/* * Copyright (C) 2015, Luigi Rizzo. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * $FreeBSD$ * * netmap support for: ixl * * derived from ixgbe * netmap support for a network driver. * This file contains code but only static or inline functions used * by a single driver. To avoid replication of code we just #include * it near the beginning of the standard driver. * For ixl the file is imported in two places, hence the conditional at the * beginning. */ #include #include /* * Some drivers may need the following headers. Others * already include them by default #include #include */ #include int ixl_netmap_txsync(struct netmap_kring *kring, int flags); int ixl_netmap_rxsync(struct netmap_kring *kring, int flags); extern int ixl_rx_miss, ixl_rx_miss_bufs, ixl_crcstrip; #ifdef NETMAP_IXL_MAIN /* * device-specific sysctl variables: * * ixl_crcstrip: 0: keep CRC in rx frames (default), 1: strip it. * During regular operations the CRC is stripped, but on some * hardware reception of frames not multiple of 64 is slower, * so using crcstrip=0 helps in benchmarks. * * ixl_rx_miss, ixl_rx_miss_bufs: * count packets that might be missed due to lost interrupts. */ SYSCTL_DECL(_dev_netmap); int ixl_rx_miss, ixl_rx_miss_bufs, ixl_crcstrip; SYSCTL_INT(_dev_netmap, OID_AUTO, ixl_crcstrip, CTLFLAG_RW, &ixl_crcstrip, 0, "strip CRC on rx frames"); SYSCTL_INT(_dev_netmap, OID_AUTO, ixl_rx_miss, CTLFLAG_RW, &ixl_rx_miss, 0, "potentially missed rx intr"); SYSCTL_INT(_dev_netmap, OID_AUTO, ixl_rx_miss_bufs, CTLFLAG_RW, &ixl_rx_miss_bufs, 0, "potentially missed rx intr bufs"); /* * Register/unregister. We are already under netmap lock. * Only called on the first register or the last unregister. */ static int ixl_netmap_reg(struct netmap_adapter *na, int onoff) { struct ifnet *ifp = na->ifp; struct ixl_vsi *vsi = ifp->if_softc; struct ixl_pf *pf = (struct ixl_pf *)vsi->back; IXL_PF_LOCK(pf); ixl_disable_intr(vsi); /* Tell the stack that the interface is no longer active */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); //set_crcstrip(&adapter->hw, onoff); /* enable or disable flags and callbacks in na and ifp */ if (onoff) { nm_set_native_flags(na); } else { nm_clear_native_flags(na); } ixl_init_locked(pf); /* also enables intr */ //set_crcstrip(&adapter->hw, onoff); // XXX why twice ? IXL_PF_UNLOCK(pf); return (ifp->if_drv_flags & IFF_DRV_RUNNING ? 0 : 1); } /* * The attach routine, called near the end of ixl_attach(), * fills the parameters for netmap_attach() and calls it. * It cannot fail, in the worst case (such as no memory) * netmap mode will be disabled and the driver will only * operate in standard mode. */ static void ixl_netmap_attach(struct ixl_vsi *vsi) { struct netmap_adapter na; bzero(&na, sizeof(na)); na.ifp = vsi->ifp; na.na_flags = NAF_BDG_MAYSLEEP; // XXX check that queues is set. printf("queues is %p\n", vsi->queues); if (vsi->queues) { na.num_tx_desc = vsi->queues[0].num_desc; na.num_rx_desc = vsi->queues[0].num_desc; } na.nm_txsync = ixl_netmap_txsync; na.nm_rxsync = ixl_netmap_rxsync; na.nm_register = ixl_netmap_reg; na.num_tx_rings = na.num_rx_rings = vsi->num_queues; netmap_attach(&na); } #else /* !NETMAP_IXL_MAIN, code for ixl_txrx.c */ /* * Reconcile kernel and user view of the transmit ring. * * All information is in the kring. * Userspace wants to send packets up to the one before kring->rhead, * kernel knows kring->nr_hwcur is the first unsent packet. * * Here we push packets out (as many as possible), and possibly * reclaim buffers from previously completed transmission. * * The caller (netmap) guarantees that there is only one instance * running at any time. Any interference with other driver * methods should be handled by the individual drivers. */ int ixl_netmap_txsync(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct ifnet *ifp = na->ifp; struct netmap_ring *ring = kring->ring; u_int nm_i; /* index into the netmap ring */ u_int nic_i; /* index into the NIC ring */ u_int n; u_int const lim = kring->nkr_num_slots - 1; u_int const head = kring->rhead; /* * interrupts on every tx packet are expensive so request * them every half ring, or where NS_REPORT is set */ u_int report_frequency = kring->nkr_num_slots >> 1; /* device-specific */ struct ixl_vsi *vsi = ifp->if_softc; struct ixl_queue *que = &vsi->queues[kring->ring_id]; struct tx_ring *txr = &que->txr; bus_dmamap_sync(txr->dma.tag, txr->dma.map, BUS_DMASYNC_POSTREAD); /* * First part: process new packets to send. * nm_i is the current index in the netmap ring, * nic_i is the corresponding index in the NIC ring. * * If we have packets to send (nm_i != head) * iterate over the netmap ring, fetch length and update * the corresponding slot in the NIC ring. Some drivers also * need to update the buffer's physical address in the NIC slot * even NS_BUF_CHANGED is not set (PNMB computes the addresses). * * The netmap_reload_map() calls is especially expensive, * even when (as in this case) the tag is 0, so do only * when the buffer has actually changed. * * If possible do not set the report/intr bit on all slots, * but only a few times per ring or when NS_REPORT is set. * * Finally, on 10G and faster drivers, it might be useful * to prefetch the next slot and txr entry. */ nm_i = kring->nr_hwcur; if (nm_i != head) { /* we have new packets to send */ nic_i = netmap_idx_k2n(kring, nm_i); __builtin_prefetch(&ring->slot[nm_i]); __builtin_prefetch(&txr->buffers[nic_i]); for (n = 0; nm_i != head; n++) { struct netmap_slot *slot = &ring->slot[nm_i]; u_int len = slot->len; uint64_t paddr; void *addr = PNMB(na, slot, &paddr); /* device-specific */ struct i40e_tx_desc *curr = &txr->base[nic_i]; struct ixl_tx_buf *txbuf = &txr->buffers[nic_i]; u64 flags = (slot->flags & NS_REPORT || nic_i == 0 || nic_i == report_frequency) ? ((u64)I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT) : 0; /* prefetch for next round */ __builtin_prefetch(&ring->slot[nm_i + 1]); __builtin_prefetch(&txr->buffers[nic_i + 1]); NM_CHECK_ADDR_LEN(na, addr, len); if (slot->flags & NS_BUF_CHANGED) { /* buffer has changed, reload map */ netmap_reload_map(na, txr->dma.tag, txbuf->map, addr); } slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); /* Fill the slot in the NIC ring. */ curr->buffer_addr = htole64(paddr); curr->cmd_type_offset_bsz = htole64( ((u64)len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | flags | ((u64)I40E_TX_DESC_CMD_EOP << I40E_TXD_QW1_CMD_SHIFT) ); // XXX more ? /* make sure changes to the buffer are synced */ bus_dmamap_sync(txr->dma.tag, txbuf->map, BUS_DMASYNC_PREWRITE); nm_i = nm_next(nm_i, lim); nic_i = nm_next(nic_i, lim); } kring->nr_hwcur = head; /* synchronize the NIC ring */ bus_dmamap_sync(txr->dma.tag, txr->dma.map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* (re)start the tx unit up to slot nic_i (excluded) */ wr32(vsi->hw, txr->tail, nic_i); } /* * Second part: reclaim buffers for completed transmissions. */ nic_i = LE32_TO_CPU(*(volatile __le32 *)&txr->base[que->num_desc]); if (nic_i != txr->next_to_clean) { /* some tx completed, increment avail */ txr->next_to_clean = nic_i; kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim); } nm_txsync_finalize(kring); return 0; } /* * Reconcile kernel and user view of the receive ring. * Same as for the txsync, this routine must be efficient. * The caller guarantees a single invocations, but races against * the rest of the driver should be handled here. * * On call, kring->rhead is the first packet that userspace wants * to keep, and kring->rcur is the wakeup point. * The kernel has previously reported packets up to kring->rtail. * * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective * of whether or not we received an interrupt. */ int ixl_netmap_rxsync(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct ifnet *ifp = na->ifp; struct netmap_ring *ring = kring->ring; u_int nm_i; /* index into the netmap ring */ u_int nic_i; /* index into the NIC ring */ u_int n; u_int const lim = kring->nkr_num_slots - 1; u_int const head = nm_rxsync_prologue(kring); int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; /* device-specific */ struct ixl_vsi *vsi = ifp->if_softc; struct ixl_queue *que = &vsi->queues[kring->ring_id]; struct rx_ring *rxr = &que->rxr; if (head > lim) return netmap_ring_reinit(kring); /* XXX check sync modes */ bus_dmamap_sync(rxr->dma.tag, rxr->dma.map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * First part: import newly received packets. * * nm_i is the index of the next free slot in the netmap ring, * nic_i is the index of the next received packet in the NIC ring, * and they may differ in case if_init() has been called while * in netmap mode. For the receive ring we have * * nic_i = rxr->next_check; * nm_i = kring->nr_hwtail (previous) * and * nm_i == (nic_i + kring->nkr_hwofs) % ring_size * * rxr->next_check is set to 0 on a ring reinit */ if (netmap_no_pendintr || force_update) { int crclen = ixl_crcstrip ? 0 : 4; uint16_t slot_flags = kring->nkr_slot_flags; nic_i = rxr->next_check; // or also k2n(kring->nr_hwtail) nm_i = netmap_idx_n2k(kring, nic_i); for (n = 0; ; n++) { union i40e_32byte_rx_desc *curr = &rxr->base[nic_i]; uint64_t qword = le64toh(curr->wb.qword1.status_error_len); uint32_t staterr = (qword & I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT; if ((staterr & (1<slot[nm_i].len = ((qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - crclen; ring->slot[nm_i].flags = slot_flags; bus_dmamap_sync(rxr->ptag, rxr->buffers[nic_i].pmap, BUS_DMASYNC_POSTREAD); nm_i = nm_next(nm_i, lim); nic_i = nm_next(nic_i, lim); } if (n) { /* update the state variables */ if (netmap_no_pendintr && !force_update) { /* diagnostics */ ixl_rx_miss ++; ixl_rx_miss_bufs += n; } rxr->next_check = nic_i; kring->nr_hwtail = nm_i; } kring->nr_kflags &= ~NKR_PENDINTR; } /* * Second part: skip past packets that userspace has released. * (kring->nr_hwcur to head excluded), * and make the buffers available for reception. * As usual nm_i is the index in the netmap ring, * nic_i is the index in the NIC ring, and * nm_i == (nic_i + kring->nkr_hwofs) % ring_size */ nm_i = kring->nr_hwcur; if (nm_i != head) { nic_i = netmap_idx_k2n(kring, nm_i); for (n = 0; nm_i != head; n++) { struct netmap_slot *slot = &ring->slot[nm_i]; uint64_t paddr; void *addr = PNMB(na, slot, &paddr); union i40e_32byte_rx_desc *curr = &rxr->base[nic_i]; struct ixl_rx_buf *rxbuf = &rxr->buffers[nic_i]; if (addr == NETMAP_BUF_BASE(na)) /* bad buf */ goto ring_reset; if (slot->flags & NS_BUF_CHANGED) { /* buffer has changed, reload map */ netmap_reload_map(na, rxr->ptag, rxbuf->pmap, addr); slot->flags &= ~NS_BUF_CHANGED; } curr->read.pkt_addr = htole64(paddr); curr->read.hdr_addr = 0; // XXX needed bus_dmamap_sync(rxr->ptag, rxbuf->pmap, BUS_DMASYNC_PREREAD); nm_i = nm_next(nm_i, lim); nic_i = nm_next(nic_i, lim); } kring->nr_hwcur = head; bus_dmamap_sync(rxr->dma.tag, rxr->dma.map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * IMPORTANT: we must leave one free slot in the ring, * so move nic_i back by one unit */ nic_i = nm_prev(nic_i, lim); wr32(vsi->hw, rxr->tail, nic_i); } /* tell userspace that there might be new packets */ nm_rxsync_finalize(kring); return 0; ring_reset: return netmap_ring_reinit(kring); } #endif /* !NETMAP_IXL_MAIN */ /* end of file */