/*- * Copyright (c) 2016, Vincenzo Maffione * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* Driver for ptnet paravirtualized network device. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #ifdef WITH_PTNETMAP #ifndef INET #error "INET not defined, cannot support offloadings" #endif #if __FreeBSD_version >= 1100000 static uint64_t ptnet_get_counter(if_t, ift_counter); #else typedef struct ifnet *if_t; #define if_getsoftc(_ifp) (_ifp)->if_softc #endif //#define PTNETMAP_STATS //#define DEBUG #ifdef DEBUG #define DBG(x) x #else /* !DEBUG */ #define DBG(x) #endif /* !DEBUG */ extern int ptnet_vnet_hdr; /* Tunable parameter */ struct ptnet_softc; struct ptnet_queue_stats { uint64_t packets; /* if_[io]packets */ uint64_t bytes; /* if_[io]bytes */ uint64_t errors; /* if_[io]errors */ uint64_t iqdrops; /* if_iqdrops */ uint64_t mcasts; /* if_[io]mcasts */ #ifdef PTNETMAP_STATS uint64_t intrs; uint64_t kicks; #endif /* PTNETMAP_STATS */ }; struct ptnet_queue { struct ptnet_softc *sc; struct resource *irq; void *cookie; int kring_id; struct nm_csb_atok *atok; struct nm_csb_ktoa *ktoa; unsigned int kick; struct mtx lock; struct buf_ring *bufring; /* for TX queues */ struct ptnet_queue_stats stats; #ifdef PTNETMAP_STATS struct ptnet_queue_stats last_stats; #endif /* PTNETMAP_STATS */ struct taskqueue *taskq; struct task task; char lock_name[16]; }; #define PTNET_Q_LOCK(_pq) mtx_lock(&(_pq)->lock) #define PTNET_Q_TRYLOCK(_pq) mtx_trylock(&(_pq)->lock) #define PTNET_Q_UNLOCK(_pq) mtx_unlock(&(_pq)->lock) struct ptnet_softc { device_t dev; if_t ifp; struct ifmedia media; struct mtx lock; char lock_name[16]; char hwaddr[ETHER_ADDR_LEN]; /* Mirror of PTFEAT register. */ uint32_t ptfeatures; unsigned int vnet_hdr_len; /* PCI BARs support. */ struct resource *iomem; struct resource *msix_mem; unsigned int num_rings; unsigned int num_tx_rings; struct ptnet_queue *queues; struct ptnet_queue *rxqueues; struct nm_csb_atok *csb_gh; struct nm_csb_ktoa *csb_hg; unsigned int min_tx_space; struct netmap_pt_guest_adapter *ptna; struct callout tick; #ifdef PTNETMAP_STATS struct timeval last_ts; #endif /* PTNETMAP_STATS */ }; #define PTNET_CORE_LOCK(_sc) mtx_lock(&(_sc)->lock) #define PTNET_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->lock) static int ptnet_probe(device_t); static int ptnet_attach(device_t); static int ptnet_detach(device_t); static int ptnet_suspend(device_t); static int ptnet_resume(device_t); static int ptnet_shutdown(device_t); static void ptnet_init(void *opaque); static int ptnet_ioctl(if_t ifp, u_long cmd, caddr_t data); static int ptnet_init_locked(struct ptnet_softc *sc); static int ptnet_stop(struct ptnet_softc *sc); static int ptnet_transmit(if_t ifp, struct mbuf *m); static int ptnet_drain_transmit_queue(struct ptnet_queue *pq, unsigned int budget, bool may_resched); static void ptnet_qflush(if_t ifp); static void ptnet_tx_task(void *context, int pending); static int ptnet_media_change(if_t ifp); static void ptnet_media_status(if_t ifp, struct ifmediareq *ifmr); #ifdef PTNETMAP_STATS static void ptnet_tick(void *opaque); #endif static int ptnet_irqs_init(struct ptnet_softc *sc); static void ptnet_irqs_fini(struct ptnet_softc *sc); static uint32_t ptnet_nm_ptctl(struct ptnet_softc *sc, uint32_t cmd); static int ptnet_nm_config(struct netmap_adapter *na, struct nm_config_info *info); static void ptnet_update_vnet_hdr(struct ptnet_softc *sc); static int ptnet_nm_register(struct netmap_adapter *na, int onoff); static int ptnet_nm_txsync(struct netmap_kring *kring, int flags); static int ptnet_nm_rxsync(struct netmap_kring *kring, int flags); static void ptnet_nm_intr(struct netmap_adapter *na, int onoff); static void ptnet_tx_intr(void *opaque); static void ptnet_rx_intr(void *opaque); static unsigned ptnet_rx_discard(struct netmap_kring *kring, unsigned int head); static int ptnet_rx_eof(struct ptnet_queue *pq, unsigned int budget, bool may_resched); static void ptnet_rx_task(void *context, int pending); #ifdef DEVICE_POLLING static poll_handler_t ptnet_poll; #endif static device_method_t ptnet_methods[] = { DEVMETHOD(device_probe, ptnet_probe), DEVMETHOD(device_attach, ptnet_attach), DEVMETHOD(device_detach, ptnet_detach), DEVMETHOD(device_suspend, ptnet_suspend), DEVMETHOD(device_resume, ptnet_resume), DEVMETHOD(device_shutdown, ptnet_shutdown), DEVMETHOD_END }; static driver_t ptnet_driver = { "ptnet", ptnet_methods, sizeof(struct ptnet_softc) }; /* We use (SI_ORDER_MIDDLE+2) here, see DEV_MODULE_ORDERED() invocation. */ static devclass_t ptnet_devclass; DRIVER_MODULE_ORDERED(ptnet, pci, ptnet_driver, ptnet_devclass, NULL, NULL, SI_ORDER_MIDDLE + 2); static int ptnet_probe(device_t dev) { if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID || pci_get_device(dev) != PTNETMAP_PCI_NETIF_ID) { return (ENXIO); } device_set_desc(dev, "ptnet network adapter"); return (BUS_PROBE_DEFAULT); } static inline void ptnet_kick(struct ptnet_queue *pq) { #ifdef PTNETMAP_STATS pq->stats.kicks ++; #endif /* PTNETMAP_STATS */ bus_write_4(pq->sc->iomem, pq->kick, 0); } #define PTNET_BUF_RING_SIZE 4096 #define PTNET_RX_BUDGET 512 #define PTNET_RX_BATCH 1 #define PTNET_TX_BUDGET 512 #define PTNET_TX_BATCH 64 #define PTNET_HDR_SIZE sizeof(struct virtio_net_hdr_mrg_rxbuf) #define PTNET_MAX_PKT_SIZE 65536 #define PTNET_CSUM_OFFLOAD (CSUM_TCP | CSUM_UDP) #define PTNET_CSUM_OFFLOAD_IPV6 (CSUM_TCP_IPV6 | CSUM_UDP_IPV6) #define PTNET_ALL_OFFLOAD (CSUM_TSO | PTNET_CSUM_OFFLOAD |\ PTNET_CSUM_OFFLOAD_IPV6) static int ptnet_attach(device_t dev) { uint32_t ptfeatures = 0; unsigned int num_rx_rings, num_tx_rings; struct netmap_adapter na_arg; unsigned int nifp_offset; struct ptnet_softc *sc; if_t ifp; uint32_t macreg; int err, rid; int i; sc = device_get_softc(dev); sc->dev = dev; /* Setup PCI resources. */ pci_enable_busmaster(dev); rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); sc->iomem = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (sc->iomem == NULL) { device_printf(dev, "Failed to map I/O BAR\n"); return (ENXIO); } /* Negotiate features with the hypervisor. */ if (ptnet_vnet_hdr) { ptfeatures |= PTNETMAP_F_VNET_HDR; } bus_write_4(sc->iomem, PTNET_IO_PTFEAT, ptfeatures); /* wanted */ ptfeatures = bus_read_4(sc->iomem, PTNET_IO_PTFEAT); /* acked */ sc->ptfeatures = ptfeatures; num_tx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_RINGS); num_rx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_RINGS); sc->num_rings = num_tx_rings + num_rx_rings; sc->num_tx_rings = num_tx_rings; if (sc->num_rings * sizeof(struct nm_csb_atok) > PAGE_SIZE) { device_printf(dev, "CSB cannot handle that many rings (%u)\n", sc->num_rings); err = ENOMEM; goto err_path; } /* Allocate CSB and carry out CSB allocation protocol. */ sc->csb_gh = contigmalloc(2*PAGE_SIZE, M_DEVBUF, M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0); if (sc->csb_gh == NULL) { device_printf(dev, "Failed to allocate CSB\n"); err = ENOMEM; goto err_path; } sc->csb_hg = (struct nm_csb_ktoa *)(((char *)sc->csb_gh) + PAGE_SIZE); { /* * We use uint64_t rather than vm_paddr_t since we * need 64 bit addresses even on 32 bit platforms. */ uint64_t paddr = vtophys(sc->csb_gh); /* CSB allocation protocol: write to BAH first, then * to BAL (for both GH and HG sections). */ bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAH, (paddr >> 32) & 0xffffffff); bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAL, paddr & 0xffffffff); paddr = vtophys(sc->csb_hg); bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAH, (paddr >> 32) & 0xffffffff); bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAL, paddr & 0xffffffff); } /* Allocate and initialize per-queue data structures. */ sc->queues = malloc(sizeof(struct ptnet_queue) * sc->num_rings, M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->queues == NULL) { err = ENOMEM; goto err_path; } sc->rxqueues = sc->queues + num_tx_rings; for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; pq->sc = sc; pq->kring_id = i; pq->kick = PTNET_IO_KICK_BASE + 4 * i; pq->atok = sc->csb_gh + i; pq->ktoa = sc->csb_hg + i; snprintf(pq->lock_name, sizeof(pq->lock_name), "%s-%d", device_get_nameunit(dev), i); mtx_init(&pq->lock, pq->lock_name, NULL, MTX_DEF); if (i >= num_tx_rings) { /* RX queue: fix kring_id. */ pq->kring_id -= num_tx_rings; } else { /* TX queue: allocate buf_ring. */ pq->bufring = buf_ring_alloc(PTNET_BUF_RING_SIZE, M_DEVBUF, M_NOWAIT, &pq->lock); if (pq->bufring == NULL) { err = ENOMEM; goto err_path; } } } sc->min_tx_space = 64; /* Safe initial value. */ err = ptnet_irqs_init(sc); if (err) { goto err_path; } /* Setup Ethernet interface. */ sc->ifp = ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "Failed to allocate ifnet\n"); err = ENOMEM; goto err_path; } if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_baudrate = IF_Gbps(10); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX; ifp->if_init = ptnet_init; ifp->if_ioctl = ptnet_ioctl; #if __FreeBSD_version >= 1100000 ifp->if_get_counter = ptnet_get_counter; #endif ifp->if_transmit = ptnet_transmit; ifp->if_qflush = ptnet_qflush; ifmedia_init(&sc->media, IFM_IMASK, ptnet_media_change, ptnet_media_status); ifmedia_add(&sc->media, IFM_ETHER | IFM_10G_T | IFM_FDX, 0, NULL); ifmedia_set(&sc->media, IFM_ETHER | IFM_10G_T | IFM_FDX); macreg = bus_read_4(sc->iomem, PTNET_IO_MAC_HI); sc->hwaddr[0] = (macreg >> 8) & 0xff; sc->hwaddr[1] = macreg & 0xff; macreg = bus_read_4(sc->iomem, PTNET_IO_MAC_LO); sc->hwaddr[2] = (macreg >> 24) & 0xff; sc->hwaddr[3] = (macreg >> 16) & 0xff; sc->hwaddr[4] = (macreg >> 8) & 0xff; sc->hwaddr[5] = macreg & 0xff; ether_ifattach(ifp, sc->hwaddr); ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU; if (sc->ptfeatures & PTNETMAP_F_VNET_HDR) { /* Similarly to what the vtnet driver does, we can emulate * VLAN offloadings by inserting and removing the 802.1Q * header during transmit and receive. We are then able * to do checksum offloading of VLAN frames. */ ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWTAGGING; } ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING /* Don't enable polling by default. */ ifp->if_capabilities |= IFCAP_POLLING; #endif snprintf(sc->lock_name, sizeof(sc->lock_name), "%s", device_get_nameunit(dev)); mtx_init(&sc->lock, sc->lock_name, "ptnet core lock", MTX_DEF); callout_init_mtx(&sc->tick, &sc->lock, 0); /* Prepare a netmap_adapter struct instance to do netmap_attach(). */ nifp_offset = bus_read_4(sc->iomem, PTNET_IO_NIFP_OFS); memset(&na_arg, 0, sizeof(na_arg)); na_arg.ifp = ifp; na_arg.num_tx_desc = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_SLOTS); na_arg.num_rx_desc = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_SLOTS); na_arg.num_tx_rings = num_tx_rings; na_arg.num_rx_rings = num_rx_rings; na_arg.nm_config = ptnet_nm_config; na_arg.nm_krings_create = ptnet_nm_krings_create; na_arg.nm_krings_delete = ptnet_nm_krings_delete; na_arg.nm_dtor = ptnet_nm_dtor; na_arg.nm_intr = ptnet_nm_intr; na_arg.nm_register = ptnet_nm_register; na_arg.nm_txsync = ptnet_nm_txsync; na_arg.nm_rxsync = ptnet_nm_rxsync; netmap_pt_guest_attach(&na_arg, nifp_offset, bus_read_4(sc->iomem, PTNET_IO_HOSTMEMID)); /* Now a netmap adapter for this ifp has been allocated, and it * can be accessed through NA(ifp). We also have to initialize the CSB * pointer. */ sc->ptna = (struct netmap_pt_guest_adapter *)NA(ifp); /* If virtio-net header was negotiated, set the virt_hdr_len field in * the netmap adapter, to inform users that this netmap adapter requires * the application to deal with the headers. */ ptnet_update_vnet_hdr(sc); device_printf(dev, "%s() completed\n", __func__); return (0); err_path: ptnet_detach(dev); return err; } /* Stop host sync-kloop if it was running. */ static void ptnet_device_shutdown(struct ptnet_softc *sc) { ptnet_nm_ptctl(sc, PTNETMAP_PTCTL_DELETE); bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAH, 0); bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAL, 0); bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAH, 0); bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAL, 0); } static int ptnet_detach(device_t dev) { struct ptnet_softc *sc = device_get_softc(dev); int i; ptnet_device_shutdown(sc); #ifdef DEVICE_POLLING if (sc->ifp->if_capenable & IFCAP_POLLING) { ether_poll_deregister(sc->ifp); } #endif callout_drain(&sc->tick); if (sc->queues) { /* Drain taskqueues before calling if_detach. */ for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; if (pq->taskq) { taskqueue_drain(pq->taskq, &pq->task); } } } if (sc->ifp) { ether_ifdetach(sc->ifp); /* Uninitialize netmap adapters for this device. */ netmap_detach(sc->ifp); ifmedia_removeall(&sc->media); if_free(sc->ifp); sc->ifp = NULL; } ptnet_irqs_fini(sc); if (sc->csb_gh) { contigfree(sc->csb_gh, 2*PAGE_SIZE, M_DEVBUF); sc->csb_gh = NULL; sc->csb_hg = NULL; } if (sc->queues) { for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; if (mtx_initialized(&pq->lock)) { mtx_destroy(&pq->lock); } if (pq->bufring != NULL) { buf_ring_free(pq->bufring, M_DEVBUF); } } free(sc->queues, M_DEVBUF); sc->queues = NULL; } if (sc->iomem) { bus_release_resource(dev, SYS_RES_IOPORT, PCIR_BAR(PTNETMAP_IO_PCI_BAR), sc->iomem); sc->iomem = NULL; } mtx_destroy(&sc->lock); device_printf(dev, "%s() completed\n", __func__); return (0); } static int ptnet_suspend(device_t dev) { struct ptnet_softc *sc = device_get_softc(dev); (void)sc; return (0); } static int ptnet_resume(device_t dev) { struct ptnet_softc *sc = device_get_softc(dev); (void)sc; return (0); } static int ptnet_shutdown(device_t dev) { struct ptnet_softc *sc = device_get_softc(dev); ptnet_device_shutdown(sc); return (0); } static int ptnet_irqs_init(struct ptnet_softc *sc) { int rid = PCIR_BAR(PTNETMAP_MSIX_PCI_BAR); int nvecs = sc->num_rings; device_t dev = sc->dev; int err = ENOSPC; int cpu_cur; int i; if (pci_find_cap(dev, PCIY_MSIX, NULL) != 0) { device_printf(dev, "Could not find MSI-X capability\n"); return (ENXIO); } sc->msix_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->msix_mem == NULL) { device_printf(dev, "Failed to allocate MSIX PCI BAR\n"); return (ENXIO); } if (pci_msix_count(dev) < nvecs) { device_printf(dev, "Not enough MSI-X vectors\n"); goto err_path; } err = pci_alloc_msix(dev, &nvecs); if (err) { device_printf(dev, "Failed to allocate MSI-X vectors\n"); goto err_path; } for (i = 0; i < nvecs; i++) { struct ptnet_queue *pq = sc->queues + i; rid = i + 1; pq->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (pq->irq == NULL) { device_printf(dev, "Failed to allocate interrupt " "for queue #%d\n", i); err = ENOSPC; goto err_path; } } cpu_cur = CPU_FIRST(); for (i = 0; i < nvecs; i++) { struct ptnet_queue *pq = sc->queues + i; void (*handler)(void *) = ptnet_tx_intr; if (i >= sc->num_tx_rings) { handler = ptnet_rx_intr; } err = bus_setup_intr(dev, pq->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL /* intr_filter */, handler, pq, &pq->cookie); if (err) { device_printf(dev, "Failed to register intr handler " "for queue #%d\n", i); goto err_path; } bus_describe_intr(dev, pq->irq, pq->cookie, "q%d", i); #if 0 bus_bind_intr(sc->dev, pq->irq, cpu_cur); #endif cpu_cur = CPU_NEXT(cpu_cur); } device_printf(dev, "Allocated %d MSI-X vectors\n", nvecs); cpu_cur = CPU_FIRST(); for (i = 0; i < nvecs; i++) { struct ptnet_queue *pq = sc->queues + i; if (i < sc->num_tx_rings) TASK_INIT(&pq->task, 0, ptnet_tx_task, pq); else NET_TASK_INIT(&pq->task, 0, ptnet_rx_task, pq); pq->taskq = taskqueue_create_fast("ptnet_queue", M_NOWAIT, taskqueue_thread_enqueue, &pq->taskq); taskqueue_start_threads(&pq->taskq, 1, PI_NET, "%s-pq-%d", device_get_nameunit(sc->dev), cpu_cur); cpu_cur = CPU_NEXT(cpu_cur); } return 0; err_path: ptnet_irqs_fini(sc); return err; } static void ptnet_irqs_fini(struct ptnet_softc *sc) { device_t dev = sc->dev; int i; for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; if (pq->taskq) { taskqueue_free(pq->taskq); pq->taskq = NULL; } if (pq->cookie) { bus_teardown_intr(dev, pq->irq, pq->cookie); pq->cookie = NULL; } if (pq->irq) { bus_release_resource(dev, SYS_RES_IRQ, i + 1, pq->irq); pq->irq = NULL; } } if (sc->msix_mem) { pci_release_msi(dev); bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(PTNETMAP_MSIX_PCI_BAR), sc->msix_mem); sc->msix_mem = NULL; } } static void ptnet_init(void *opaque) { struct ptnet_softc *sc = opaque; PTNET_CORE_LOCK(sc); ptnet_init_locked(sc); PTNET_CORE_UNLOCK(sc); } static int ptnet_ioctl(if_t ifp, u_long cmd, caddr_t data) { struct ptnet_softc *sc = if_getsoftc(ifp); device_t dev = sc->dev; struct ifreq *ifr = (struct ifreq *)data; int mask __unused, err = 0; switch (cmd) { case SIOCSIFFLAGS: device_printf(dev, "SIOCSIFFLAGS %x\n", ifp->if_flags); PTNET_CORE_LOCK(sc); if (ifp->if_flags & IFF_UP) { /* Network stack wants the iff to be up. */ err = ptnet_init_locked(sc); } else { /* Network stack wants the iff to be down. */ err = ptnet_stop(sc); } /* We don't need to do nothing to support IFF_PROMISC, * since that is managed by the backend port. */ PTNET_CORE_UNLOCK(sc); break; case SIOCSIFCAP: device_printf(dev, "SIOCSIFCAP %x %x\n", ifr->ifr_reqcap, ifp->if_capenable); mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { struct ptnet_queue *pq; int i; if (ifr->ifr_reqcap & IFCAP_POLLING) { err = ether_poll_register(ptnet_poll, ifp); if (err) { break; } /* Stop queues and sync with taskqueues. */ ifp->if_drv_flags &= ~IFF_DRV_RUNNING; for (i = 0; i < sc->num_rings; i++) { pq = sc-> queues + i; /* Make sure the worker sees the * IFF_DRV_RUNNING down. */ PTNET_Q_LOCK(pq); pq->atok->appl_need_kick = 0; PTNET_Q_UNLOCK(pq); /* Wait for rescheduling to finish. */ if (pq->taskq) { taskqueue_drain(pq->taskq, &pq->task); } } ifp->if_drv_flags |= IFF_DRV_RUNNING; } else { err = ether_poll_deregister(ifp); for (i = 0; i < sc->num_rings; i++) { pq = sc-> queues + i; PTNET_Q_LOCK(pq); pq->atok->appl_need_kick = 1; PTNET_Q_UNLOCK(pq); } } } #endif /* DEVICE_POLLING */ ifp->if_capenable = ifr->ifr_reqcap; break; case SIOCSIFMTU: /* We support any reasonable MTU. */ if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > PTNET_MAX_PKT_SIZE) { err = EINVAL; } else { PTNET_CORE_LOCK(sc); ifp->if_mtu = ifr->ifr_mtu; PTNET_CORE_UNLOCK(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: err = ifmedia_ioctl(ifp, ifr, &sc->media, cmd); break; default: err = ether_ioctl(ifp, cmd, data); break; } return err; } static int ptnet_init_locked(struct ptnet_softc *sc) { if_t ifp = sc->ifp; struct netmap_adapter *na_dr = &sc->ptna->dr.up; struct netmap_adapter *na_nm = &sc->ptna->hwup.up; unsigned int nm_buf_size; int ret; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { return 0; /* nothing to do */ } device_printf(sc->dev, "%s\n", __func__); /* Translate offload capabilities according to if_capenable. */ ifp->if_hwassist = 0; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= PTNET_CSUM_OFFLOAD; if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) ifp->if_hwassist |= PTNET_CSUM_OFFLOAD_IPV6; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_IP_TSO; if (ifp->if_capenable & IFCAP_TSO6) ifp->if_hwassist |= CSUM_IP6_TSO; /* * Prepare the interface for netmap mode access. */ netmap_update_config(na_dr); ret = netmap_mem_finalize(na_dr->nm_mem, na_dr); if (ret) { device_printf(sc->dev, "netmap_mem_finalize() failed\n"); return ret; } if (sc->ptna->backend_users == 0) { ret = ptnet_nm_krings_create(na_nm); if (ret) { device_printf(sc->dev, "ptnet_nm_krings_create() " "failed\n"); goto err_mem_finalize; } ret = netmap_mem_rings_create(na_dr); if (ret) { device_printf(sc->dev, "netmap_mem_rings_create() " "failed\n"); goto err_rings_create; } ret = netmap_mem_get_lut(na_dr->nm_mem, &na_dr->na_lut); if (ret) { device_printf(sc->dev, "netmap_mem_get_lut() " "failed\n"); goto err_get_lut; } } ret = ptnet_nm_register(na_dr, 1 /* on */); if (ret) { goto err_register; } nm_buf_size = NETMAP_BUF_SIZE(na_dr); KASSERT(nm_buf_size > 0, ("Invalid netmap buffer size")); sc->min_tx_space = PTNET_MAX_PKT_SIZE / nm_buf_size + 2; device_printf(sc->dev, "%s: min_tx_space = %u\n", __func__, sc->min_tx_space); #ifdef PTNETMAP_STATS callout_reset(&sc->tick, hz, ptnet_tick, sc); #endif ifp->if_drv_flags |= IFF_DRV_RUNNING; return 0; err_register: memset(&na_dr->na_lut, 0, sizeof(na_dr->na_lut)); err_get_lut: netmap_mem_rings_delete(na_dr); err_rings_create: ptnet_nm_krings_delete(na_nm); err_mem_finalize: netmap_mem_deref(na_dr->nm_mem, na_dr); return ret; } /* To be called under core lock. */ static int ptnet_stop(struct ptnet_softc *sc) { if_t ifp = sc->ifp; struct netmap_adapter *na_dr = &sc->ptna->dr.up; struct netmap_adapter *na_nm = &sc->ptna->hwup.up; int i; device_printf(sc->dev, "%s\n", __func__); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { return 0; /* nothing to do */ } /* Clear the driver-ready flag, and synchronize with all the queues, * so that after this loop we are sure nobody is working anymore with * the device. This scheme is taken from the vtnet driver. */ ifp->if_drv_flags &= ~IFF_DRV_RUNNING; callout_stop(&sc->tick); for (i = 0; i < sc->num_rings; i++) { PTNET_Q_LOCK(sc->queues + i); PTNET_Q_UNLOCK(sc->queues + i); } ptnet_nm_register(na_dr, 0 /* off */); if (sc->ptna->backend_users == 0) { netmap_mem_rings_delete(na_dr); ptnet_nm_krings_delete(na_nm); } netmap_mem_deref(na_dr->nm_mem, na_dr); return 0; } static void ptnet_qflush(if_t ifp) { struct ptnet_softc *sc = if_getsoftc(ifp); int i; /* Flush all the bufrings and do the interface flush. */ for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; struct mbuf *m; PTNET_Q_LOCK(pq); if (pq->bufring) { while ((m = buf_ring_dequeue_sc(pq->bufring))) { m_freem(m); } } PTNET_Q_UNLOCK(pq); } if_qflush(ifp); } static int ptnet_media_change(if_t ifp) { struct ptnet_softc *sc = if_getsoftc(ifp); struct ifmedia *ifm = &sc->media; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { return EINVAL; } return 0; } #if __FreeBSD_version >= 1100000 static uint64_t ptnet_get_counter(if_t ifp, ift_counter cnt) { struct ptnet_softc *sc = if_getsoftc(ifp); struct ptnet_queue_stats stats[2]; int i; /* Accumulate statistics over the queues. */ memset(stats, 0, sizeof(stats)); for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; int idx = (i < sc->num_tx_rings) ? 0 : 1; stats[idx].packets += pq->stats.packets; stats[idx].bytes += pq->stats.bytes; stats[idx].errors += pq->stats.errors; stats[idx].iqdrops += pq->stats.iqdrops; stats[idx].mcasts += pq->stats.mcasts; } switch (cnt) { case IFCOUNTER_IPACKETS: return (stats[1].packets); case IFCOUNTER_IQDROPS: return (stats[1].iqdrops); case IFCOUNTER_IERRORS: return (stats[1].errors); case IFCOUNTER_OPACKETS: return (stats[0].packets); case IFCOUNTER_OBYTES: return (stats[0].bytes); case IFCOUNTER_OMCASTS: return (stats[0].mcasts); default: return (if_get_counter_default(ifp, cnt)); } } #endif #ifdef PTNETMAP_STATS /* Called under core lock. */ static void ptnet_tick(void *opaque) { struct ptnet_softc *sc = opaque; int i; for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; struct ptnet_queue_stats cur = pq->stats; struct timeval now; unsigned int delta; microtime(&now); delta = now.tv_usec - sc->last_ts.tv_usec + (now.tv_sec - sc->last_ts.tv_sec) * 1000000; delta /= 1000; /* in milliseconds */ if (delta == 0) continue; device_printf(sc->dev, "#%d[%u ms]:pkts %lu, kicks %lu, " "intr %lu\n", i, delta, (cur.packets - pq->last_stats.packets), (cur.kicks - pq->last_stats.kicks), (cur.intrs - pq->last_stats.intrs)); pq->last_stats = cur; } microtime(&sc->last_ts); callout_schedule(&sc->tick, hz); } #endif /* PTNETMAP_STATS */ static void ptnet_media_status(if_t ifp, struct ifmediareq *ifmr) { /* We are always active, as the backend netmap port is * always open in netmap mode. */ ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE; ifmr->ifm_active = IFM_ETHER | IFM_10G_T | IFM_FDX; } static uint32_t ptnet_nm_ptctl(struct ptnet_softc *sc, uint32_t cmd) { /* * Write a command and read back error status, * with zero meaning success. */ bus_write_4(sc->iomem, PTNET_IO_PTCTL, cmd); return bus_read_4(sc->iomem, PTNET_IO_PTCTL); } static int ptnet_nm_config(struct netmap_adapter *na, struct nm_config_info *info) { struct ptnet_softc *sc = if_getsoftc(na->ifp); info->num_tx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_RINGS); info->num_rx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_RINGS); info->num_tx_descs = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_SLOTS); info->num_rx_descs = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_SLOTS); info->rx_buf_maxsize = NETMAP_BUF_SIZE(na); device_printf(sc->dev, "txr %u, rxr %u, txd %u, rxd %u, rxbufsz %u\n", info->num_tx_rings, info->num_rx_rings, info->num_tx_descs, info->num_rx_descs, info->rx_buf_maxsize); return 0; } static void ptnet_sync_from_csb(struct ptnet_softc *sc, struct netmap_adapter *na) { int i; /* Sync krings from the host, reading from * CSB. */ for (i = 0; i < sc->num_rings; i++) { struct nm_csb_atok *atok = sc->queues[i].atok; struct nm_csb_ktoa *ktoa = sc->queues[i].ktoa; struct netmap_kring *kring; if (i < na->num_tx_rings) { kring = na->tx_rings[i]; } else { kring = na->rx_rings[i - na->num_tx_rings]; } kring->rhead = kring->ring->head = atok->head; kring->rcur = kring->ring->cur = atok->cur; kring->nr_hwcur = ktoa->hwcur; kring->nr_hwtail = kring->rtail = kring->ring->tail = ktoa->hwtail; nm_prdis("%d,%d: csb {hc %u h %u c %u ht %u}", t, i, ktoa->hwcur, atok->head, atok->cur, ktoa->hwtail); nm_prdis("%d,%d: kring {hc %u rh %u rc %u h %u c %u ht %u rt %u t %u}", t, i, kring->nr_hwcur, kring->rhead, kring->rcur, kring->ring->head, kring->ring->cur, kring->nr_hwtail, kring->rtail, kring->ring->tail); } } static void ptnet_update_vnet_hdr(struct ptnet_softc *sc) { unsigned int wanted_hdr_len = ptnet_vnet_hdr ? PTNET_HDR_SIZE : 0; bus_write_4(sc->iomem, PTNET_IO_VNET_HDR_LEN, wanted_hdr_len); sc->vnet_hdr_len = bus_read_4(sc->iomem, PTNET_IO_VNET_HDR_LEN); sc->ptna->hwup.up.virt_hdr_len = sc->vnet_hdr_len; } static int ptnet_nm_register(struct netmap_adapter *na, int onoff) { /* device-specific */ if_t ifp = na->ifp; struct ptnet_softc *sc = if_getsoftc(ifp); int native = (na == &sc->ptna->hwup.up); struct ptnet_queue *pq; int ret = 0; int i; if (!onoff) { sc->ptna->backend_users--; } /* If this is the last netmap client, guest interrupt enable flags may * be in arbitrary state. Since these flags are going to be used also * by the netdevice driver, we have to make sure to start with * notifications enabled. Also, schedule NAPI to flush pending packets * in the RX rings, since we will not receive further interrupts * until these will be processed. */ if (native && !onoff && na->active_fds == 0) { nm_prinf("Exit netmap mode, re-enable interrupts"); for (i = 0; i < sc->num_rings; i++) { pq = sc->queues + i; pq->atok->appl_need_kick = 1; } } if (onoff) { if (sc->ptna->backend_users == 0) { /* Initialize notification enable fields in the CSB. */ for (i = 0; i < sc->num_rings; i++) { pq = sc->queues + i; pq->ktoa->kern_need_kick = 1; pq->atok->appl_need_kick = (!(ifp->if_capenable & IFCAP_POLLING) && i >= sc->num_tx_rings); } /* Set the virtio-net header length. */ ptnet_update_vnet_hdr(sc); /* Make sure the host adapter passed through is ready * for txsync/rxsync. */ ret = ptnet_nm_ptctl(sc, PTNETMAP_PTCTL_CREATE); if (ret) { return ret; } /* Align the guest krings and rings to the state stored * in the CSB. */ ptnet_sync_from_csb(sc, na); } /* If not native, don't call nm_set_native_flags, since we don't want * to replace if_transmit method, nor set NAF_NETMAP_ON */ if (native) { netmap_krings_mode_commit(na, onoff); nm_set_native_flags(na); } } else { if (native) { nm_clear_native_flags(na); netmap_krings_mode_commit(na, onoff); } if (sc->ptna->backend_users == 0) { ret = ptnet_nm_ptctl(sc, PTNETMAP_PTCTL_DELETE); } } if (onoff) { sc->ptna->backend_users++; } return ret; } static int ptnet_nm_txsync(struct netmap_kring *kring, int flags) { struct ptnet_softc *sc = if_getsoftc(kring->na->ifp); struct ptnet_queue *pq = sc->queues + kring->ring_id; bool notify; notify = netmap_pt_guest_txsync(pq->atok, pq->ktoa, kring, flags); if (notify) { ptnet_kick(pq); } return 0; } static int ptnet_nm_rxsync(struct netmap_kring *kring, int flags) { struct ptnet_softc *sc = if_getsoftc(kring->na->ifp); struct ptnet_queue *pq = sc->rxqueues + kring->ring_id; bool notify; notify = netmap_pt_guest_rxsync(pq->atok, pq->ktoa, kring, flags); if (notify) { ptnet_kick(pq); } return 0; } static void ptnet_nm_intr(struct netmap_adapter *na, int onoff) { struct ptnet_softc *sc = if_getsoftc(na->ifp); int i; for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; pq->atok->appl_need_kick = onoff; } } static void ptnet_tx_intr(void *opaque) { struct ptnet_queue *pq = opaque; struct ptnet_softc *sc = pq->sc; DBG(device_printf(sc->dev, "Tx interrupt #%d\n", pq->kring_id)); #ifdef PTNETMAP_STATS pq->stats.intrs ++; #endif /* PTNETMAP_STATS */ if (netmap_tx_irq(sc->ifp, pq->kring_id) != NM_IRQ_PASS) { return; } /* Schedule the tasqueue to flush process transmissions requests. * However, vtnet, if_em and if_igb just call ptnet_transmit() here, * at least when using MSI-X interrupts. The if_em driver, instead * schedule taskqueue when using legacy interrupts. */ taskqueue_enqueue(pq->taskq, &pq->task); } static void ptnet_rx_intr(void *opaque) { struct ptnet_queue *pq = opaque; struct ptnet_softc *sc = pq->sc; unsigned int unused; DBG(device_printf(sc->dev, "Rx interrupt #%d\n", pq->kring_id)); #ifdef PTNETMAP_STATS pq->stats.intrs ++; #endif /* PTNETMAP_STATS */ if (netmap_rx_irq(sc->ifp, pq->kring_id, &unused) != NM_IRQ_PASS) { return; } /* Like vtnet, if_igb and if_em drivers when using MSI-X interrupts, * receive-side processing is executed directly in the interrupt * service routine. Alternatively, we may schedule the taskqueue. */ ptnet_rx_eof(pq, PTNET_RX_BUDGET, true); } static void ptnet_vlan_tag_remove(struct mbuf *m) { struct ether_vlan_header *evh; evh = mtod(m, struct ether_vlan_header *); m->m_pkthdr.ether_vtag = ntohs(evh->evl_tag); m->m_flags |= M_VLANTAG; /* Strip the 802.1Q header. */ bcopy((char *) evh, (char *) evh + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); } static void ptnet_ring_update(struct ptnet_queue *pq, struct netmap_kring *kring, unsigned int head, unsigned int sync_flags) { struct netmap_ring *ring = kring->ring; struct nm_csb_atok *atok = pq->atok; struct nm_csb_ktoa *ktoa = pq->ktoa; /* Some packets have been pushed to the netmap ring. We have * to tell the host to process the new packets, updating cur * and head in the CSB. */ ring->head = ring->cur = head; /* Mimic nm_txsync_prologue/nm_rxsync_prologue. */ kring->rcur = kring->rhead = head; nm_sync_kloop_appl_write(atok, kring->rcur, kring->rhead); /* Kick the host if needed. */ if (NM_ACCESS_ONCE(ktoa->kern_need_kick)) { atok->sync_flags = sync_flags; ptnet_kick(pq); } } #define PTNET_TX_NOSPACE(_h, _k, _min) \ ((((_h) < (_k)->rtail) ? 0 : (_k)->nkr_num_slots) + \ (_k)->rtail - (_h)) < (_min) /* This function may be called by the network stack, or by * by the taskqueue thread. */ static int ptnet_drain_transmit_queue(struct ptnet_queue *pq, unsigned int budget, bool may_resched) { struct ptnet_softc *sc = pq->sc; bool have_vnet_hdr = sc->vnet_hdr_len; struct netmap_adapter *na = &sc->ptna->dr.up; if_t ifp = sc->ifp; unsigned int batch_count = 0; struct nm_csb_atok *atok; struct nm_csb_ktoa *ktoa; struct netmap_kring *kring; struct netmap_ring *ring; struct netmap_slot *slot; unsigned int count = 0; unsigned int minspace; unsigned int head; unsigned int lim; struct mbuf *mhead; struct mbuf *mf; int nmbuf_bytes; uint8_t *nmbuf; if (!PTNET_Q_TRYLOCK(pq)) { /* We failed to acquire the lock, schedule the taskqueue. */ nm_prlim(1, "Deferring TX work"); if (may_resched) { taskqueue_enqueue(pq->taskq, &pq->task); } return 0; } if (unlikely(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) { PTNET_Q_UNLOCK(pq); nm_prlim(1, "Interface is down"); return ENETDOWN; } atok = pq->atok; ktoa = pq->ktoa; kring = na->tx_rings[pq->kring_id]; ring = kring->ring; lim = kring->nkr_num_slots - 1; head = ring->head; minspace = sc->min_tx_space; while (count < budget) { if (PTNET_TX_NOSPACE(head, kring, minspace)) { /* We ran out of slot, let's see if the host has * freed up some, by reading hwcur and hwtail from * the CSB. */ ptnet_sync_tail(ktoa, kring); if (PTNET_TX_NOSPACE(head, kring, minspace)) { /* Still no slots available. Reactivate the * interrupts so that we can be notified * when some free slots are made available by * the host. */ atok->appl_need_kick = 1; /* Double check. We need a full barrier to * prevent the store to atok->appl_need_kick * to be reordered with the load from * ktoa->hwcur and ktoa->hwtail (store-load * barrier). */ nm_stld_barrier(); ptnet_sync_tail(ktoa, kring); if (likely(PTNET_TX_NOSPACE(head, kring, minspace))) { break; } nm_prlim(1, "Found more slots by doublecheck"); /* More slots were freed before reactivating * the interrupts. */ atok->appl_need_kick = 0; } } mhead = drbr_peek(ifp, pq->bufring); if (!mhead) { break; } /* Initialize transmission state variables. */ slot = ring->slot + head; nmbuf = NMB(na, slot); nmbuf_bytes = 0; /* If needed, prepare the virtio-net header at the beginning * of the first slot. */ if (have_vnet_hdr) { struct virtio_net_hdr *vh = (struct virtio_net_hdr *)nmbuf; /* For performance, we could replace this memset() with * two 8-bytes-wide writes. */ memset(nmbuf, 0, PTNET_HDR_SIZE); if (mhead->m_pkthdr.csum_flags & PTNET_ALL_OFFLOAD) { mhead = virtio_net_tx_offload(ifp, mhead, false, vh); if (unlikely(!mhead)) { /* Packet dropped because errors * occurred while preparing the vnet * header. Let's go ahead with the next * packet. */ pq->stats.errors ++; drbr_advance(ifp, pq->bufring); continue; } } nm_prdis(1, "%s: [csum_flags %lX] vnet hdr: flags %x " "csum_start %u csum_ofs %u hdr_len = %u " "gso_size %u gso_type %x", __func__, mhead->m_pkthdr.csum_flags, vh->flags, vh->csum_start, vh->csum_offset, vh->hdr_len, vh->gso_size, vh->gso_type); nmbuf += PTNET_HDR_SIZE; nmbuf_bytes += PTNET_HDR_SIZE; } for (mf = mhead; mf; mf = mf->m_next) { uint8_t *mdata = mf->m_data; int mlen = mf->m_len; for (;;) { int copy = NETMAP_BUF_SIZE(na) - nmbuf_bytes; if (mlen < copy) { copy = mlen; } memcpy(nmbuf, mdata, copy); mdata += copy; mlen -= copy; nmbuf += copy; nmbuf_bytes += copy; if (!mlen) { break; } slot->len = nmbuf_bytes; slot->flags = NS_MOREFRAG; head = nm_next(head, lim); KASSERT(head != ring->tail, ("Unexpectedly run out of TX space")); slot = ring->slot + head; nmbuf = NMB(na, slot); nmbuf_bytes = 0; } } /* Complete last slot and update head. */ slot->len = nmbuf_bytes; slot->flags = 0; head = nm_next(head, lim); /* Consume the packet just processed. */ drbr_advance(ifp, pq->bufring); /* Copy the packet to listeners. */ ETHER_BPF_MTAP(ifp, mhead); pq->stats.packets ++; pq->stats.bytes += mhead->m_pkthdr.len; if (mhead->m_flags & M_MCAST) { pq->stats.mcasts ++; } m_freem(mhead); count ++; if (++batch_count == PTNET_TX_BATCH) { ptnet_ring_update(pq, kring, head, NAF_FORCE_RECLAIM); batch_count = 0; } } if (batch_count) { ptnet_ring_update(pq, kring, head, NAF_FORCE_RECLAIM); } if (count >= budget && may_resched) { DBG(nm_prlim(1, "out of budget: resched, %d mbufs pending\n", drbr_inuse(ifp, pq->bufring))); taskqueue_enqueue(pq->taskq, &pq->task); } PTNET_Q_UNLOCK(pq); return count; } static int ptnet_transmit(if_t ifp, struct mbuf *m) { struct ptnet_softc *sc = if_getsoftc(ifp); struct ptnet_queue *pq; unsigned int queue_idx; int err; DBG(device_printf(sc->dev, "transmit %p\n", m)); /* Insert 802.1Q header if needed. */ if (m->m_flags & M_VLANTAG) { m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); if (m == NULL) { return ENOBUFS; } m->m_flags &= ~M_VLANTAG; } /* Get the flow-id if available. */ queue_idx = (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) ? m->m_pkthdr.flowid : curcpu; if (unlikely(queue_idx >= sc->num_tx_rings)) { queue_idx %= sc->num_tx_rings; } pq = sc->queues + queue_idx; err = drbr_enqueue(ifp, pq->bufring, m); if (err) { /* ENOBUFS when the bufring is full */ nm_prlim(1, "%s: drbr_enqueue() failed %d\n", __func__, err); pq->stats.errors ++; return err; } if (ifp->if_capenable & IFCAP_POLLING) { /* If polling is on, the transmit queues will be * drained by the poller. */ return 0; } err = ptnet_drain_transmit_queue(pq, PTNET_TX_BUDGET, true); return (err < 0) ? err : 0; } static unsigned int ptnet_rx_discard(struct netmap_kring *kring, unsigned int head) { struct netmap_ring *ring = kring->ring; struct netmap_slot *slot = ring->slot + head; for (;;) { head = nm_next(head, kring->nkr_num_slots - 1); if (!(slot->flags & NS_MOREFRAG) || head == ring->tail) { break; } slot = ring->slot + head; } return head; } static inline struct mbuf * ptnet_rx_slot(struct mbuf *mtail, uint8_t *nmbuf, unsigned int nmbuf_len) { uint8_t *mdata = mtod(mtail, uint8_t *) + mtail->m_len; do { unsigned int copy; if (mtail->m_len == MCLBYTES) { struct mbuf *mf; mf = m_getcl(M_NOWAIT, MT_DATA, 0); if (unlikely(!mf)) { return NULL; } mtail->m_next = mf; mtail = mf; mdata = mtod(mtail, uint8_t *); mtail->m_len = 0; } copy = MCLBYTES - mtail->m_len; if (nmbuf_len < copy) { copy = nmbuf_len; } memcpy(mdata, nmbuf, copy); nmbuf += copy; nmbuf_len -= copy; mdata += copy; mtail->m_len += copy; } while (nmbuf_len); return mtail; } static int ptnet_rx_eof(struct ptnet_queue *pq, unsigned int budget, bool may_resched) { struct ptnet_softc *sc = pq->sc; bool have_vnet_hdr = sc->vnet_hdr_len; struct nm_csb_atok *atok = pq->atok; struct nm_csb_ktoa *ktoa = pq->ktoa; struct netmap_adapter *na = &sc->ptna->dr.up; struct netmap_kring *kring = na->rx_rings[pq->kring_id]; struct netmap_ring *ring = kring->ring; unsigned int const lim = kring->nkr_num_slots - 1; unsigned int batch_count = 0; if_t ifp = sc->ifp; unsigned int count = 0; uint32_t head; PTNET_Q_LOCK(pq); if (unlikely(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) { goto unlock; } kring->nr_kflags &= ~NKR_PENDINTR; head = ring->head; while (count < budget) { uint32_t prev_head = head; struct mbuf *mhead, *mtail; struct virtio_net_hdr *vh; struct netmap_slot *slot; unsigned int nmbuf_len; uint8_t *nmbuf; int deliver = 1; /* the mbuf to the network stack. */ host_sync: if (head == ring->tail) { /* We ran out of slot, let's see if the host has * added some, by reading hwcur and hwtail from * the CSB. */ ptnet_sync_tail(ktoa, kring); if (head == ring->tail) { /* Still no slots available. Reactivate * interrupts as they were disabled by the * host thread right before issuing the * last interrupt. */ atok->appl_need_kick = 1; /* Double check for more completed RX slots. * We need a full barrier to prevent the store * to atok->appl_need_kick to be reordered with * the load from ktoa->hwcur and ktoa->hwtail * (store-load barrier). */ nm_stld_barrier(); ptnet_sync_tail(ktoa, kring); if (likely(head == ring->tail)) { break; } atok->appl_need_kick = 0; } } /* Initialize ring state variables, possibly grabbing the * virtio-net header. */ slot = ring->slot + head; nmbuf = NMB(na, slot); nmbuf_len = slot->len; vh = (struct virtio_net_hdr *)nmbuf; if (have_vnet_hdr) { if (unlikely(nmbuf_len < PTNET_HDR_SIZE)) { /* There is no good reason why host should * put the header in multiple netmap slots. * If this is the case, discard. */ nm_prlim(1, "Fragmented vnet-hdr: dropping"); head = ptnet_rx_discard(kring, head); pq->stats.iqdrops ++; deliver = 0; goto skip; } nm_prdis(1, "%s: vnet hdr: flags %x csum_start %u " "csum_ofs %u hdr_len = %u gso_size %u " "gso_type %x", __func__, vh->flags, vh->csum_start, vh->csum_offset, vh->hdr_len, vh->gso_size, vh->gso_type); nmbuf += PTNET_HDR_SIZE; nmbuf_len -= PTNET_HDR_SIZE; } /* Allocate the head of a new mbuf chain. * We use m_getcl() to allocate an mbuf with standard cluster * size (MCLBYTES). In the future we could use m_getjcl() * to choose different sizes. */ mhead = mtail = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (unlikely(mhead == NULL)) { device_printf(sc->dev, "%s: failed to allocate mbuf " "head\n", __func__); pq->stats.errors ++; break; } /* Initialize the mbuf state variables. */ mhead->m_pkthdr.len = nmbuf_len; mtail->m_len = 0; /* Scan all the netmap slots containing the current packet. */ for (;;) { DBG(device_printf(sc->dev, "%s: h %u t %u rcv frag " "len %u, flags %u\n", __func__, head, ring->tail, slot->len, slot->flags)); mtail = ptnet_rx_slot(mtail, nmbuf, nmbuf_len); if (unlikely(!mtail)) { /* Ouch. We ran out of memory while processing * a packet. We have to restore the previous * head position, free the mbuf chain, and * schedule the taskqueue to give the packet * another chance. */ device_printf(sc->dev, "%s: failed to allocate" " mbuf frag, reset head %u --> %u\n", __func__, head, prev_head); head = prev_head; m_freem(mhead); pq->stats.errors ++; if (may_resched) { taskqueue_enqueue(pq->taskq, &pq->task); } goto escape; } /* We have to increment head irrespective of the * NS_MOREFRAG being set or not. */ head = nm_next(head, lim); if (!(slot->flags & NS_MOREFRAG)) { break; } if (unlikely(head == ring->tail)) { /* The very last slot prepared by the host has * the NS_MOREFRAG set. Drop it and continue * the outer cycle (to do the double-check). */ nm_prlim(1, "Incomplete packet: dropping"); m_freem(mhead); pq->stats.iqdrops ++; goto host_sync; } slot = ring->slot + head; nmbuf = NMB(na, slot); nmbuf_len = slot->len; mhead->m_pkthdr.len += nmbuf_len; } mhead->m_pkthdr.rcvif = ifp; mhead->m_pkthdr.csum_flags = 0; /* Store the queue idx in the packet header. */ mhead->m_pkthdr.flowid = pq->kring_id; M_HASHTYPE_SET(mhead, M_HASHTYPE_OPAQUE); if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { struct ether_header *eh; eh = mtod(mhead, struct ether_header *); if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ptnet_vlan_tag_remove(mhead); /* * With the 802.1Q header removed, update the * checksum starting location accordingly. */ if (vh->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) vh->csum_start -= ETHER_VLAN_ENCAP_LEN; } } if (unlikely(have_vnet_hdr && virtio_net_rx_csum(mhead, vh))) { m_freem(mhead); nm_prlim(1, "Csum offload error: dropping"); pq->stats.iqdrops ++; deliver = 0; } skip: count ++; if (++batch_count >= PTNET_RX_BATCH) { /* Some packets have been (or will be) pushed to the network * stack. We need to update the CSB to tell the host about * the new ring->cur and ring->head (RX buffer refill). */ ptnet_ring_update(pq, kring, head, NAF_FORCE_READ); batch_count = 0; } if (likely(deliver)) { pq->stats.packets ++; pq->stats.bytes += mhead->m_pkthdr.len; PTNET_Q_UNLOCK(pq); (*ifp->if_input)(ifp, mhead); PTNET_Q_LOCK(pq); /* The ring->head index (and related indices) are * updated under pq lock by ptnet_ring_update(). * Since we dropped the lock to call if_input(), we * must reload ring->head and restart processing the * ring from there. */ head = ring->head; if (unlikely(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) { /* The interface has gone down while we didn't * have the lock. Stop any processing and exit. */ goto unlock; } } } escape: if (batch_count) { ptnet_ring_update(pq, kring, head, NAF_FORCE_READ); } if (count >= budget && may_resched) { /* If we ran out of budget or the double-check found new * slots to process, schedule the taskqueue. */ DBG(nm_prlim(1, "out of budget: resched h %u t %u\n", head, ring->tail)); taskqueue_enqueue(pq->taskq, &pq->task); } unlock: PTNET_Q_UNLOCK(pq); return count; } static void ptnet_rx_task(void *context, int pending) { struct ptnet_queue *pq = context; DBG(nm_prlim(1, "%s: pq #%u\n", __func__, pq->kring_id)); ptnet_rx_eof(pq, PTNET_RX_BUDGET, true); } static void ptnet_tx_task(void *context, int pending) { struct ptnet_queue *pq = context; DBG(nm_prlim(1, "%s: pq #%u\n", __func__, pq->kring_id)); ptnet_drain_transmit_queue(pq, PTNET_TX_BUDGET, true); } #ifdef DEVICE_POLLING /* We don't need to handle differently POLL_AND_CHECK_STATUS and * POLL_ONLY, since we don't have an Interrupt Status Register. */ static int ptnet_poll(if_t ifp, enum poll_cmd cmd, int budget) { struct ptnet_softc *sc = if_getsoftc(ifp); unsigned int queue_budget; unsigned int count = 0; bool borrow = false; int i; KASSERT(sc->num_rings > 0, ("Found no queues in while polling ptnet")); queue_budget = MAX(budget / sc->num_rings, 1); nm_prlim(1, "Per-queue budget is %d", queue_budget); while (budget) { unsigned int rcnt = 0; for (i = 0; i < sc->num_rings; i++) { struct ptnet_queue *pq = sc->queues + i; if (borrow) { queue_budget = MIN(queue_budget, budget); if (queue_budget == 0) { break; } } if (i < sc->num_tx_rings) { rcnt += ptnet_drain_transmit_queue(pq, queue_budget, false); } else { rcnt += ptnet_rx_eof(pq, queue_budget, false); } } if (!rcnt) { /* A scan of the queues gave no result, we can * stop here. */ break; } if (rcnt > budget) { /* This may happen when initial budget < sc->num_rings, * since one packet budget is given to each queue * anyway. Just pretend we didn't eat "so much". */ rcnt = budget; } count += rcnt; budget -= rcnt; borrow = true; } return count; } #endif /* DEVICE_POLLING */ #endif /* WITH_PTNETMAP */