check_fw_version(sc); snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); } } } /* Contact firmware. */ rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); if (rc < 0) { rc = -rc; device_printf(sc->dev, "failed to connect to the firmware: %d.\n", rc); goto done; } if (rc == sc->mbox) sc->flags |= MASTER_PF; /* Reset device */ rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); if (rc != 0) { device_printf(sc->dev, "firmware reset failed: %d.\n", rc); if (rc != ETIMEDOUT && rc != EIO) t4_fw_bye(sc, sc->mbox); goto done; } /* Partition adapter resources as specified in the config file. */ if (sc->flags & MASTER_PF) { if (strncmp(t4_cfg_file, "default", sizeof(t4_cfg_file))) { char s[32]; snprintf(s, sizeof(s), "t4fw_cfg_%s", t4_cfg_file); cfg = firmware_get(s); if (cfg == NULL) { device_printf(sc->dev, "unable to locate %s module, " "will use default config file.\n", s); } } rc = partition_resources(sc, cfg ? cfg : default_cfg); if (rc != 0) goto done; /* error message displayed already */ } sc->flags |= FW_OK; done: if (fw != NULL) firmware_put(fw, FIRMWARE_UNLOAD); if (cfg != NULL) firmware_put(cfg, FIRMWARE_UNLOAD); if (default_cfg != NULL) firmware_put(default_cfg, FIRMWARE_UNLOAD); return (rc); } #define FW_PARAM_DEV(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) #define FW_PARAM_PFVF(param) \ (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) /* * Upload configuration file to card's memory. */ static int upload_config_file(struct adapter *sc, const struct firmware *fw, uint32_t *mt, uint32_t *ma) { int rc, i; uint32_t param, val, mtype, maddr, bar, off, win, remaining; const uint32_t *b; /* Figure out where the firmware wants us to upload it. */ param = FW_PARAM_DEV(CF); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc != 0) { /* Firmwares without config file support will fail this way */ device_printf(sc->dev, "failed to query config file location: %d.\n", rc); return (rc); } *mt = mtype = G_FW_PARAMS_PARAM_Y(val); *ma = maddr = G_FW_PARAMS_PARAM_Z(val) << 16; if (maddr & 3) { device_printf(sc->dev, "cannot upload config file (type %u, addr %x).\n", mtype, maddr); return (EFAULT); } /* Translate mtype/maddr to an address suitable for the PCIe window */ val = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); val &= F_EDRAM0_ENABLE | F_EDRAM1_ENABLE | F_EXT_MEM_ENABLE; switch (mtype) { case FW_MEMTYPE_CF_EDC0: if (!(val & F_EDRAM0_ENABLE)) goto err; bar = t4_read_reg(sc, A_MA_EDRAM0_BAR); maddr += G_EDRAM0_BASE(bar) << 20; break; case FW_MEMTYPE_CF_EDC1: if (!(val & F_EDRAM1_ENABLE)) goto err; bar = t4_read_reg(sc, A_MA_EDRAM1_BAR); maddr += G_EDRAM1_BASE(bar) << 20; break; case FW_MEMTYPE_CF_EXTMEM: if (!(val & F_EXT_MEM_ENABLE)) goto err; bar = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); maddr += G_EXT_MEM_BASE(bar) << 20; break; default: err: device_printf(sc->dev, "cannot upload config file (type %u, enabled %u).\n", mtype, val); return (EFAULT); } /* * Position the PCIe window (we use memwin2) to the 16B aligned area * just at/before the upload location. */ win = maddr & ~0xf; off = maddr - win; /* offset from the start of the window. */ t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2), win); t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2)); remaining = fw->datasize; if (remaining > FLASH_CFG_MAX_SIZE || remaining > MEMWIN2_APERTURE - off) { device_printf(sc->dev, "cannot upload config file all at once " "(size %u, max %u, room %u).\n", remaining, FLASH_CFG_MAX_SIZE, MEMWIN2_APERTURE - off); return (EFBIG); } /* * XXX: sheer laziness. We deliberately added 4 bytes of useless * stuffing/comments at the end of the config file so it's ok to simply * throw away the last remaining bytes when the config file is not an * exact multiple of 4. */ b = fw->data; for (i = 0; remaining >= 4; i += 4, remaining -= 4) t4_write_reg(sc, MEMWIN2_BASE + off + i, *b++); return (rc); } /* * Partition chip resources for use between various PFs, VFs, etc. This is done * by uploading the firmware configuration file to the adapter and instructing * the firmware to process it. */ static int partition_resources(struct adapter *sc, const struct firmware *cfg) { int rc; struct fw_caps_config_cmd caps; uint32_t mtype, maddr, finicsum, cfcsum; rc = cfg ? upload_config_file(sc, cfg, &mtype, &maddr) : ENOENT; if (rc != 0) { mtype = FW_MEMTYPE_CF_FLASH; maddr = t4_flash_cfg_addr(sc); } bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to pre-process config file: %d.\n", rc); return (rc); } finicsum = be32toh(caps.finicsum); cfcsum = be32toh(caps.cfcsum); if (finicsum != cfcsum) { device_printf(sc->dev, "WARNING: config file checksum mismatch: %08x %08x\n", finicsum, cfcsum); } sc->cfcsum = cfcsum; #define LIMIT_CAPS(x) do { \ caps.x &= htobe16(t4_##x##_allowed); \ sc->x = htobe16(caps.x); \ } while (0) /* * Let the firmware know what features will (not) be used so it can tune * things accordingly. */ LIMIT_CAPS(linkcaps); LIMIT_CAPS(niccaps); LIMIT_CAPS(toecaps); LIMIT_CAPS(rdmacaps); LIMIT_CAPS(iscsicaps); LIMIT_CAPS(fcoecaps); #undef LIMIT_CAPS caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); if (rc != 0) { device_printf(sc->dev, "failed to process config file: %d.\n", rc); return (rc); } return (0); } /* * Retrieve parameters that are needed (or nice to have) prior to calling * t4_sge_init and t4_fw_initialize. */ static int get_params__pre_init(struct adapter *sc) { int rc; uint32_t param[2], val[2]; struct fw_devlog_cmd cmd; struct devlog_params *dlog = &sc->params.devlog; param[0] = FW_PARAM_DEV(PORTVEC); param[1] = FW_PARAM_DEV(CCLK); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (pre_init): %d.\n", rc); return (rc); } sc->params.portvec = val[0]; sc->params.nports = 0; while (val[0]) { sc->params.nports++; val[0] &= val[0] - 1; } sc->params.vpd.cclk = val[1]; /* Read device log parameters. */ bzero(&cmd, sizeof(cmd)); cmd.op_to_write = htobe32(V_FW_CMD_OP(FW_DEVLOG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); cmd.retval_len16 = htobe32(FW_LEN16(cmd)); rc = -t4_wr_mbox(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); if (rc != 0) { device_printf(sc->dev, "failed to get devlog parameters: %d.\n", rc); bzero(dlog, sizeof (*dlog)); rc = 0; /* devlog isn't critical for device operation */ } else { val[0] = be32toh(cmd.memtype_devlog_memaddr16_devlog); dlog->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(val[0]); dlog->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(val[0]) << 4; dlog->size = be32toh(cmd.memsize_devlog); } return (rc); } /* * Retrieve various parameters that are of interest to the driver. The device * has been initialized by the firmware at this point. */ static int get_params__post_init(struct adapter *sc) { int rc; uint32_t param[7], val[7]; struct fw_caps_config_cmd caps; param[0] = FW_PARAM_PFVF(IQFLINT_START); param[1] = FW_PARAM_PFVF(EQ_START); param[2] = FW_PARAM_PFVF(FILTER_START); param[3] = FW_PARAM_PFVF(FILTER_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query parameters (post_init): %d.\n", rc); return (rc); } sc->sge.iq_start = val[0]; sc->sge.eq_start = val[1]; sc->tids.ftid_base = val[2]; sc->tids.nftids = val[3] - val[2] + 1; /* get capabilites */ bzero(&caps, sizeof(caps)); caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ); caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); if (rc != 0) { device_printf(sc->dev, "failed to get card capabilities: %d.\n", rc); return (rc); } if (caps.toecaps) { /* query offload-related parameters */ param[0] = FW_PARAM_DEV(NTID); param[1] = FW_PARAM_PFVF(SERVER_START); param[2] = FW_PARAM_PFVF(SERVER_END); param[3] = FW_PARAM_PFVF(TDDP_START); param[4] = FW_PARAM_PFVF(TDDP_END); param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query TOE parameters: %d.\n", rc); return (rc); } sc->tids.ntids = val[0]; sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); sc->tids.stid_base = val[1]; sc->tids.nstids = val[2] - val[1] + 1; sc->vres.ddp.start = val[3]; sc->vres.ddp.size = val[4] - val[3] + 1; sc->params.ofldq_wr_cred = val[5]; sc->params.offload = 1; } if (caps.rdmacaps) { param[0] = FW_PARAM_PFVF(STAG_START); param[1] = FW_PARAM_PFVF(STAG_END); param[2] = FW_PARAM_PFVF(RQ_START); param[3] = FW_PARAM_PFVF(RQ_END); param[4] = FW_PARAM_PFVF(PBL_START); param[5] = FW_PARAM_PFVF(PBL_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(1): %d.\n", rc); return (rc); } sc->vres.stag.start = val[0]; sc->vres.stag.size = val[1] - val[0] + 1; sc->vres.rq.start = val[2]; sc->vres.rq.size = val[3] - val[2] + 1; sc->vres.pbl.start = val[4]; sc->vres.pbl.size = val[5] - val[4] + 1; param[0] = FW_PARAM_PFVF(SQRQ_START); param[1] = FW_PARAM_PFVF(SQRQ_END); param[2] = FW_PARAM_PFVF(CQ_START); param[3] = FW_PARAM_PFVF(CQ_END); param[4] = FW_PARAM_PFVF(OCQ_START); param[5] = FW_PARAM_PFVF(OCQ_END); rc = -t4_query_params(sc, 0, 0, 0, 6, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query RDMA parameters(2): %d.\n", rc); return (rc); } sc->vres.qp.start = val[0]; sc->vres.qp.size = val[1] - val[0] + 1; sc->vres.cq.start = val[2]; sc->vres.cq.size = val[3] - val[2] + 1; sc->vres.ocq.start = val[4]; sc->vres.ocq.size = val[5] - val[4] + 1; } if (caps.iscsicaps) { param[0] = FW_PARAM_PFVF(ISCSI_START); param[1] = FW_PARAM_PFVF(ISCSI_END); rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); if (rc != 0) { device_printf(sc->dev, "failed to query iSCSI parameters: %d.\n", rc); return (rc); } sc->vres.iscsi.start = val[0]; sc->vres.iscsi.size = val[1] - val[0] + 1; } /* These are finalized by FW initialization, load their values now */ val[0] = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); sc->params.tp.tre = G_TIMERRESOLUTION(val[0]); sc->params.tp.dack_re = G_DELAYEDACKRESOLUTION(val[0]); t4_read_mtu_tbl(sc, sc->params.mtus, NULL); return (rc); } #undef FW_PARAM_PFVF #undef FW_PARAM_DEV static void t4_set_desc(struct adapter *sc) { char buf[128]; struct adapter_params *p = &sc->params; snprintf(buf, sizeof(buf), "Chelsio %s %sNIC (rev %d), S/N:%s, E/C:%s", p->vpd.id, is_offload(sc) ? "R" : "", p->rev, p->vpd.sn, p->vpd.ec); device_set_desc_copy(sc->dev, buf); } static void build_medialist(struct port_info *pi) { struct ifmedia *media = &pi->media; int data, m; PORT_LOCK(pi); ifmedia_removeall(media); m = IFM_ETHER | IFM_FDX; data = (pi->port_type << 8) | pi->mod_type; switch(pi->port_type) { case FW_PORT_TYPE_BT_XFI: ifmedia_add(media, m | IFM_10G_T, data, NULL); break; case FW_PORT_TYPE_BT_XAUI: ifmedia_add(media, m | IFM_10G_T, data, NULL); /* fall through */ case FW_PORT_TYPE_BT_SGMII: ifmedia_add(media, m | IFM_1000_T, data, NULL); ifmedia_add(media, m | IFM_100_TX, data, NULL); ifmedia_add(media, IFM_ETHER | IFM_AUTO, data, NULL); ifmedia_set(media, IFM_ETHER | IFM_AUTO); break; case FW_PORT_TYPE_CX4: ifmedia_add(media, m | IFM_10G_CX4, data, NULL); ifmedia_set(media, m | IFM_10G_CX4); break; case FW_PORT_TYPE_SFP: case FW_PORT_TYPE_FIBER_XFI: case FW_PORT_TYPE_FIBER_XAUI: switch (pi->mod_type) { case FW_PORT_MOD_TYPE_LR: ifmedia_add(media, m | IFM_10G_LR, data, NULL); ifmedia_set(media, m | IFM_10G_LR); break; case FW_PORT_MOD_TYPE_SR: ifmedia_add(media, m | IFM_10G_SR, data, NULL); ifmedia_set(media, m | IFM_10G_SR); break; case FW_PORT_MOD_TYPE_LRM: ifmedia_add(media, m | IFM_10G_LRM, data, NULL); ifmedia_set(media, m | IFM_10G_LRM); break; case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: ifmedia_add(media, m | IFM_10G_TWINAX, data, NULL); ifmedia_set(media, m | IFM_10G_TWINAX); break; case FW_PORT_MOD_TYPE_NONE: m &= ~IFM_FDX; ifmedia_add(media, m | IFM_NONE, data, NULL); ifmedia_set(media, m | IFM_NONE); break; case FW_PORT_MOD_TYPE_NA: case FW_PORT_MOD_TYPE_ER: default: ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); ifmedia_set(media, m | IFM_UNKNOWN); break; } break; case FW_PORT_TYPE_KX4: case FW_PORT_TYPE_KX: case FW_PORT_TYPE_KR: default: ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); ifmedia_set(media, m | IFM_UNKNOWN); break; } PORT_UNLOCK(pi); } #define FW_MAC_EXACT_CHUNK 7 /* * Program the port's XGMAC based on parameters in ifnet. The caller also * indicates which parameters should be programmed (the rest are left alone). */ static int update_mac_settings(struct port_info *pi, int flags) { int rc; struct ifnet *ifp = pi->ifp; struct adapter *sc = pi->adapter; int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; PORT_LOCK_ASSERT_OWNED(pi); KASSERT(flags, ("%s: not told what to update.", __func__)); if (flags & XGMAC_MTU) mtu = ifp->if_mtu; if (flags & XGMAC_PROMISC) promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; if (flags & XGMAC_ALLMULTI) allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; if (flags & XGMAC_VLANEX) vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; rc = -t4_set_rxmode(sc, sc->mbox, pi->viid, mtu, promisc, allmulti, 1, vlanex, false); if (rc) { if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc); return (rc); } if (flags & XGMAC_UCADDR) { uint8_t ucaddr[ETHER_ADDR_LEN]; bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); rc = t4_change_mac(sc, sc->mbox, pi->viid, pi->xact_addr_filt, ucaddr, true, true); if (rc < 0) { rc = -rc; if_printf(ifp, "change_mac failed: %d\n", rc); return (rc); } else { pi->xact_addr_filt = rc; rc = 0; } } if (flags & XGMAC_MCADDRS) { const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; int del = 1; uint64_t hash = 0; struct ifmultiaddr *ifma; int i = 0, j; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mcaddr[i++] = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); if (i == FW_MAC_EXACT_CHUNK) { rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } del = 0; i = 0; } } if (i > 0) { rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, del, i, mcaddr, NULL, &hash, 0); if (rc < 0) { rc = -rc; for (j = 0; j < i; j++) { if_printf(ifp, "failed to add mc address" " %02x:%02x:%02x:" "%02x:%02x:%02x rc=%d\n", mcaddr[j][0], mcaddr[j][1], mcaddr[j][2], mcaddr[j][3], mcaddr[j][4], mcaddr[j][5], rc); } goto mcfail; } } rc = -t4_set_addr_hash(sc, sc->mbox, pi->viid, 0, hash, 0); if (rc != 0) if_printf(ifp, "failed to set mc address hash: %d", rc); mcfail: if_maddr_runlock(ifp); } return (rc); } static int cxgbe_init_locked(struct port_info *pi) { struct adapter *sc = pi->adapter; int rc = 0; ADAPTER_LOCK_ASSERT_OWNED(sc); while (!IS_DOOMED(pi) && IS_BUSY(sc)) { if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4init", 0)) { rc = EINTR; goto done; } } if (IS_DOOMED(pi)) { rc = ENXIO; goto done; } KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); /* Give up the adapter lock, port init code can sleep. */ SET_BUSY(sc); ADAPTER_UNLOCK(sc); rc = cxgbe_init_synchronized(pi); done: ADAPTER_LOCK(sc); KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); CLR_BUSY(sc); wakeup_one(&sc->flags); ADAPTER_UNLOCK(sc); return (rc); } static int cxgbe_init_synchronized(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; int rc = 0; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); if (isset(&sc->open_device_map, pi->port_id)) { KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("mismatch between open_device_map and if_drv_flags")); return (0); /* already running */ } if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_full_init(sc)) != 0)) return (rc); /* error message displayed already */ if (!(pi->flags & PORT_INIT_DONE) && ((rc = port_full_init(pi)) != 0)) return (rc); /* error message displayed already */ PORT_LOCK(pi); rc = update_mac_settings(pi, XGMAC_ALL); PORT_UNLOCK(pi); if (rc) goto done; /* error message displayed already */ rc = -t4_link_start(sc, sc->mbox, pi->tx_chan, &pi->link_cfg); if (rc != 0) { if_printf(ifp, "start_link failed: %d\n", rc); goto done; } rc = -t4_enable_vi(sc, sc->mbox, pi->viid, true, true); if (rc != 0) { if_printf(ifp, "enable_vi failed: %d\n", rc); goto done; } /* all ok */ setbit(&sc->open_device_map, pi->port_id); ifp->if_drv_flags |= IFF_DRV_RUNNING; callout_reset(&pi->tick, hz, cxgbe_tick, pi); done: if (rc != 0) cxgbe_uninit_synchronized(pi); return (rc); } static int cxgbe_uninit_locked(struct port_info *pi) { struct adapter *sc = pi->adapter; int rc; ADAPTER_LOCK_ASSERT_OWNED(sc); while (!IS_DOOMED(pi) && IS_BUSY(sc)) { if (mtx_sleep(&sc->flags, &sc->sc_lock, PCATCH, "t4uninit", 0)) { rc = EINTR; goto done; } } if (IS_DOOMED(pi)) { rc = ENXIO; goto done; } KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); SET_BUSY(sc); ADAPTER_UNLOCK(sc); rc = cxgbe_uninit_synchronized(pi); ADAPTER_LOCK(sc); KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); CLR_BUSY(sc); wakeup_one(&sc->flags); done: ADAPTER_UNLOCK(sc); return (rc); } /* * Idempotent. */ static int cxgbe_uninit_synchronized(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; int rc; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); /* * Disable the VI so that all its data in either direction is discarded * by the MPS. Leave everything else (the queues, interrupts, and 1Hz * tick) intact as the TP can deliver negative advice or data that it's * holding in its RAM (for an offloaded connection) even after the VI is * disabled. */ rc = -t4_enable_vi(sc, sc->mbox, pi->viid, false, false); if (rc) { if_printf(ifp, "disable_vi failed: %d\n", rc); return (rc); } clrbit(&sc->open_device_map, pi->port_id); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; pi->link_cfg.link_ok = 0; pi->link_cfg.speed = 0; t4_os_link_changed(sc, pi->port_id, 0); return (0); } #define T4_ALLOC_IRQ(sc, irq, rid, handler, arg, name) do { \ rc = t4_alloc_irq(sc, irq, rid, handler, arg, name); \ if (rc != 0) \ goto done; \ } while (0) static int adapter_full_init(struct adapter *sc) { int rc, i, rid, p, q; char s[8]; struct irq *irq; struct port_info *pi; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif ADAPTER_LOCK_ASSERT_NOTOWNED(sc); KASSERT((sc->flags & FULL_INIT_DONE) == 0, ("%s: FULL_INIT_DONE already", __func__)); /* * queues that belong to the adapter (not any particular port). */ rc = t4_setup_adapter_queues(sc); if (rc != 0) goto done; for (i = 0; i < ARRAY_SIZE(sc->tq); i++) { sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->tq[i]); if (sc->tq[i] == NULL) { device_printf(sc->dev, "failed to allocate task queue %d\n", i); rc = ENOMEM; goto done; } taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", device_get_nameunit(sc->dev), i); } /* * Setup interrupts. */ irq = &sc->irq[0]; rid = sc->intr_type == INTR_INTX ? 0 : 1; if (sc->intr_count == 1) { KASSERT(!(sc->flags & INTR_DIRECT), ("%s: single interrupt && INTR_DIRECT?", __func__)); T4_ALLOC_IRQ(sc, irq, rid, t4_intr_all, sc, "all"); } else { /* Multiple interrupts. */ KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, ("%s: too few intr.", __func__)); /* The first one is always error intr */ T4_ALLOC_IRQ(sc, irq, rid, t4_intr_err, sc, "err"); irq++; rid++; /* The second one is always the firmware event queue */ T4_ALLOC_IRQ(sc, irq, rid, t4_intr_evt, &sc->sge.fwq, "evt"); irq++; rid++; /* * Note that if INTR_DIRECT is not set then either the NIC rx * queues or (exclusive or) the TOE rx queueus will be taking * direct interrupts. * * There is no need to check for is_offload(sc) as nofldrxq * will be 0 if offload is disabled. */ for_each_port(sc, p) { pi = sc->port[p]; #ifdef TCP_OFFLOAD /* * Skip over the NIC queues if they aren't taking direct * interrupts. */ if (!(sc->flags & INTR_DIRECT) && pi->nofldrxq > pi->nrxq) goto ofld_queues; #endif rxq = &sc->sge.rxq[pi->first_rxq]; for (q = 0; q < pi->nrxq; q++, rxq++) { snprintf(s, sizeof(s), "%d.%d", p, q); T4_ALLOC_IRQ(sc, irq, rid, t4_intr, rxq, s); irq++; rid++; } #ifdef TCP_OFFLOAD /* * Skip over the offload queues if they aren't taking * direct interrupts. */ if (!(sc->flags & INTR_DIRECT)) continue; ofld_queues: ofld_rxq = &sc->sge.ofld_rxq[pi->first_ofld_rxq]; for (q = 0; q < pi->nofldrxq; q++, ofld_rxq++) { snprintf(s, sizeof(s), "%d,%d", p, q); T4_ALLOC_IRQ(sc, irq, rid, t4_intr, ofld_rxq, s); irq++; rid++; } #endif } } t4_intr_enable(sc); sc->flags |= FULL_INIT_DONE; done: if (rc != 0) adapter_full_uninit(sc); return (rc); } #undef T4_ALLOC_IRQ static int adapter_full_uninit(struct adapter *sc) { int i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); t4_teardown_adapter_queues(sc); for (i = 0; i < sc->intr_count; i++) t4_free_irq(sc, &sc->irq[i]); for (i = 0; i < ARRAY_SIZE(sc->tq) && sc->tq[i]; i++) { taskqueue_free(sc->tq[i]); sc->tq[i] = NULL; } sc->flags &= ~FULL_INIT_DONE; return (0); } static int port_full_init(struct port_info *pi) { struct adapter *sc = pi->adapter; struct ifnet *ifp = pi->ifp; uint16_t *rss; struct sge_rxq *rxq; int rc, i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); KASSERT((pi->flags & PORT_INIT_DONE) == 0, ("%s: PORT_INIT_DONE already", __func__)); sysctl_ctx_init(&pi->ctx); pi->flags |= PORT_SYSCTL_CTX; /* * Allocate tx/rx/fl queues for this port. */ rc = t4_setup_port_queues(pi); if (rc != 0) goto done; /* error message displayed already */ /* * Setup RSS for this port. */ rss = malloc(pi->nrxq * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); for_each_rxq(pi, i, rxq) { rss[i] = rxq->iq.abs_id; } rc = -t4_config_rss_range(sc, sc->mbox, pi->viid, 0, pi->rss_size, rss, pi->nrxq); free(rss, M_CXGBE); if (rc != 0) { if_printf(ifp, "rss_config failed: %d\n", rc); goto done; } pi->flags |= PORT_INIT_DONE; done: if (rc != 0) port_full_uninit(pi); return (rc); } /* * Idempotent. */ static int port_full_uninit(struct port_info *pi) { struct adapter *sc = pi->adapter; int i; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ofld_txq; #endif if (pi->flags & PORT_INIT_DONE) { /* Need to quiesce queues. XXX: ctrl queues? */ for_each_txq(pi, i, txq) { quiesce_eq(sc, &txq->eq); } #ifdef TCP_OFFLOAD for_each_ofld_txq(pi, i, ofld_txq) { quiesce_eq(sc, &ofld_txq->eq); } #endif for_each_rxq(pi, i, rxq) { quiesce_iq(sc, &rxq->iq); quiesce_fl(sc, &rxq->fl); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(pi, i, ofld_rxq) { quiesce_iq(sc, &ofld_rxq->iq); quiesce_fl(sc, &ofld_rxq->fl); } #endif } t4_teardown_port_queues(pi); pi->flags &= ~PORT_INIT_DONE; return (0); } static void quiesce_eq(struct adapter *sc, struct sge_eq *eq) { EQ_LOCK(eq); eq->flags |= EQ_DOOMED; /* * Wait for the response to a credit flush if one's * pending. */ while (eq->flags & EQ_CRFLUSHED) mtx_sleep(eq, &eq->eq_lock, 0, "crflush", 0); EQ_UNLOCK(eq); callout_drain(&eq->tx_callout); /* XXX: iffy */ pause("callout", 10); /* Still iffy */ taskqueue_drain(sc->tq[eq->tx_chan], &eq->tx_task); } static void quiesce_iq(struct adapter *sc, struct sge_iq *iq) { (void) sc; /* unused */ /* Synchronize with the interrupt handler */ while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) pause("iqfree", 1); } static void quiesce_fl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); fl->flags |= FL_DOOMED; FL_UNLOCK(fl); mtx_unlock(&sc->sfl_lock); callout_drain(&sc->sfl_callout); KASSERT((fl->flags & FL_STARVING) == 0, ("%s: still starving", __func__)); } static int t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, driver_intr_t *handler, void *arg, char *name) { int rc; irq->rid = rid; irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, RF_SHAREABLE | RF_ACTIVE); if (irq->res == NULL) { device_printf(sc->dev, "failed to allocate IRQ for rid %d, name %s.\n", rid, name); return (ENOMEM); } rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, NULL, handler, arg, &irq->tag); if (rc != 0) { device_printf(sc->dev, "failed to setup interrupt for rid %d, name %s: %d\n", rid, name, rc); } else if (name) bus_describe_intr(sc->dev, irq->res, irq->tag, name); return (rc); } static int t4_free_irq(struct adapter *sc, struct irq *irq) { if (irq->tag) bus_teardown_intr(sc->dev, irq->res, irq->tag); if (irq->res) bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); bzero(irq, sizeof(*irq)); return (0); } static void reg_block_dump(struct adapter *sc, uint8_t *buf, unsigned int start, unsigned int end) { uint32_t *p = (uint32_t *)(buf + start); for ( ; start <= end; start += sizeof(uint32_t)) *p++ = t4_read_reg(sc, start); } static void t4_get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) { int i; static const unsigned int reg_ranges[] = { 0x1008, 0x1108, 0x1180, 0x11b4, 0x11fc, 0x123c, 0x1300, 0x173c, 0x1800, 0x18fc, 0x3000, 0x30d8, 0x30e0, 0x5924, 0x5960, 0x59d4, 0x5a00, 0x5af8, 0x6000, 0x6098, 0x6100, 0x6150, 0x6200, 0x6208, 0x6240, 0x6248, 0x6280, 0x6338, 0x6370, 0x638c, 0x6400, 0x643c, 0x6500, 0x6524, 0x6a00, 0x6a38, 0x6a60, 0x6a78, 0x6b00, 0x6b84, 0x6bf0, 0x6c84, 0x6cf0, 0x6d84, 0x6df0, 0x6e84, 0x6ef0, 0x6f84, 0x6ff0, 0x7084, 0x70f0, 0x7184, 0x71f0, 0x7284, 0x72f0, 0x7384, 0x73f0, 0x7450, 0x7500, 0x7530, 0x7600, 0x761c, 0x7680, 0x76cc, 0x7700, 0x7798, 0x77c0, 0x77fc, 0x7900, 0x79fc, 0x7b00, 0x7c38, 0x7d00, 0x7efc, 0x8dc0, 0x8e1c, 0x8e30, 0x8e78, 0x8ea0, 0x8f6c, 0x8fc0, 0x9074, 0x90fc, 0x90fc, 0x9400, 0x9458, 0x9600, 0x96bc, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0x9fec, 0xd004, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0xea7c, 0xf000, 0x11190, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x19124, 0x19150, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x1924c, 0x193f8, 0x19474, 0x19490, 0x194f8, 0x19800, 0x19f30, 0x1a000, 0x1a06c, 0x1a0b0, 0x1a120, 0x1a128, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e040, 0x1e04c, 0x1e284, 0x1e28c, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e440, 0x1e44c, 0x1e684, 0x1e68c, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e840, 0x1e84c, 0x1ea84, 0x1ea8c, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec40, 0x1ec4c, 0x1ee84, 0x1ee8c, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f040, 0x1f04c, 0x1f284, 0x1f28c, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f440, 0x1f44c, 0x1f684, 0x1f68c, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f840, 0x1f84c, 0x1fa84, 0x1fa8c, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc40, 0x1fc4c, 0x1fe84, 0x1fe8c, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x20000, 0x2002c, 0x20100, 0x2013c, 0x20190, 0x201c8, 0x20200, 0x20318, 0x20400, 0x20528, 0x20540, 0x20614, 0x21000, 0x21040, 0x2104c, 0x21060, 0x210c0, 0x210ec, 0x21200, 0x21268, 0x21270, 0x21284, 0x212fc, 0x21388, 0x21400, 0x21404, 0x21500, 0x21518, 0x2152c, 0x2153c, 0x21550, 0x21554, 0x21600, 0x21600, 0x21608, 0x21628, 0x21630, 0x2163c, 0x21700, 0x2171c, 0x21780, 0x2178c, 0x21800, 0x21c38, 0x21c80, 0x21d7c, 0x21e00, 0x21e04, 0x22000, 0x2202c, 0x22100, 0x2213c, 0x22190, 0x221c8, 0x22200, 0x22318, 0x22400, 0x22528, 0x22540, 0x22614, 0x23000, 0x23040, 0x2304c, 0x23060, 0x230c0, 0x230ec, 0x23200, 0x23268, 0x23270, 0x23284, 0x232fc, 0x23388, 0x23400, 0x23404, 0x23500, 0x23518, 0x2352c, 0x2353c, 0x23550, 0x23554, 0x23600, 0x23600, 0x23608, 0x23628, 0x23630, 0x2363c, 0x23700, 0x2371c, 0x23780, 0x2378c, 0x23800, 0x23c38, 0x23c80, 0x23d7c, 0x23e00, 0x23e04, 0x24000, 0x2402c, 0x24100, 0x2413c, 0x24190, 0x241c8, 0x24200, 0x24318, 0x24400, 0x24528, 0x24540, 0x24614, 0x25000, 0x25040, 0x2504c, 0x25060, 0x250c0, 0x250ec, 0x25200, 0x25268, 0x25270, 0x25284, 0x252fc, 0x25388, 0x25400, 0x25404, 0x25500, 0x25518, 0x2552c, 0x2553c, 0x25550, 0x25554, 0x25600, 0x25600, 0x25608, 0x25628, 0x25630, 0x2563c, 0x25700, 0x2571c, 0x25780, 0x2578c, 0x25800, 0x25c38, 0x25c80, 0x25d7c, 0x25e00, 0x25e04, 0x26000, 0x2602c, 0x26100, 0x2613c, 0x26190, 0x261c8, 0x26200, 0x26318, 0x26400, 0x26528, 0x26540, 0x26614, 0x27000, 0x27040, 0x2704c, 0x27060, 0x270c0, 0x270ec, 0x27200, 0x27268, 0x27270, 0x27284, 0x272fc, 0x27388, 0x27400, 0x27404, 0x27500, 0x27518, 0x2752c, 0x2753c, 0x27550, 0x27554, 0x27600, 0x27600, 0x27608, 0x27628, 0x27630, 0x2763c, 0x27700, 0x2771c, 0x27780, 0x2778c, 0x27800, 0x27c38, 0x27c80, 0x27d7c, 0x27e00, 0x27e04 }; regs->version = 4 | (sc->params.rev << 10); for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2) reg_block_dump(sc, buf, reg_ranges[i], reg_ranges[i + 1]); } static void cxgbe_tick(void *arg) { struct port_info *pi = arg; struct ifnet *ifp = pi->ifp; struct sge_txq *txq; int i, drops; struct port_stats *s = &pi->stats; PORT_LOCK(pi); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { PORT_UNLOCK(pi); return; /* without scheduling another callout */ } t4_get_port_stats(pi->adapter, pi->tx_chan, s); ifp->if_opackets = s->tx_frames - s->tx_pause; ifp->if_ipackets = s->rx_frames - s->rx_pause; ifp->if_obytes = s->tx_octets - s->tx_pause * 64; ifp->if_ibytes = s->rx_octets - s->rx_pause * 64; ifp->if_omcasts = s->tx_mcast_frames - s->tx_pause; ifp->if_imcasts = s->rx_mcast_frames - s->rx_pause; ifp->if_iqdrops = s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + s->rx_ovflow3; drops = s->tx_drop; for_each_txq(pi, i, txq) drops += txq->br->br_drops; ifp->if_snd.ifq_drops = drops; ifp->if_oerrors = s->tx_error_frames; ifp->if_ierrors = s->rx_jabber + s->rx_runt + s->rx_too_long + s->rx_fcs_err + s->rx_len_err; callout_schedule(&pi->tick, hz); PORT_UNLOCK(pi); } static void cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid) { struct ifnet *vlan; if (arg != ifp) return; vlan = VLAN_DEVAT(ifp, vid); VLAN_SETCOOKIE(vlan, ifp); } static int cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { #ifdef INVARIANTS panic("%s: opcode 0x%02x on iq %p with payload %p", __func__, rss->opcode, iq, m); #else log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p", __func__, rss->opcode, iq, m); m_freem(m); #endif return (EDOOFUS); } int t4_register_cpl_handler(struct adapter *sc, int opcode, cpl_handler_t h) { uintptr_t *loc, new; if (opcode >= ARRAY_SIZE(sc->cpl_handler)) return (EINVAL); new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; loc = (uintptr_t *) &sc->cpl_handler[opcode]; atomic_store_rel_ptr(loc, new); return (0); } static int an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) { #ifdef INVARIANTS panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); #else log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); #endif return (EDOOFUS); } int t4_register_an_handler(struct adapter *sc, an_handler_t h) { uintptr_t *loc, new; new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; loc = (uintptr_t *) &sc->an_handler; atomic_store_rel_ptr(loc, new); return (0); } static int t4_sysctls(struct adapter *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children, *c0; static char *caps[] = { "\20\1PPP\2QFC\3DCBX", /* caps[0] linkcaps */ "\20\1NIC\2VM\3IDS\4UM\5UM_ISGL", /* caps[1] niccaps */ "\20\1TOE", /* caps[2] toecaps */ "\20\1RDDP\2RDMAC", /* caps[3] rdmacaps */ "\20\1INITIATOR_PDU\2TARGET_PDU" /* caps[4] iscsicaps */ "\3INITIATOR_CNXOFLD\4TARGET_CNXOFLD" "\5INITIATOR_SSNOFLD\6TARGET_SSNOFLD", "\20\1INITIATOR\2TARGET\3CTRL_OFLD" /* caps[5] fcoecaps */ }; ctx = device_get_sysctl_ctx(sc->dev); /* * dev.t4nex.X. */ oid = device_get_sysctl_tree(sc->dev); c0 = children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, &sc->params.nports, 0, "# of ports"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, &sc->params.rev, 0, "chip hardware revision"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", CTLFLAG_RD, &sc->fw_version, 0, "firmware version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", CTLFLAG_RD, &t4_cfg_file, 0, "configuration file"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, &sc->cfcsum, 0, "config file checksum"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkcaps", CTLTYPE_STRING | CTLFLAG_RD, caps[0], sc->linkcaps, sysctl_bitfield, "A", "available link capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "niccaps", CTLTYPE_STRING | CTLFLAG_RD, caps[1], sc->niccaps, sysctl_bitfield, "A", "available NIC capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "toecaps", CTLTYPE_STRING | CTLFLAG_RD, caps[2], sc->toecaps, sysctl_bitfield, "A", "available TCP offload capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdmacaps", CTLTYPE_STRING | CTLFLAG_RD, caps[3], sc->rdmacaps, sysctl_bitfield, "A", "available RDMA capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "iscsicaps", CTLTYPE_STRING | CTLFLAG_RD, caps[4], sc->iscsicaps, sysctl_bitfield, "A", "available iSCSI capabilities"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoecaps", CTLTYPE_STRING | CTLFLAG_RD, caps[5], sc->fcoecaps, sysctl_bitfield, "A", "available FCoE capabilities"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, &sc->params.vpd.cclk, 0, "core clock frequency (in KHz)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", CTLTYPE_STRING | CTLFLAG_RD, sc->sge.timer_val, sizeof(sc->sge.timer_val), sysctl_int_array, "A", "interrupt holdoff timer values (us)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", CTLTYPE_STRING | CTLFLAG_RD, sc->sge.counter_val, sizeof(sc->sge.counter_val), sysctl_int_array, "A", "interrupt holdoff packet counter values"); #ifdef SBUF_DRAIN /* * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", CTLFLAG_RD | CTLFLAG_SKIP, NULL, "logs and miscellaneous information"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cctrl, "A", "congestion control"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cpl_stats, "A", "CPL statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_ddp_stats, "A", "DDP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_devlog, "A", "firmware's device log"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_fcoe_stats, "A", "FCoE statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_hw_sched, "A", "hardware scheduler "); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_l2t, "A", "hardware L2 table"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_lb_stats, "A", "loopback statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_meminfo, "A", "memory regions"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_path_mtus, "A", "path MTUs"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_pm_stats, "A", "PM statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_rdma_stats, "A", "RDMA statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tcp_stats, "A", "TCP statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tids, "A", "TID information"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_err_stats, "A", "TP error statistics"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tx_rate, "A", "Tx rate"); #endif #ifdef TCP_OFFLOAD if (is_offload(sc)) { /* * dev.t4nex.X.toe. */ oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, NULL, "TOE parameters"); children = SYSCTL_CHILDREN(oid); sc->tt.sndbuf = 256 * 1024; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, &sc->tt.sndbuf, 0, "max hardware send buffer size"); sc->tt.ddp = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW, &sc->tt.ddp, 0, "DDP allowed"); sc->tt.indsz = M_INDICATESIZE; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "indsz", CTLFLAG_RW, &sc->tt.indsz, 0, "DDP max indicate size allowed"); sc->tt.ddp_thres = 3*4096; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp_thres", CTLFLAG_RW, &sc->tt.ddp_thres, 0, "DDP threshold"); } #endif return (0); } static int cxgbe_sysctls(struct port_info *pi) { struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; ctx = device_get_sysctl_ctx(pi->dev); /* * dev.cxgbe.X. */ oid = device_get_sysctl_tree(pi->dev); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, &pi->nrxq, 0, "# of rx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, &pi->ntxq, 0, "# of tx queues"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, &pi->first_rxq, 0, "index of first rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, &pi->first_txq, 0, "index of first tx queue"); #ifdef TCP_OFFLOAD if (is_offload(pi->adapter)) { SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, &pi->nofldrxq, 0, "# of rx queues for offloaded TCP connections"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, &pi->nofldtxq, 0, "# of tx queues for offloaded TCP connections"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", CTLFLAG_RD, &pi->first_ofld_rxq, 0, "index of first TOE rx queue"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", CTLFLAG_RD, &pi->first_ofld_txq, 0, "index of first TOE tx queue"); } #endif SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_rxq, "I", "rx queue size"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_txq, "I", "tx queue size"); /* * dev.cxgbe.X.stats. */ oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, NULL, "port statistics"); children = SYSCTL_CHILDREN(oid); #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ CTLTYPE_U64 | CTLFLAG_RD, pi->adapter, reg, \ sysctl_handle_t4_reg64, "QU", desc) SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", "# of tx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", "# of frames received with bad FCS", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_len_err", "# of frames received with length error", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", "# of rx frames in this range", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); #undef SYSCTL_ADD_T4_REG64 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ &pi->stats.name, desc) /* We get these from port_stats and they may be stale by upto 1s */ SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); #undef SYSCTL_ADD_T4_PORTSTAT return (0); } static int sysctl_int_array(SYSCTL_HANDLER_ARGS) { int rc, *i; struct sbuf sb; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (i = arg1; arg2; arg2 -= sizeof(int), i++) sbuf_printf(&sb, "%d ", *i); sbuf_trim(&sb); sbuf_finish(&sb); rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (rc); } static int sysctl_bitfield(SYSCTL_HANDLER_ARGS) { int rc; struct sbuf *sb; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); sbuf_printf(sb, "%b", (int)arg2, (char *)arg1); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int idx, rc, i; idx = pi->tmr_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < 0 || idx >= SGE_NTIMERS) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0) { struct sge_rxq *rxq; uint8_t v; v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(pi->pktc_idx != -1); for_each_rxq(pi, i, rxq) { #ifdef atomic_store_rel_8 atomic_store_rel_8(&rxq->iq.intr_params, v); #else rxq->iq.intr_params = v; #endif } pi->tmr_idx = idx; } ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int idx, rc; idx = pi->pktc_idx; rc = sysctl_handle_int(oidp, &idx, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (idx < -1 || idx >= SGE_NCOUNTERS) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0 && pi->flags & PORT_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ if (rc == 0) pi->pktc_idx = idx; ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int qsize, rc; qsize = pi->qsize_rxq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128 || (qsize & 7)) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0 && pi->flags & PORT_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ if (rc == 0) pi->qsize_rxq = qsize; ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) { struct port_info *pi = arg1; struct adapter *sc = pi->adapter; int qsize, rc; qsize = pi->qsize_txq; rc = sysctl_handle_int(oidp, &qsize, 0, req); if (rc != 0 || req->newptr == NULL) return (rc); if (qsize < 128) return (EINVAL); ADAPTER_LOCK(sc); rc = IS_DOOMED(pi) ? ENXIO : (IS_BUSY(sc) ? EBUSY : 0); if (rc == 0 && pi->flags & PORT_INIT_DONE) rc = EBUSY; /* cannot be changed once the queues are created */ if (rc == 0) pi->qsize_txq = qsize; ADAPTER_UNLOCK(sc); return (rc); } static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; int reg = arg2; uint64_t val; val = t4_read_reg64(sc, reg); return (sysctl_handle_64(oidp, &val, 0, req)); } #ifdef SBUF_DRAIN static int sysctl_cctrl(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint16_t incr[NMTUS][NCCTRL_WIN]; static const char *dec_fac[] = { "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", "0.9375" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); t4_read_cong_tbl(sc, incr); for (i = 0; i < NCCTRL_WIN; ++i) { sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], incr[5][i], incr[6][i], incr[7][i]); sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", incr[8][i], incr[9][i], incr[10][i], incr[11][i], incr[12][i], incr[13][i], incr[14][i], incr[15][i], sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_cpl_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_cpl_stats(sc, &stats); sbuf_printf(sb, " channel 0 channel 1 channel 2 " "channel 3\n"); sbuf_printf(sb, "CPL requests: %10u %10u %10u %10u\n", stats.req[0], stats.req[1], stats.req[2], stats.req[3]); sbuf_printf(sb, "CPL responses: %10u %10u %10u %10u", stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_usm_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return(rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_usm_stats(sc, &stats); sbuf_printf(sb, "Frames: %u\n", stats.frames); sbuf_printf(sb, "Octets: %ju\n", stats.octets); sbuf_printf(sb, "Drops: %u", stats.drops); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } const char *devlog_level_strings[] = { [FW_DEVLOG_LEVEL_EMERG] = "EMERG", [FW_DEVLOG_LEVEL_CRIT] = "CRIT", [FW_DEVLOG_LEVEL_ERR] = "ERR", [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", [FW_DEVLOG_LEVEL_INFO] = "INFO", [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" }; const char *devlog_facility_strings[] = { [FW_DEVLOG_FACILITY_CORE] = "CORE", [FW_DEVLOG_FACILITY_SCHED] = "SCHED", [FW_DEVLOG_FACILITY_TIMER] = "TIMER", [FW_DEVLOG_FACILITY_RES] = "RES", [FW_DEVLOG_FACILITY_HW] = "HW", [FW_DEVLOG_FACILITY_FLR] = "FLR", [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", [FW_DEVLOG_FACILITY_PHY] = "PHY", [FW_DEVLOG_FACILITY_MAC] = "MAC", [FW_DEVLOG_FACILITY_PORT] = "PORT", [FW_DEVLOG_FACILITY_VI] = "VI", [FW_DEVLOG_FACILITY_FILTER] = "FILTER", [FW_DEVLOG_FACILITY_ACL] = "ACL", [FW_DEVLOG_FACILITY_TM] = "TM", [FW_DEVLOG_FACILITY_QFC] = "QFC", [FW_DEVLOG_FACILITY_DCB] = "DCB", [FW_DEVLOG_FACILITY_ETH] = "ETH", [FW_DEVLOG_FACILITY_OFLD] = "OFLD", [FW_DEVLOG_FACILITY_RI] = "RI", [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", [FW_DEVLOG_FACILITY_FCOE] = "FCOE", [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE" }; static int sysctl_devlog(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct devlog_params *dparams = &sc->params.devlog; struct fw_devlog_e *buf, *e; int i, j, rc, nentries, first = 0; struct sbuf *sb; uint64_t ftstamp = UINT64_MAX; if (dparams->start == 0) return (ENXIO); nentries = dparams->size / sizeof(struct fw_devlog_e); buf = malloc(dparams->size, M_CXGBE, M_NOWAIT); if (buf == NULL) return (ENOMEM); rc = -t4_mem_read(sc, dparams->memtype, dparams->start, dparams->size, (void *)buf); if (rc != 0) goto done; for (i = 0; i < nentries; i++) { e = &buf[i]; if (e->timestamp == 0) break; /* end */ e->timestamp = be64toh(e->timestamp); e->seqno = be32toh(e->seqno); for (j = 0; j < 8; j++) e->params[j] = be32toh(e->params[j]); if (e->timestamp < ftstamp) { ftstamp = e->timestamp; first = i; } } if (buf[first].timestamp == 0) goto done; /* nothing in the log */ rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) goto done; sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) { rc = ENOMEM; goto done; } sbuf_printf(sb, "%10s %15s %8s %8s %s\n", "Seq#", "Tstamp", "Level", "Facility", "Message"); i = first; do { e = &buf[i]; if (e->timestamp == 0) break; /* end */ sbuf_printf(sb, "%10d %15ju %8s %8s ", e->seqno, e->timestamp, (e->level < ARRAY_SIZE(devlog_level_strings) ? devlog_level_strings[e->level] : "UNKNOWN"), (e->facility < ARRAY_SIZE(devlog_facility_strings) ? devlog_facility_strings[e->facility] : "UNKNOWN")); sbuf_printf(sb, e->fmt, e->params[0], e->params[1], e->params[2], e->params[3], e->params[4], e->params[5], e->params[6], e->params[7]); if (++i == nentries) i = 0; } while (i != first); rc = sbuf_finish(sb); sbuf_delete(sb); done: free(buf, M_CXGBE); return (rc); } static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_fcoe_stats stats[4]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_fcoe_stats(sc, 0, &stats[0]); t4_get_fcoe_stats(sc, 1, &stats[1]); t4_get_fcoe_stats(sc, 2, &stats[2]); t4_get_fcoe_stats(sc, 3, &stats[3]); sbuf_printf(sb, " channel 0 channel 1 " "channel 2 channel 3\n"); sbuf_printf(sb, "octetsDDP: %16ju %16ju %16ju %16ju\n", stats[0].octetsDDP, stats[1].octetsDDP, stats[2].octetsDDP, stats[3].octetsDDP); sbuf_printf(sb, "framesDDP: %16u %16u %16u %16u\n", stats[0].framesDDP, stats[1].framesDDP, stats[2].framesDDP, stats[3].framesDDP); sbuf_printf(sb, "framesDrop: %16u %16u %16u %16u", stats[0].framesDrop, stats[1].framesDrop, stats[2].framesDrop, stats[3].framesDrop); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; unsigned int map, kbps, ipg, mode; unsigned int pace_tab[NTX_SCHED]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); t4_read_pace_tbl(sc, pace_tab); sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " "Class IPG (0.1 ns) Flow IPG (us)"); for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { t4_get_tx_sched(sc, i, &kbps, &ipg); sbuf_printf(sb, "\n %u %-5s %u ", i, (mode & (1 << i)) ? "flow" : "class", map & 3); if (kbps) sbuf_printf(sb, "%9u ", kbps); else sbuf_printf(sb, " disabled "); if (ipg) sbuf_printf(sb, "%13u ", ipg); else sbuf_printf(sb, " disabled "); if (pace_tab[i]) sbuf_printf(sb, "%10u", pace_tab[i]); else sbuf_printf(sb, " disabled"); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, j; uint64_t *p0, *p1; struct lb_port_stats s[2]; static const char *stat_name[] = { "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", "Frames128To255:", "Frames256To511:", "Frames512To1023:", "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", "BG2FramesTrunc:", "BG3FramesTrunc:" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); memset(s, 0, sizeof(s)); for (i = 0; i < 4; i += 2) { t4_get_lb_stats(sc, i, &s[0]); t4_get_lb_stats(sc, i + 1, &s[1]); p0 = &s[0].octets; p1 = &s[1].octets; sbuf_printf(sb, "%s Loopback %u" " Loopback %u", i == 0 ? "" : "\n", i, i + 1); for (j = 0; j < ARRAY_SIZE(stat_name); j++) sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], *p0++, *p1++); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } struct mem_desc { unsigned int base; unsigned int limit; unsigned int idx; }; static int mem_desc_cmp(const void *a, const void *b) { return ((const struct mem_desc *)a)->base - ((const struct mem_desc *)b)->base; } static void mem_region_show(struct sbuf *sb, const char *name, unsigned int from, unsigned int to) { unsigned int size; size = to - from + 1; if (size == 0) return; /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); } static int sysctl_meminfo(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i, n; uint32_t lo, hi; static const char *memory[] = { "EDC0:", "EDC1:", "MC:" }; static const char *region[] = { "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", "TDDP region:", "TPT region:", "STAG region:", "RQ region:", "RQUDP region:", "PBL region:", "TXPBL region:", "ULPRX state:", "ULPTX state:", "On-chip queues:" }; struct mem_desc avail[3]; struct mem_desc mem[ARRAY_SIZE(region) + 3]; /* up to 3 holes */ struct mem_desc *md = mem; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); if (sb == NULL) return (ENOMEM); for (i = 0; i < ARRAY_SIZE(mem); i++) { mem[i].limit = 0; mem[i].idx = i; } /* Find and sort the populated memory ranges */ i = 0; lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); if (lo & F_EDRAM0_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); avail[i].base = G_EDRAM0_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); avail[i].idx = 0; i++; } if (lo & F_EDRAM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); avail[i].base = G_EDRAM1_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); avail[i].idx = 1; i++; } if (lo & F_EXT_MEM_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); avail[i].base = G_EXT_MEM_BASE(hi) << 20; avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); avail[i].idx = 2; i++; } if (!i) /* no memory available */ return 0; qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); /* the next few have explicit upper bounds */ md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); md++; md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); md->limit = md->base - 1 + t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); md++; if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { hi = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); md->limit = (sc->tids.ntids - hi) * 16 + md->base - 1; } else { md->base = 0; md->idx = ARRAY_SIZE(region); /* hide it */ } md++; #define ulp_region(reg) \ md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) ulp_region(RX_ISCSI); ulp_region(RX_TDDP); ulp_region(TX_TPT); ulp_region(RX_STAG); ulp_region(RX_RQ); ulp_region(RX_RQUDP); ulp_region(RX_PBL); ulp_region(TX_PBL); #undef ulp_region md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); md->limit = md->base + sc->tids.ntids - 1; md++; md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); md->limit = md->base + sc->tids.ntids - 1; md++; md->base = sc->vres.ocq.start; if (sc->vres.ocq.size) md->limit = md->base + sc->vres.ocq.size - 1; else md->idx = ARRAY_SIZE(region); /* hide it */ md++; /* add any address-space holes, there can be up to 3 */ for (n = 0; n < i - 1; n++) if (avail[n].limit < avail[n + 1].base) (md++)->base = avail[n].limit; if (avail[n].limit) (md++)->base = avail[n].limit; n = md - mem; qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); for (lo = 0; lo < i; lo++) mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, avail[lo].limit - 1); sbuf_printf(sb, "\n"); for (i = 0; i < n; i++) { if (mem[i].idx >= ARRAY_SIZE(region)) continue; /* skip holes */ if (!mem[i].limit) mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; mem_region_show(sb, region[mem[i].idx], mem[i].base, mem[i].limit); } sbuf_printf(sb, "\n"); lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP RAM:", lo, hi); lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; mem_region_show(sb, "uP Extmem2:", lo, hi); lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", G_PMRXMAXPAGE(lo), t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, (lo & F_PMRXNUMCHN) ? 2 : 1); lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", G_PMTXMAXPAGE(lo), hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); sbuf_printf(sb, "%u p-structs\n", t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); for (i = 0; i < 4; i++) { lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", i, G_USED(lo), G_ALLOC(lo)); } for (i = 0; i < 4; i++) { lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); sbuf_printf(sb, "\nLoopback %d using %u pages out of %u allocated", i, G_USED(lo), G_ALLOC(lo)); } rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; uint16_t mtus[NMTUS]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_read_mtu_tbl(sc, mtus, NULL); sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], mtus[14], mtus[15]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc, i; uint32_t tx_cnt[PM_NSTATS], rx_cnt[PM_NSTATS]; uint64_t tx_cyc[PM_NSTATS], rx_cyc[PM_NSTATS]; static const char *pm_stats[] = { "Read:", "Write bypass:", "Write mem:", "Flush:", "FIFO wait:" }; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); sbuf_printf(sb, " Tx count Tx cycles " "Rx count Rx cycles"); for (i = 0; i < PM_NSTATS; i++) sbuf_printf(sb, "\n%-13s %10u %20ju %10u %20ju", pm_stats[i], tx_cnt[i], tx_cyc[i], rx_cnt[i], rx_cyc[i]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_rdma_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_rdma_stats(sc, &stats); sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_tcp_stats v4, v6; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_tcp_stats(sc, &v4, &v6); sbuf_printf(sb, " IP IPv6\n"); sbuf_printf(sb, "OutRsts: %20u %20u\n", v4.tcpOutRsts, v6.tcpOutRsts); sbuf_printf(sb, "InSegs: %20ju %20ju\n", v4.tcpInSegs, v6.tcpInSegs); sbuf_printf(sb, "OutSegs: %20ju %20ju\n", v4.tcpOutSegs, v6.tcpOutSegs); sbuf_printf(sb, "RetransSegs: %20ju %20ju", v4.tcpRetransSegs, v6.tcpRetransSegs); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tids(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tid_info *t = &sc->tids; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); if (t->natids) { sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, t->atids_in_use); } if (t->ntids) { if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { uint32_t b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; if (b) { sbuf_printf(sb, "TID range: 0-%u, %u-%u", b - 1, t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, t->ntids - 1); } else { sbuf_printf(sb, "TID range: %u-%u", t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, t->ntids - 1); } } else sbuf_printf(sb, "TID range: 0-%u", t->ntids - 1); sbuf_printf(sb, ", in use: %u\n", atomic_load_acq_int(&t->tids_in_use)); } if (t->nstids) { sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, t->stid_base + t->nstids - 1, t->stids_in_use); } if (t->nftids) { sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base, t->ftid_base + t->nftids - 1); } sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; struct tp_err_stats stats; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_tp_get_err_stats(sc, &stats); sbuf_printf(sb, " channel 0 channel 1 channel 2 " "channel 3\n"); sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", stats.macInErrs[0], stats.macInErrs[1], stats.macInErrs[2], stats.macInErrs[3]); sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", stats.hdrInErrs[0], stats.hdrInErrs[1], stats.hdrInErrs[2], stats.hdrInErrs[3]); sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", stats.tcpInErrs[0], stats.tcpInErrs[1], stats.tcpInErrs[2], stats.tcpInErrs[3]); sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", stats.tcp6InErrs[0], stats.tcp6InErrs[1], stats.tcp6InErrs[2], stats.tcp6InErrs[3]); sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", stats.tnlCongDrops[0], stats.tnlCongDrops[1], stats.tnlCongDrops[2], stats.tnlCongDrops[3]); sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", stats.tnlTxDrops[0], stats.tnlTxDrops[1], stats.tnlTxDrops[2], stats.tnlTxDrops[3]); sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", stats.ofldVlanDrops[0], stats.ofldVlanDrops[1], stats.ofldVlanDrops[2], stats.ofldVlanDrops[3]); sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", stats.ofldChanDrops[0], stats.ofldChanDrops[1], stats.ofldChanDrops[2], stats.ofldChanDrops[3]); sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", stats.ofldNoNeigh, stats.ofldCongDefer); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sbuf *sb; int rc; u64 nrate[NCHAN], orate[NCHAN]; rc = sysctl_wire_old_buffer(req, 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); if (sb == NULL) return (ENOMEM); t4_get_chan_txrate(sc, nrate, orate); sbuf_printf(sb, " channel 0 channel 1 channel 2 " "channel 3\n"); sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", nrate[0], nrate[1], nrate[2], nrate[3]); sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", orate[0], orate[1], orate[2], orate[3]); rc = sbuf_finish(sb); sbuf_delete(sb); return (rc); } #endif static inline void txq_start(struct ifnet *ifp, struct sge_txq *txq) { struct buf_ring *br; struct mbuf *m; TXQ_LOCK_ASSERT_OWNED(txq); br = txq->br; m = txq->m ? txq->m : drbr_dequeue(ifp, br); if (m) t4_eth_tx(ifp, txq, m); } void t4_tx_callout(void *arg) { struct sge_eq *eq = arg; struct adapter *sc; if (EQ_TRYLOCK(eq) == 0) goto reschedule; if (eq->flags & EQ_STALLED && !can_resume_tx(eq)) { EQ_UNLOCK(eq); reschedule: if (__predict_true(!(eq->flags && EQ_DOOMED))) callout_schedule(&eq->tx_callout, 1); return; } EQ_LOCK_ASSERT_OWNED(eq); if (__predict_true((eq->flags & EQ_DOOMED) == 0)) { if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) { struct sge_txq *txq = arg; struct port_info *pi = txq->ifp->if_softc; sc = pi->adapter; } else { struct sge_wrq *wrq = arg; sc = wrq->adapter; } taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task); } EQ_UNLOCK(eq); } void t4_tx_task(void *arg, int count) { struct sge_eq *eq = arg; EQ_LOCK(eq); if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) { struct sge_txq *txq = arg; txq_start(txq->ifp, txq); } else { struct sge_wrq *wrq = arg; t4_wrq_tx_locked(wrq->adapter, wrq, NULL); } EQ_UNLOCK(eq); } static uint32_t fconf_to_mode(uint32_t fconf) { uint32_t mode; mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR | T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT; if (fconf & F_FRAGMENTATION) mode |= T4_FILTER_IP_FRAGMENT; if (fconf & F_MPSHITTYPE) mode |= T4_FILTER_MPS_HIT_TYPE; if (fconf & F_MACMATCH) mode |= T4_FILTER_MAC_IDX; if (fconf & F_ETHERTYPE) mode |= T4_FILTER_ETH_TYPE; if (fconf & F_PROTOCOL) mode |= T4_FILTER_IP_PROTO; if (fconf & F_TOS) mode |= T4_FILTER_IP_TOS; if (fconf & F_VLAN) mode |= T4_FILTER_VLAN; if (fconf & F_VNIC_ID) mode |= T4_FILTER_VNIC; if (fconf & F_PORT) mode |= T4_FILTER_PORT; if (fconf & F_FCOE) mode |= T4_FILTER_FCoE; return (mode); } static uint32_t mode_to_fconf(uint32_t mode) { uint32_t fconf = 0; if (mode & T4_FILTER_IP_FRAGMENT) fconf |= F_FRAGMENTATION; if (mode & T4_FILTER_MPS_HIT_TYPE) fconf |= F_MPSHITTYPE; if (mode & T4_FILTER_MAC_IDX) fconf |= F_MACMATCH; if (mode & T4_FILTER_ETH_TYPE) fconf |= F_ETHERTYPE; if (mode & T4_FILTER_IP_PROTO) fconf |= F_PROTOCOL; if (mode & T4_FILTER_IP_TOS) fconf |= F_TOS; if (mode & T4_FILTER_VLAN) fconf |= F_VLAN; if (mode & T4_FILTER_VNIC) fconf |= F_VNIC_ID; if (mode & T4_FILTER_PORT) fconf |= F_PORT; if (mode & T4_FILTER_FCoE) fconf |= F_FCOE; return (fconf); } static uint32_t fspec_to_fconf(struct t4_filter_specification *fs) { uint32_t fconf = 0; if (fs->val.frag || fs->mask.frag) fconf |= F_FRAGMENTATION; if (fs->val.matchtype || fs->mask.matchtype) fconf |= F_MPSHITTYPE; if (fs->val.macidx || fs->mask.macidx) fconf |= F_MACMATCH; if (fs->val.ethtype || fs->mask.ethtype) fconf |= F_ETHERTYPE; if (fs->val.proto || fs->mask.proto) fconf |= F_PROTOCOL; if (fs->val.tos || fs->mask.tos) fconf |= F_TOS; if (fs->val.vlan_vld || fs->mask.vlan_vld) fconf |= F_VLAN; if (fs->val.vnic_vld || fs->mask.vnic_vld) fconf |= F_VNIC_ID; if (fs->val.iport || fs->mask.iport) fconf |= F_PORT; if (fs->val.fcoe || fs->mask.fcoe) fconf |= F_FCOE; return (fconf); } static int get_filter_mode(struct adapter *sc, uint32_t *mode) { uint32_t fconf; t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &fconf, 1, A_TP_VLAN_PRI_MAP); if (sc->filter_mode != fconf) { log(LOG_WARNING, "%s: cached filter mode out of sync %x %x.\n", device_get_nameunit(sc->dev), sc->filter_mode, fconf); sc->filter_mode = fconf; } *mode = fconf_to_mode(sc->filter_mode); return (0); } static int set_filter_mode(struct adapter *sc, uint32_t mode) { uint32_t fconf; int rc; fconf = mode_to_fconf(mode); ADAPTER_LOCK(sc); if (IS_BUSY(sc)) { rc = EAGAIN; goto done; } if (sc->tids.ftids_in_use > 0) { rc = EBUSY; goto done; } #ifdef TCP_OFFLOAD if (sc->offload_map) { rc = EBUSY; goto done; } #endif #ifdef notyet rc = -t4_set_filter_mode(sc, fconf); if (rc == 0) sc->filter_mode = fconf; #else rc = ENOTSUP; #endif done: ADAPTER_UNLOCK(sc); return (rc); } static inline uint64_t get_filter_hits(struct adapter *sc, uint32_t fid) { uint32_t tcb_base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); uint64_t hits; t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 0), tcb_base + (fid + sc->tids.ftid_base) * TCB_SIZE); t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 0)); hits = t4_read_reg64(sc, MEMWIN0_BASE + 16); return (be64toh(hits)); } static int get_filter(struct adapter *sc, struct t4_filter *t) { int i, nfilters = sc->tids.nftids; struct filter_entry *f; ADAPTER_LOCK_ASSERT_OWNED(sc); if (IS_BUSY(sc)) return (EAGAIN); if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL || t->idx >= nfilters) { t->idx = 0xffffffff; return (0); } f = &sc->tids.ftid_tab[t->idx]; for (i = t->idx; i < nfilters; i++, f++) { if (f->valid) { t->idx = i; t->l2tidx = f->l2t ? f->l2t->idx : 0; t->smtidx = f->smtidx; if (f->fs.hitcnts) t->hits = get_filter_hits(sc, t->idx); else t->hits = UINT64_MAX; t->fs = f->fs; return (0); } } t->idx = 0xffffffff; return (0); } static int set_filter(struct adapter *sc, struct t4_filter *t) { unsigned int nfilters, nports; struct filter_entry *f; int i; ADAPTER_LOCK_ASSERT_OWNED(sc); nfilters = sc->tids.nftids; nports = sc->params.nports; if (nfilters == 0) return (ENOTSUP); if (!(sc->flags & FULL_INIT_DONE)) return (EAGAIN); if (t->idx >= nfilters) return (EINVAL); /* Validate against the global filter mode */ if ((sc->filter_mode | fspec_to_fconf(&t->fs)) != sc->filter_mode) return (E2BIG); if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) return (EINVAL); if (t->fs.val.iport >= nports) return (EINVAL); /* Can't specify an iq if not steering to it */ if (!t->fs.dirsteer && t->fs.iq) return (EINVAL); /* IPv6 filter idx must be 4 aligned */ if (t->fs.type == 1 && ((t->idx & 0x3) || t->idx + 4 >= nfilters)) return (EINVAL); if (sc->tids.ftid_tab == NULL) { KASSERT(sc->tids.ftids_in_use == 0, ("%s: no memory allocated but filters_in_use > 0", __func__)); sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) * nfilters, M_CXGBE, M_NOWAIT | M_ZERO); if (sc->tids.ftid_tab == NULL) return (ENOMEM); } for (i = 0; i < 4; i++) { f = &sc->tids.ftid_tab[t->idx + i]; if (f->pending || f->valid) return (EBUSY); if (f->locked) return (EPERM); if (t->fs.type == 0) break; } f = &sc->tids.ftid_tab[t->idx]; f->fs = t->fs; return set_filter_wr(sc, t->idx); } static int del_filter(struct adapter *sc, struct t4_filter *t) { unsigned int nfilters; struct filter_entry *f; ADAPTER_LOCK_ASSERT_OWNED(sc); if (IS_BUSY(sc)) return (EAGAIN); nfilters = sc->tids.nftids; if (nfilters == 0) return (ENOTSUP); if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 || t->idx >= nfilters) return (EINVAL); if (!(sc->flags & FULL_INIT_DONE)) return (EAGAIN); f = &sc->tids.ftid_tab[t->idx]; if (f->pending) return (EBUSY); if (f->locked) return (EPERM); if (f->valid) { t->fs = f->fs; /* extra info for the caller */ return del_filter_wr(sc, t->idx); } return (0); } static void clear_filter(struct filter_entry *f) { if (f->l2t) t4_l2t_release(f->l2t); bzero(f, sizeof (*f)); } static int set_filter_wr(struct adapter *sc, int fidx) { struct filter_entry *f = &sc->tids.ftid_tab[fidx]; struct wrqe *wr; struct fw_filter_wr *fwr; unsigned int ftid; ADAPTER_LOCK_ASSERT_OWNED(sc); if (f->fs.newdmac || f->fs.newvlan) { /* This filter needs an L2T entry; allocate one. */ f->l2t = t4_l2t_alloc_switching(sc->l2t); if (f->l2t == NULL) return (EAGAIN); if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport, f->fs.dmac)) { t4_l2t_release(f->l2t); f->l2t = NULL; return (ENOMEM); } } ftid = sc->tids.ftid_base + fidx; wr = alloc_wrqe(sizeof(*fwr), &sc->sge.mgmtq); if (wr == NULL) return (ENOMEM); fwr = wrtod(wr); bzero(fwr, sizeof (*fwr)); fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR)); fwr->len16_pkd = htobe32(FW_LEN16(*fwr)); fwr->tid_to_iq = htobe32(V_FW_FILTER_WR_TID(ftid) | V_FW_FILTER_WR_RQTYPE(f->fs.type) | V_FW_FILTER_WR_NOREPLY(0) | V_FW_FILTER_WR_IQ(f->fs.iq)); fwr->del_filter_to_l2tix = htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | V_FW_FILTER_WR_DMAC(f->fs.newdmac) | V_FW_FILTER_WR_SMAC(f->fs.newsmac) | V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || f->fs.newvlan == VLAN_REWRITE) | V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || f->fs.newvlan == VLAN_REWRITE) | V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | V_FW_FILTER_WR_TXCHAN(f->fs.eport) | V_FW_FILTER_WR_PRIO(f->fs.prio) | V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); fwr->ethtype = htobe16(f->fs.val.ethtype); fwr->ethtypem = htobe16(f->fs.mask.ethtype); fwr->frag_to_ovlan_vldm = (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) | V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.vnic_vld) | V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) | V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.vnic_vld)); fwr->smac_sel = 0; fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) | V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id)); fwr->maci_to_matchtypem = htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | V_FW_FILTER_WR_PORT(f->fs.val.iport) | V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); fwr->ptcl = f->fs.val.proto; fwr->ptclm = f->fs.mask.proto; fwr->ttyp = f->fs.val.tos; fwr->ttypm = f->fs.mask.tos; fwr->ivlan = htobe16(f->fs.val.vlan); fwr->ivlanm = htobe16(f->fs.mask.vlan); fwr->ovlan = htobe16(f->fs.val.vnic); fwr->ovlanm = htobe16(f->fs.mask.vnic); bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip)); bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm)); bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip)); bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm)); fwr->lp = htobe16(f->fs.val.dport); fwr->lpm = htobe16(f->fs.mask.dport); fwr->fp = htobe16(f->fs.val.sport); fwr->fpm = htobe16(f->fs.mask.sport); if (f->fs.newsmac) bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma)); f->pending = 1; sc->tids.ftids_in_use++; t4_wrq_tx(sc, wr); return (0); } static int del_filter_wr(struct adapter *sc, int fidx) { struct filter_entry *f = &sc->tids.ftid_tab[fidx]; struct wrqe *wr; struct fw_filter_wr *fwr; unsigned int ftid; ADAPTER_LOCK_ASSERT_OWNED(sc); ftid = sc->tids.ftid_base + fidx; wr = alloc_wrqe(sizeof(*fwr), &sc->sge.mgmtq); if (wr == NULL) return (ENOMEM); fwr = wrtod(wr); bzero(fwr, sizeof (*fwr)); t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id); f->pending = 1; t4_wrq_tx(sc, wr); return (0); } static int filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1); unsigned int idx = GET_TID(rpl); KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); if (idx >= sc->tids.ftid_base && (idx -= sc->tids.ftid_base) < sc->tids.nftids) { unsigned int rc = G_COOKIE(rpl->cookie); struct filter_entry *f = &sc->tids.ftid_tab[idx]; ADAPTER_LOCK(sc); if (rc == FW_FILTER_WR_FLT_ADDED) { f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff; f->pending = 0; /* asynchronous setup completed */ f->valid = 1; } else { if (rc != FW_FILTER_WR_FLT_DELETED) { /* Add or delete failed, display an error */ log(LOG_ERR, "filter %u setup failed with error %u\n", idx, rc); } clear_filter(f); sc->tids.ftids_in_use--; } ADAPTER_UNLOCK(sc); } return (0); } static int get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) { int rc = EINVAL; if (cntxt->cid > M_CTXTQID) return (rc); if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) return (rc); if (sc->flags & FW_OK) { ADAPTER_LOCK(sc); /* Avoid parallel t4_wr_mbox */ rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); ADAPTER_UNLOCK(sc); } if (rc != 0) { /* Read via firmware failed or wasn't even attempted */ rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); } return (rc); } static int read_card_mem(struct adapter *sc, struct t4_mem_range *mr) { uint32_t base, size, lo, hi, win, off, remaining, i, n; uint32_t *buf, *b; int rc; /* reads are in multiples of 32 bits */ if (mr->addr & 3 || mr->len & 3 || mr->len == 0) return (EINVAL); /* * We don't want to deal with potential holes so we mandate that the * requested region must lie entirely within one of the 3 memories. */ lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); if (lo & F_EDRAM0_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); base = G_EDRAM0_BASE(hi) << 20; size = G_EDRAM0_SIZE(hi) << 20; if (size > 0 && mr->addr >= base && mr->addr < base + size && mr->addr + mr->len <= base + size) goto proceed; } if (lo & F_EDRAM1_ENABLE) { hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); base = G_EDRAM1_BASE(hi) << 20; size = G_EDRAM1_SIZE(hi) << 20; if (size > 0 && mr->addr >= base && mr->addr < base + size && mr->addr + mr->len <= base + size) goto proceed; } if (lo & F_EXT_MEM_ENABLE) { hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); base = G_EXT_MEM_BASE(hi) << 20; size = G_EXT_MEM_SIZE(hi) << 20; if (size > 0 && mr->addr >= base && mr->addr < base + size && mr->addr + mr->len <= base + size) goto proceed; } return (ENXIO); proceed: buf = b = malloc(mr->len, M_CXGBE, M_WAITOK); /* * Position the PCIe window (we use memwin2) to the 16B aligned area * just at/before the requested region. */ win = mr->addr & ~0xf; off = mr->addr - win; /* offset of the requested region in the win */ remaining = mr->len; while (remaining) { t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2), win); t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2)); /* number of bytes that we'll copy in the inner loop */ n = min(remaining, MEMWIN2_APERTURE - off); for (i = 0; i < n; i += 4, remaining -= 4) *b++ = t4_read_reg(sc, MEMWIN2_BASE + off + i); win += MEMWIN2_APERTURE; off = 0; } rc = copyout(buf, mr->data, mr->len); free(buf, M_CXGBE); return (rc); } int t4_os_find_pci_capability(struct adapter *sc, int cap) { int i; return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); } int t4_os_pci_save_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_save(dev, dinfo, 0); return (0); } int t4_os_pci_restore_state(struct adapter *sc) { device_t dev; struct pci_devinfo *dinfo; dev = sc->dev; dinfo = device_get_ivars(dev); pci_cfg_restore(dev, dinfo); return (0); } void t4_os_portmod_changed(const struct adapter *sc, int idx) { struct port_info *pi = sc->port[idx]; static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" }; if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) if_printf(pi->ifp, "transceiver unplugged.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) if_printf(pi->ifp, "unknown transceiver inserted.\n"); else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) if_printf(pi->ifp, "unsupported transceiver inserted.\n"); else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str)) { if_printf(pi->ifp, "%s transceiver inserted.\n", mod_str[pi->mod_type]); } else { if_printf(pi->ifp, "transceiver (type %d) inserted.\n", pi->mod_type); } } void t4_os_link_changed(struct adapter *sc, int idx, int link_stat) { struct port_info *pi = sc->port[idx]; struct ifnet *ifp = pi->ifp; if (link_stat) { ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed); if_link_state_change(ifp, LINK_STATE_UP); } else if_link_state_change(ifp, LINK_STATE_DOWN); } void t4_iterate(void (*func)(struct adapter *, void *), void *arg) { struct adapter *sc; mtx_lock(&t4_list_lock); SLIST_FOREACH(sc, &t4_list, link) { /* * func should not make any assumptions about what state sc is * in - the only guarantee is that sc->sc_lock is a valid lock. */ func(sc, arg); } mtx_unlock(&t4_list_lock); } static int t4_open(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int t4_close(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, struct thread *td) { int rc; struct adapter *sc = dev->si_drv1; rc = priv_check(td, PRIV_DRIVER); if (rc != 0) return (rc); switch (cmd) { case CHELSIO_T4_GETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) edata->val = t4_read_reg(sc, edata->addr); else if (edata->size == 8) edata->val = t4_read_reg64(sc, edata->addr); else return (EINVAL); break; } case CHELSIO_T4_SETREG: { struct t4_reg *edata = (struct t4_reg *)data; if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) return (EFAULT); if (edata->size == 4) { if (edata->val & 0xffffffff00000000) return (EINVAL); t4_write_reg(sc, edata->addr, (uint32_t) edata->val); } else if (edata->size == 8) t4_write_reg64(sc, edata->addr, edata->val); else return (EINVAL); break; } case CHELSIO_T4_REGDUMP: { struct t4_regdump *regs = (struct t4_regdump *)data; int reglen = T4_REGDUMP_SIZE; uint8_t *buf; if (regs->len < reglen) { regs->len = reglen; /* hint to the caller */ return (ENOBUFS); } regs->len = reglen; buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); t4_get_regs(sc, regs, buf); rc = copyout(buf, regs->data, reglen); free(buf, M_CXGBE); break; } case CHELSIO_T4_GET_FILTER_MODE: rc = get_filter_mode(sc, (uint32_t *)data); break; case CHELSIO_T4_SET_FILTER_MODE: rc = set_filter_mode(sc, *(uint32_t *)data); break; case CHELSIO_T4_GET_FILTER: ADAPTER_LOCK(sc); rc = get_filter(sc, (struct t4_filter *)data); ADAPTER_UNLOCK(sc); break; case CHELSIO_T4_SET_FILTER: ADAPTER_LOCK(sc); rc = set_filter(sc, (struct t4_filter *)data); ADAPTER_UNLOCK(sc); break; case CHELSIO_T4_DEL_FILTER: ADAPTER_LOCK(sc); rc = del_filter(sc, (struct t4_filter *)data); ADAPTER_UNLOCK(sc); break; case CHELSIO_T4_GET_SGE_CONTEXT: rc = get_sge_context(sc, (struct t4_sge_context *)data); break; case CHELSIO_T4_LOAD_FW: { struct t4_data *fw = (struct t4_data *)data; uint8_t *fw_data; if (sc->flags & FULL_INIT_DONE) return (EBUSY); fw_data = malloc(fw->len, M_CXGBE, M_NOWAIT); if (fw_data == NULL) return (ENOMEM); rc = copyin(fw->data, fw_data, fw->len); if (rc == 0) rc = -t4_load_fw(sc, fw_data, fw->len); free(fw_data, M_CXGBE); break; } case CHELSIO_T4_GET_MEM: rc = read_card_mem(sc, (struct t4_mem_range *)data); break; default: rc = EINVAL; } return (rc); } #ifdef TCP_OFFLOAD static int toe_capability(struct port_info *pi, int enable) { int rc; struct adapter *sc = pi->adapter; ADAPTER_LOCK_ASSERT_OWNED(sc); if (!is_offload(sc)) return (ENODEV); if (enable) { if (!(sc->flags & FULL_INIT_DONE)) { log(LOG_WARNING, "You must enable a cxgbe interface first\n"); return (EAGAIN); } if (isset(&sc->offload_map, pi->port_id)) return (0); if (!(sc->flags & TOM_INIT_DONE)) { rc = t4_activate_uld(sc, ULD_TOM); if (rc == EAGAIN) { log(LOG_WARNING, "You must kldload t4_tom.ko before trying " "to enable TOE on a cxgbe interface.\n"); } if (rc != 0) return (rc); KASSERT(sc->tom_softc != NULL, ("%s: TOM activated but softc NULL", __func__)); KASSERT(sc->flags & TOM_INIT_DONE, ("%s: TOM activated but flag not set", __func__)); } setbit(&sc->offload_map, pi->port_id); } else { if (!isset(&sc->offload_map, pi->port_id)) return (0); KASSERT(sc->flags & TOM_INIT_DONE, ("%s: TOM never initialized?", __func__)); clrbit(&sc->offload_map, pi->port_id); } return (0); } /* * Add an upper layer driver to the global list. */ int t4_register_uld(struct uld_info *ui) { int rc = 0; struct uld_info *u; mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u->uld_id == ui->uld_id) { rc = EEXIST; goto done; } } SLIST_INSERT_HEAD(&t4_uld_list, ui, link); ui->refcount = 0; done: mtx_unlock(&t4_uld_list_lock); return (rc); } int t4_unregister_uld(struct uld_info *ui) { int rc = EINVAL; struct uld_info *u; mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(u, &t4_uld_list, link) { if (u == ui) { if (ui->refcount > 0) { rc = EBUSY; goto done; } SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); rc = 0; goto done; } } done: mtx_unlock(&t4_uld_list_lock); return (rc); } int t4_activate_uld(struct adapter *sc, int id) { int rc = EAGAIN; struct uld_info *ui; mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { rc = ui->activate(sc); if (rc == 0) ui->refcount++; goto done; } } done: mtx_unlock(&t4_uld_list_lock); return (rc); } int t4_deactivate_uld(struct adapter *sc, int id) { int rc = EINVAL; struct uld_info *ui; mtx_lock(&t4_uld_list_lock); SLIST_FOREACH(ui, &t4_uld_list, link) { if (ui->uld_id == id) { rc = ui->deactivate(sc); if (rc == 0) ui->refcount--; goto done; } } done: mtx_unlock(&t4_uld_list_lock); return (rc); } #endif /* * Come up with reasonable defaults for some of the tunables, provided they're * not set by the user (in which case we'll use the values as is). */ static void tweak_tunables(void) { int nc = mp_ncpus; /* our snapshot of the number of CPUs */ if (t4_ntxq10g < 1) t4_ntxq10g = min(nc, NTXQ_10G); if (t4_ntxq1g < 1) t4_ntxq1g = min(nc, NTXQ_1G); if (t4_nrxq10g < 1) t4_nrxq10g = min(nc, NRXQ_10G); if (t4_nrxq1g < 1) t4_nrxq1g = min(nc, NRXQ_1G); #ifdef TCP_OFFLOAD if (t4_nofldtxq10g < 1) t4_nofldtxq10g = min(nc, NOFLDTXQ_10G); if (t4_nofldtxq1g < 1) t4_nofldtxq1g = min(nc, NOFLDTXQ_1G); if (t4_nofldrxq10g < 1) t4_nofldrxq10g = min(nc, NOFLDRXQ_10G); if (t4_nofldrxq1g < 1) t4_nofldrxq1g = min(nc, NOFLDRXQ_1G); if (t4_toecaps_allowed == -1) t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; #else if (t4_toecaps_allowed == -1) t4_toecaps_allowed = 0; #endif if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS) t4_tmr_idx_10g = TMR_IDX_10G; if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS) t4_pktc_idx_10g = PKTC_IDX_10G; if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS) t4_tmr_idx_1g = TMR_IDX_1G; if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS) t4_pktc_idx_1g = PKTC_IDX_1G; if (t4_qsize_txq < 128) t4_qsize_txq = 128; if (t4_qsize_rxq < 128) t4_qsize_rxq = 128; while (t4_qsize_rxq & 7) t4_qsize_rxq++; t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; } static int t4_mod_event(module_t mod, int cmd, void *arg) { int rc = 0; switch (cmd) { case MOD_LOAD: t4_sge_modload(); mtx_init(&t4_list_lock, "T4 adapters", 0, MTX_DEF); SLIST_INIT(&t4_list); #ifdef TCP_OFFLOAD mtx_init(&t4_uld_list_lock, "T4 ULDs", 0, MTX_DEF); SLIST_INIT(&t4_uld_list); #endif tweak_tunables(); break; case MOD_UNLOAD: #ifdef TCP_OFFLOAD mtx_lock(&t4_uld_list_lock); if (!SLIST_EMPTY(&t4_uld_list)) { rc = EBUSY; mtx_unlock(&t4_uld_list_lock); break; } mtx_unlock(&t4_uld_list_lock); mtx_destroy(&t4_uld_list_lock); #endif mtx_lock(&t4_list_lock); if (!SLIST_EMPTY(&t4_list)) { rc = EBUSY; mtx_unlock(&t4_list_lock); break; } mtx_unlock(&t4_list_lock); mtx_destroy(&t4_list_lock); break; } return (rc); } static devclass_t t4_devclass; static devclass_t cxgbe_devclass; DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, t4_mod_event, 0); MODULE_VERSION(t4nex, 1); DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); MODULE_VERSION(cxgbe, 1);