/*- * Copyright (c) Comtrol Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted prodived that the follwoing conditions * are met. * 1. Redistributions of source code must retain the above copyright * notive, this list of conditions and the following disclainer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials prodided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Comtrol Corporation. * 4. The name of Comtrol Corporation may not be used to endorse or * promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY COMTROL CORPORATION ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL COMTROL CORPORATION BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, LIFE OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); /* * rp.c - for RocketPort FreeBSD */ #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #define ROCKET_C #include #include static const char RocketPortVersion[] = "3.02"; static Byte_t RData[RDATASIZE] = { 0x00, 0x09, 0xf6, 0x82, 0x02, 0x09, 0x86, 0xfb, 0x04, 0x09, 0x00, 0x0a, 0x06, 0x09, 0x01, 0x0a, 0x08, 0x09, 0x8a, 0x13, 0x0a, 0x09, 0xc5, 0x11, 0x0c, 0x09, 0x86, 0x85, 0x0e, 0x09, 0x20, 0x0a, 0x10, 0x09, 0x21, 0x0a, 0x12, 0x09, 0x41, 0xff, 0x14, 0x09, 0x82, 0x00, 0x16, 0x09, 0x82, 0x7b, 0x18, 0x09, 0x8a, 0x7d, 0x1a, 0x09, 0x88, 0x81, 0x1c, 0x09, 0x86, 0x7a, 0x1e, 0x09, 0x84, 0x81, 0x20, 0x09, 0x82, 0x7c, 0x22, 0x09, 0x0a, 0x0a }; static Byte_t RRegData[RREGDATASIZE]= { 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ }; #if 0 /* IRQ number to MUDBAC register 2 mapping */ Byte_t sIRQMap[16] = { 0,0,0,0x10,0x20,0x30,0,0,0,0x40,0x50,0x60,0x70,0,0,0x80 }; #endif Byte_t rp_sBitMapClrTbl[8] = { 0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f }; Byte_t rp_sBitMapSetTbl[8] = { 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80 }; static void rpfree(void *); /*************************************************************************** Function: sReadAiopID Purpose: Read the AIOP idenfication number directly from an AIOP. Call: sReadAiopID(CtlP, aiop) CONTROLLER_T *CtlP; Ptr to controller structure int aiop: AIOP index Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X is replace by an identifying number. Flag AIOPID_NULL if no valid AIOP is found Warnings: No context switches are allowed while executing this function. */ int sReadAiopID(CONTROLLER_T *CtlP, int aiop) { Byte_t AiopID; /* ID byte from AIOP */ rp_writeaiop1(CtlP, aiop, _CMD_REG, RESET_ALL); /* reset AIOP */ rp_writeaiop1(CtlP, aiop, _CMD_REG, 0x0); AiopID = rp_readaiop1(CtlP, aiop, _CHN_STAT0) & 0x07; if(AiopID == 0x06) return(1); else /* AIOP does not exist */ return(-1); } /*************************************************************************** Function: sReadAiopNumChan Purpose: Read the number of channels available in an AIOP directly from an AIOP. Call: sReadAiopNumChan(CtlP, aiop) CONTROLLER_T *CtlP; Ptr to controller structure int aiop: AIOP index Return: int: The number of channels available Comments: The number of channels is determined by write/reads from identical offsets within the SRAM address spaces for channels 0 and 4. If the channel 4 space is mirrored to channel 0 it is a 4 channel AIOP, otherwise it is an 8 channel. Warnings: No context switches are allowed while executing this function. */ int sReadAiopNumChan(CONTROLLER_T *CtlP, int aiop) { Word_t x, y; rp_writeaiop4(CtlP, aiop, _INDX_ADDR,0x12340000L); /* write to chan 0 SRAM */ rp_writeaiop2(CtlP, aiop, _INDX_ADDR,0); /* read from SRAM, chan 0 */ x = rp_readaiop2(CtlP, aiop, _INDX_DATA); rp_writeaiop2(CtlP, aiop, _INDX_ADDR,0x4000); /* read from SRAM, chan 4 */ y = rp_readaiop2(CtlP, aiop, _INDX_DATA); if(x != y) /* if different must be 8 chan */ return(8); else return(4); } /*************************************************************************** Function: sInitChan Purpose: Initialization of a channel and channel structure Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) CONTROLLER_T *CtlP; Ptr to controller structure CHANNEL_T *ChP; Ptr to channel structure int AiopNum; AIOP number within controller int ChanNum; Channel number within AIOP Return: int: TRUE if initialization succeeded, FALSE if it fails because channel number exceeds number of channels available in AIOP. Comments: This function must be called before a channel can be used. Warnings: No range checking on any of the parameters is done. No context switches are allowed while executing this function. */ int sInitChan( CONTROLLER_T *CtlP, CHANNEL_T *ChP, int AiopNum, int ChanNum) { int i, ChOff; Byte_t *ChR; static Byte_t R[4]; if(ChanNum >= CtlP->AiopNumChan[AiopNum]) return(FALSE); /* exceeds num chans in AIOP */ /* Channel, AIOP, and controller identifiers */ ChP->CtlP = CtlP; ChP->ChanID = CtlP->AiopID[AiopNum]; ChP->AiopNum = AiopNum; ChP->ChanNum = ChanNum; /* Initialize the channel from the RData array */ for(i=0; i < RDATASIZE; i+=4) { R[0] = RData[i]; R[1] = RData[i+1] + 0x10 * ChanNum; R[2] = RData[i+2]; R[3] = RData[i+3]; rp_writech4(ChP,_INDX_ADDR,le32dec(R)); } ChR = ChP->R; for(i=0; i < RREGDATASIZE; i+=4) { ChR[i] = RRegData[i]; ChR[i+1] = RRegData[i+1] + 0x10 * ChanNum; ChR[i+2] = RRegData[i+2]; ChR[i+3] = RRegData[i+3]; } /* Indexed registers */ ChOff = (Word_t)ChanNum * 0x1000; ChP->BaudDiv[0] = (Byte_t)(ChOff + _BAUD); ChP->BaudDiv[1] = (Byte_t)((ChOff + _BAUD) >> 8); ChP->BaudDiv[2] = (Byte_t)BRD9600; ChP->BaudDiv[3] = (Byte_t)(BRD9600 >> 8); rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->BaudDiv)); ChP->TxControl[0] = (Byte_t)(ChOff + _TX_CTRL); ChP->TxControl[1] = (Byte_t)((ChOff + _TX_CTRL) >> 8); ChP->TxControl[2] = 0; ChP->TxControl[3] = 0; rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->TxControl)); ChP->RxControl[0] = (Byte_t)(ChOff + _RX_CTRL); ChP->RxControl[1] = (Byte_t)((ChOff + _RX_CTRL) >> 8); ChP->RxControl[2] = 0; ChP->RxControl[3] = 0; rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->RxControl)); ChP->TxEnables[0] = (Byte_t)(ChOff + _TX_ENBLS); ChP->TxEnables[1] = (Byte_t)((ChOff + _TX_ENBLS) >> 8); ChP->TxEnables[2] = 0; ChP->TxEnables[3] = 0; rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->TxEnables)); ChP->TxCompare[0] = (Byte_t)(ChOff + _TXCMP1); ChP->TxCompare[1] = (Byte_t)((ChOff + _TXCMP1) >> 8); ChP->TxCompare[2] = 0; ChP->TxCompare[3] = 0; rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->TxCompare)); ChP->TxReplace1[0] = (Byte_t)(ChOff + _TXREP1B1); ChP->TxReplace1[1] = (Byte_t)((ChOff + _TXREP1B1) >> 8); ChP->TxReplace1[2] = 0; ChP->TxReplace1[3] = 0; rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->TxReplace1)); ChP->TxReplace2[0] = (Byte_t)(ChOff + _TXREP2); ChP->TxReplace2[1] = (Byte_t)((ChOff + _TXREP2) >> 8); ChP->TxReplace2[2] = 0; ChP->TxReplace2[3] = 0; rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->TxReplace2)); ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; ChP->TxFIFO = ChOff + _TX_FIFO; rp_writech1(ChP,_CMD_REG,(Byte_t)ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ rp_writech1(ChP,_CMD_REG,(Byte_t)ChanNum); /* remove reset Tx FIFO count */ rp_writech2(ChP,_INDX_ADDR,ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ rp_writech2(ChP,_INDX_DATA,0); ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; ChP->RxFIFO = ChOff + _RX_FIFO; rp_writech1(ChP,_CMD_REG,(Byte_t)ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ rp_writech1(ChP,_CMD_REG,(Byte_t)ChanNum); /* remove reset Rx FIFO count */ rp_writech2(ChP,_INDX_ADDR,ChP->RxFIFOPtrs); /* clear Rx out ptr */ rp_writech2(ChP,_INDX_DATA,0); rp_writech2(ChP,_INDX_ADDR,ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ rp_writech2(ChP,_INDX_DATA,0); ChP->TxPrioCnt = ChOff + _TXP_CNT; rp_writech2(ChP,_INDX_ADDR,ChP->TxPrioCnt); rp_writech1(ChP,_INDX_DATA,0); ChP->TxPrioPtr = ChOff + _TXP_PNTR; rp_writech2(ChP,_INDX_ADDR,ChP->TxPrioPtr); rp_writech1(ChP,_INDX_DATA,0); ChP->TxPrioBuf = ChOff + _TXP_BUF; sEnRxProcessor(ChP); /* start the Rx processor */ return(TRUE); } /*************************************************************************** Function: sStopRxProcessor Purpose: Stop the receive processor from processing a channel. Call: sStopRxProcessor(ChP) CHANNEL_T *ChP; Ptr to channel structure Comments: The receive processor can be started again with sStartRxProcessor(). This function causes the receive processor to skip over the stopped channel. It does not stop it from processing other channels. Warnings: No context switches are allowed while executing this function. Do not leave the receive processor stopped for more than one character time. After calling this function a delay of 4 uS is required to ensure that the receive processor is no longer processing this channel. */ void sStopRxProcessor(CHANNEL_T *ChP) { Byte_t R[4]; R[0] = ChP->R[0]; R[1] = ChP->R[1]; R[2] = 0x0a; R[3] = ChP->R[3]; rp_writech4(ChP,_INDX_ADDR,le32dec(R)); } /*************************************************************************** Function: sFlushRxFIFO Purpose: Flush the Rx FIFO Call: sFlushRxFIFO(ChP) CHANNEL_T *ChP; Ptr to channel structure Return: void Comments: To prevent data from being enqueued or dequeued in the Tx FIFO while it is being flushed the receive processor is stopped and the transmitter is disabled. After these operations a 4 uS delay is done before clearing the pointers to allow the receive processor to stop. These items are handled inside this function. Warnings: No context switches are allowed while executing this function. */ void sFlushRxFIFO(CHANNEL_T *ChP) { int i; Byte_t Ch; /* channel number within AIOP */ int RxFIFOEnabled; /* TRUE if Rx FIFO enabled */ if(sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ return; /* don't need to flush */ RxFIFOEnabled = FALSE; if(ChP->R[0x32] == 0x08) /* Rx FIFO is enabled */ { RxFIFOEnabled = TRUE; sDisRxFIFO(ChP); /* disable it */ for(i=0; i < 2000/200; i++) /* delay 2 uS to allow proc to disable FIFO*/ rp_readch1(ChP,_INT_CHAN); /* depends on bus i/o timing */ } sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ Ch = (Byte_t)sGetChanNum(ChP); rp_writech1(ChP,_CMD_REG,Ch | RESRXFCNT); /* apply reset Rx FIFO count */ rp_writech1(ChP,_CMD_REG,Ch); /* remove reset Rx FIFO count */ rp_writech2(ChP,_INDX_ADDR,ChP->RxFIFOPtrs); /* clear Rx out ptr */ rp_writech2(ChP,_INDX_DATA,0); rp_writech2(ChP,_INDX_ADDR,ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ rp_writech2(ChP,_INDX_DATA,0); if(RxFIFOEnabled) sEnRxFIFO(ChP); /* enable Rx FIFO */ } /*************************************************************************** Function: sFlushTxFIFO Purpose: Flush the Tx FIFO Call: sFlushTxFIFO(ChP) CHANNEL_T *ChP; Ptr to channel structure Return: void Comments: To prevent data from being enqueued or dequeued in the Tx FIFO while it is being flushed the receive processor is stopped and the transmitter is disabled. After these operations a 4 uS delay is done before clearing the pointers to allow the receive processor to stop. These items are handled inside this function. Warnings: No context switches are allowed while executing this function. */ void sFlushTxFIFO(CHANNEL_T *ChP) { int i; Byte_t Ch; /* channel number within AIOP */ int TxEnabled; /* TRUE if transmitter enabled */ if(sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ return; /* don't need to flush */ TxEnabled = FALSE; if(ChP->TxControl[3] & TX_ENABLE) { TxEnabled = TRUE; sDisTransmit(ChP); /* disable transmitter */ } sStopRxProcessor(ChP); /* stop Rx processor */ for(i = 0; i < 4000/200; i++) /* delay 4 uS to allow proc to stop */ rp_readch1(ChP,_INT_CHAN); /* depends on bus i/o timing */ Ch = (Byte_t)sGetChanNum(ChP); rp_writech1(ChP,_CMD_REG,Ch | RESTXFCNT); /* apply reset Tx FIFO count */ rp_writech1(ChP,_CMD_REG,Ch); /* remove reset Tx FIFO count */ rp_writech2(ChP,_INDX_ADDR,ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ rp_writech2(ChP,_INDX_DATA,0); if(TxEnabled) sEnTransmit(ChP); /* enable transmitter */ sStartRxProcessor(ChP); /* restart Rx processor */ } /*************************************************************************** Function: sWriteTxPrioByte Purpose: Write a byte of priority transmit data to a channel Call: sWriteTxPrioByte(ChP,Data) CHANNEL_T *ChP; Ptr to channel structure Byte_t Data; The transmit data byte Return: int: 1 if the bytes is successfully written, otherwise 0. Comments: The priority byte is transmitted before any data in the Tx FIFO. Warnings: No context switches are allowed while executing this function. */ int sWriteTxPrioByte(CHANNEL_T *ChP, Byte_t Data) { Byte_t DWBuf[4]; /* buffer for double word writes */ if(sGetTxCnt(ChP) > 1) /* write it to Tx priority buffer */ { rp_writech2(ChP,_INDX_ADDR,ChP->TxPrioCnt); /* get priority buffer status */ if(rp_readch1(ChP,_INDX_DATA) & PRI_PEND) /* priority buffer busy */ return(0); /* nothing sent */ le16enc(DWBuf,ChP->TxPrioBuf); /* data byte address */ DWBuf[2] = Data; /* data byte value */ DWBuf[3] = 0; /* priority buffer pointer */ rp_writech4(ChP,_INDX_ADDR,le32dec(DWBuf)); /* write it out */ le16enc(DWBuf,ChP->TxPrioCnt); /* Tx priority count address */ DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ DWBuf[3] = 0; /* priority buffer pointer */ rp_writech4(ChP,_INDX_ADDR,le32dec(DWBuf)); /* write it out */ } else /* write it to Tx FIFO */ { sWriteTxByte(ChP,sGetTxRxDataIO(ChP),Data); } return(1); /* 1 byte sent */ } /*************************************************************************** Function: sEnInterrupts Purpose: Enable one or more interrupts for a channel Call: sEnInterrupts(ChP,Flags) CHANNEL_T *ChP; Ptr to channel structure Word_t Flags: Interrupt enable flags, can be any combination of the following flags: TXINT_EN: Interrupt on Tx FIFO empty RXINT_EN: Interrupt on Rx FIFO at trigger level (see sSetRxTrigger()) SRCINT_EN: Interrupt on SRC (Special Rx Condition) MCINT_EN: Interrupt on modem input change CHANINT_EN: Allow channel interrupt signal to the AIOP's Interrupt Channel Register. Return: void Comments: If an interrupt enable flag is set in Flags, that interrupt will be enabled. If an interrupt enable flag is not set in Flags, that interrupt will not be changed. Interrupts can be disabled with function sDisInterrupts(). This function sets the appropriate bit for the channel in the AIOP's Interrupt Mask Register if the CHANINT_EN flag is set. This allows this channel's bit to be set in the AIOP's Interrupt Channel Register. Interrupts must also be globally enabled before channel interrupts will be passed on to the host. This is done with function sEnGlobalInt(). In some cases it may be desirable to disable interrupts globally but enable channel interrupts. This would allow the global interrupt status register to be used to determine which AIOPs need service. */ void sEnInterrupts(CHANNEL_T *ChP,Word_t Flags) { Byte_t Mask; /* Interrupt Mask Register */ ChP->RxControl[2] |= ((Byte_t)Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->RxControl)); ChP->TxControl[2] |= ((Byte_t)Flags & TXINT_EN); rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->TxControl)); if(Flags & CHANINT_EN) { Mask = rp_readch1(ChP,_INT_MASK) | rp_sBitMapSetTbl[ChP->ChanNum]; rp_writech1(ChP,_INT_MASK,Mask); } } /*************************************************************************** Function: sDisInterrupts Purpose: Disable one or more interrupts for a channel Call: sDisInterrupts(ChP,Flags) CHANNEL_T *ChP; Ptr to channel structure Word_t Flags: Interrupt flags, can be any combination of the following flags: TXINT_EN: Interrupt on Tx FIFO empty RXINT_EN: Interrupt on Rx FIFO at trigger level (see sSetRxTrigger()) SRCINT_EN: Interrupt on SRC (Special Rx Condition) MCINT_EN: Interrupt on modem input change CHANINT_EN: Disable channel interrupt signal to the AIOP's Interrupt Channel Register. Return: void Comments: If an interrupt flag is set in Flags, that interrupt will be disabled. If an interrupt flag is not set in Flags, that interrupt will not be changed. Interrupts can be enabled with function sEnInterrupts(). This function clears the appropriate bit for the channel in the AIOP's Interrupt Mask Register if the CHANINT_EN flag is set. This blocks this channel's bit from being set in the AIOP's Interrupt Channel Register. */ void sDisInterrupts(CHANNEL_T *ChP,Word_t Flags) { Byte_t Mask; /* Interrupt Mask Register */ ChP->RxControl[2] &= ~((Byte_t)Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->RxControl)); ChP->TxControl[2] &= ~((Byte_t)Flags & TXINT_EN); rp_writech4(ChP,_INDX_ADDR,le32dec(ChP->TxControl)); if(Flags & CHANINT_EN) { Mask = rp_readch1(ChP,_INT_MASK) & rp_sBitMapClrTbl[ChP->ChanNum]; rp_writech1(ChP,_INT_MASK,Mask); } } /********************************************************************* Begin FreeBsd-specific driver code **********************************************************************/ struct callout_handle rp_callout_handle; static int rp_num_ports_open = 0; static int rp_ndevs = 0; static int rp_num_ports[4]; /* Number of ports on each controller */ #define POLL_INTERVAL 1 #define RP_ISMULTIPORT(dev) ((dev)->id_flags & 0x1) #define RP_MPMASTER(dev) (((dev)->id_flags >> 8) & 0xff) #define RP_NOTAST4(dev) ((dev)->id_flags & 0x04) static struct rp_port *p_rp_addr[4]; static struct rp_port *p_rp_table[MAX_RP_PORTS]; #define rp_addr(unit) (p_rp_addr[unit]) #define rp_table(port) (p_rp_table[port]) /* * The top-level routines begin here */ static void rpclose(struct tty *tp); static void rphardclose(struct tty *tp); static int rpmodem(struct tty *, int, int); static int rpparam(struct tty *, struct termios *); static void rpstart(struct tty *); static int rpioctl(struct tty *, u_long, caddr_t, struct thread *); static int rpopen(struct tty *); static void rp_do_receive(struct rp_port *rp, struct tty *tp, CHANNEL_t *cp, unsigned int ChanStatus) { unsigned int CharNStat; int ToRecv, ch, err = 0; ToRecv = sGetRxCnt(cp); if(ToRecv == 0) return; /* If status indicates there are errored characters in the FIFO, then enter status mode (a word in FIFO holds characters and status) */ if(ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { if(!(ChanStatus & STATMODE)) { ChanStatus |= STATMODE; sEnRxStatusMode(cp); } } /* if we previously entered status mode then read down the FIFO one word at a time, pulling apart the character and the status. Update error counters depending on status. */ tty_lock(tp); if(ChanStatus & STATMODE) { while(ToRecv) { CharNStat = rp_readch2(cp,sGetTxRxDataIO(cp)); ch = CharNStat & 0xff; if((CharNStat & STMBREAK) || (CharNStat & STMFRAMEH)) err |= TRE_FRAMING; else if (CharNStat & STMPARITYH) err |= TRE_PARITY; else if (CharNStat & STMRCVROVRH) { rp->rp_overflows++; err |= TRE_OVERRUN; } ttydisc_rint(tp, ch, err); ToRecv--; } /* After emtying FIFO in status mode, turn off status mode */ if(sGetRxCnt(cp) == 0) { sDisRxStatusMode(cp); } } else { ToRecv = sGetRxCnt(cp); while (ToRecv) { ch = rp_readch1(cp,sGetTxRxDataIO(cp)); ttydisc_rint(tp, ch & 0xff, err); ToRecv--; } } ttydisc_rint_done(tp); tty_unlock(tp); } static void rp_handle_port(struct rp_port *rp) { CHANNEL_t *cp; struct tty *tp; unsigned int IntMask, ChanStatus; if(!rp) return; cp = &rp->rp_channel; tp = rp->rp_tty; IntMask = sGetChanIntID(cp); IntMask = IntMask & rp->rp_intmask; ChanStatus = sGetChanStatus(cp); if(IntMask & RXF_TRIG) rp_do_receive(rp, tp, cp, ChanStatus); if(IntMask & DELTA_CD) { if(ChanStatus & CD_ACT) { (void)ttydisc_modem(tp, 1); } else { (void)ttydisc_modem(tp, 0); } } /* oldcts = rp->rp_cts; rp->rp_cts = ((ChanStatus & CTS_ACT) != 0); if(oldcts != rp->rp_cts) { printf("CTS change (now %s)... on port %d\n", rp->rp_cts ? "on" : "off", rp->rp_port); } */ } static void rp_do_poll(void *not_used) { CONTROLLER_t *ctl; struct rp_port *rp; struct tty *tp; int unit, aiop, ch, line, count; unsigned char CtlMask, AiopMask; for(unit = 0; unit < rp_ndevs; unit++) { rp = rp_addr(unit); ctl = rp->rp_ctlp; CtlMask = ctl->ctlmask(ctl); for(aiop=0; CtlMask; CtlMask >>=1, aiop++) { if(CtlMask & 1) { AiopMask = sGetAiopIntStatus(ctl, aiop); for(ch = 0; AiopMask; AiopMask >>=1, ch++) { if(AiopMask & 1) { line = (unit << 5) | (aiop << 3) | ch; rp = rp_table(line); rp_handle_port(rp); } } } } for(line = 0, rp = rp_addr(unit); line < rp_num_ports[unit]; line++, rp++) { tp = rp->rp_tty; tty_lock(tp); count = sGetTxCnt(&rp->rp_channel); if (count >= 0 && (count <= rp->rp_restart)) { rpstart(tp); } tty_unlock(tp); } } if(rp_num_ports_open) rp_callout_handle = timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL); } static struct ttydevsw rp_tty_class = { .tsw_flags = TF_INITLOCK|TF_CALLOUT, .tsw_open = rpopen, .tsw_close = rpclose, .tsw_outwakeup = rpstart, .tsw_ioctl = rpioctl, .tsw_param = rpparam, .tsw_modem = rpmodem, .tsw_free = rpfree, }; static void rpfree(void *softc) { struct rp_port *rp = softc; CONTROLLER_t *ctlp = rp->rp_ctlp; atomic_subtract_32(&ctlp->free, 1); } int rp_attachcommon(CONTROLLER_T *ctlp, int num_aiops, int num_ports) { int unit; int num_chan; int aiop, chan, port; int ChanStatus, line, count; int retval; struct rp_port *rp; struct tty *tp; unit = device_get_unit(ctlp->dev); printf("RocketPort%d (Version %s) %d ports.\n", unit, RocketPortVersion, num_ports); rp_num_ports[unit] = num_ports; callout_handle_init(&rp_callout_handle); ctlp->rp = rp = (struct rp_port *) malloc(sizeof(struct rp_port) * num_ports, M_DEVBUF, M_NOWAIT | M_ZERO); if (rp == NULL) { device_printf(ctlp->dev, "rp_attachcommon: Could not malloc rp_ports structures.\n"); retval = ENOMEM; goto nogo; } count = unit * 32; /* board times max ports per card SG */ bzero(rp, sizeof(struct rp_port) * num_ports); rp_addr(unit) = rp; port = 0; for(aiop=0; aiop < num_aiops; aiop++) { num_chan = sGetAiopNumChan(ctlp, aiop); for(chan=0; chan < num_chan; chan++, port++, rp++) { rp->rp_tty = tp = tty_alloc(&rp_tty_class, rp); rp->rp_port = port; rp->rp_ctlp = ctlp; rp->rp_unit = unit; rp->rp_chan = chan; rp->rp_aiop = aiop; rp->rp_intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; #ifdef notdef ChanStatus = sGetChanStatus(&rp->rp_channel); #endif /* notdef */ if(sInitChan(ctlp, &rp->rp_channel, aiop, chan) == 0) { device_printf(ctlp->dev, "RocketPort sInitChan(%d, %d, %d) failed.\n", unit, aiop, chan); retval = ENXIO; goto nogo; } ChanStatus = sGetChanStatus(&rp->rp_channel); rp->rp_cts = (ChanStatus & CTS_ACT) != 0; line = (unit << 5) | (aiop << 3) | chan; rp_table(line) = rp; tty_makedev(tp, NULL, "R%r%r", unit, port); } } rp_ndevs++; mtx_init(&ctlp->hwmtx, "rp_hwmtx", NULL, MTX_DEF); ctlp->hwmtx_init = 1; return (0); nogo: rp_releaseresource(ctlp); return (retval); } void rp_releaseresource(CONTROLLER_t *ctlp) { int i, unit; struct rp_port *rp; unit = device_get_unit(ctlp->dev); if (rp_addr(unit) != NULL) { for (i = 0; i < rp_num_ports[unit]; i++) { rp = rp_addr(unit) + i; atomic_add_32(&ctlp->free, 1); tty_lock(rp->rp_tty); tty_rel_gone(rp->rp_tty); } } while (ctlp->free != 0) { pause("rpwt", hz / 10); } if (ctlp->rp != NULL) { for (i = 0 ; i < sizeof(p_rp_addr) / sizeof(*p_rp_addr) ; i++) if (p_rp_addr[i] == ctlp->rp) p_rp_addr[i] = NULL; for (i = 0 ; i < sizeof(p_rp_table) / sizeof(*p_rp_table) ; i++) if (p_rp_table[i] == ctlp->rp) p_rp_table[i] = NULL; free(ctlp->rp, M_DEVBUF); ctlp->rp = NULL; } } void rp_untimeout(void) { untimeout(rp_do_poll, (void *)NULL, rp_callout_handle); } static int rpopen(struct tty *tp) { struct rp_port *rp; int flags; unsigned int IntMask, ChanStatus; rp = tty_softc(tp); flags = 0; flags |= SET_RTS; flags |= SET_DTR; rp->rp_channel.TxControl[3] = ((rp->rp_channel.TxControl[3] & ~(SET_RTS | SET_DTR)) | flags); rp_writech4(&rp->rp_channel,_INDX_ADDR, le32dec(rp->rp_channel.TxControl)); sSetRxTrigger(&rp->rp_channel, TRIG_1); sDisRxStatusMode(&rp->rp_channel); sFlushRxFIFO(&rp->rp_channel); sFlushTxFIFO(&rp->rp_channel); sEnInterrupts(&rp->rp_channel, (TXINT_EN|MCINT_EN|RXINT_EN|SRCINT_EN|CHANINT_EN)); sSetRxTrigger(&rp->rp_channel, TRIG_1); sDisRxStatusMode(&rp->rp_channel); sClrTxXOFF(&rp->rp_channel); /* sDisRTSFlowCtl(&rp->rp_channel); sDisCTSFlowCtl(&rp->rp_channel); */ sDisTxSoftFlowCtl(&rp->rp_channel); sStartRxProcessor(&rp->rp_channel); sEnRxFIFO(&rp->rp_channel); sEnTransmit(&rp->rp_channel); /* sSetDTR(&rp->rp_channel); sSetRTS(&rp->rp_channel); */ rp_num_ports_open++; IntMask = sGetChanIntID(&rp->rp_channel); IntMask = IntMask & rp->rp_intmask; ChanStatus = sGetChanStatus(&rp->rp_channel); if(rp_num_ports_open == 1) rp_callout_handle = timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL); device_busy(rp->rp_ctlp->dev); return(0); } static void rpclose(struct tty *tp) { struct rp_port *rp; rp = tty_softc(tp); rphardclose(tp); device_unbusy(rp->rp_ctlp->dev); } static void rphardclose(struct tty *tp) { struct rp_port *rp; CHANNEL_t *cp; rp = tty_softc(tp); cp = &rp->rp_channel; sFlushRxFIFO(cp); sFlushTxFIFO(cp); sDisTransmit(cp); sDisInterrupts(cp, TXINT_EN|MCINT_EN|RXINT_EN|SRCINT_EN|CHANINT_EN); sDisRTSFlowCtl(cp); sDisCTSFlowCtl(cp); sDisTxSoftFlowCtl(cp); sClrTxXOFF(cp); #ifdef DJA if(tp->t_cflag&HUPCL || !(tp->t_state&TS_ISOPEN) || !tp->t_actout) { sClrDTR(cp); } if(ISCALLOUT(tp->t_dev)) { sClrDTR(cp); } tp->t_actout = FALSE; wakeup(&tp->t_actout); wakeup(TSA_CARR_ON(tp)); #endif /* DJA */ } static int rpioctl(struct tty *tp, u_long cmd, caddr_t data, struct thread *td) { struct rp_port *rp; rp = tty_softc(tp); switch (cmd) { case TIOCSBRK: sSendBreak(&rp->rp_channel); return (0); case TIOCCBRK: sClrBreak(&rp->rp_channel); return (0); default: return ENOIOCTL; } } static int rpmodem(struct tty *tp, int sigon, int sigoff) { struct rp_port *rp; int i, j, k; rp = tty_softc(tp); if (sigon != 0 || sigoff != 0) { i = j = 0; if (sigon & SER_DTR) i = SET_DTR; if (sigoff & SER_DTR) j = SET_DTR; if (sigon & SER_RTS) i = SET_RTS; if (sigoff & SER_RTS) j = SET_RTS; rp->rp_channel.TxControl[3] &= ~i; rp->rp_channel.TxControl[3] |= j; rp_writech4(&rp->rp_channel,_INDX_ADDR, le32dec(rp->rp_channel.TxControl)); } else { i = sGetChanStatusLo(&rp->rp_channel); j = rp->rp_channel.TxControl[3]; k = 0; if (j & SET_DTR) k |= SER_DTR; if (j & SET_RTS) k |= SER_RTS; if (i & CD_ACT) k |= SER_DCD; if (i & DSR_ACT) k |= SER_DSR; if (i & CTS_ACT) k |= SER_CTS; return(k); } return (0); } static struct { int baud; int conversion; } baud_table[] = { {B0, 0}, {B50, BRD50}, {B75, BRD75}, {B110, BRD110}, {B134, BRD134}, {B150, BRD150}, {B200, BRD200}, {B300, BRD300}, {B600, BRD600}, {B1200, BRD1200}, {B1800, BRD1800}, {B2400, BRD2400}, {B4800, BRD4800}, {B9600, BRD9600}, {B19200, BRD19200}, {B38400, BRD38400}, {B7200, BRD7200}, {B14400, BRD14400}, {B57600, BRD57600}, {B76800, BRD76800}, {B115200, BRD115200}, {B230400, BRD230400}, {-1, -1} }; static int rp_convert_baud(int baud) { int i; for (i = 0; baud_table[i].baud >= 0; i++) { if (baud_table[i].baud == baud) break; } return baud_table[i].conversion; } static int rpparam(tp, t) struct tty *tp; struct termios *t; { struct rp_port *rp; CHANNEL_t *cp; int cflag, iflag, oflag, lflag; int ospeed; #ifdef RPCLOCAL int devshift; #endif rp = tty_softc(tp); cp = &rp->rp_channel; cflag = t->c_cflag; #ifdef RPCLOCAL devshift = umynor / 32; devshift = 1 << devshift; if ( devshift & RPCLOCAL ) { cflag |= CLOCAL; } #endif iflag = t->c_iflag; oflag = t->c_oflag; lflag = t->c_lflag; ospeed = rp_convert_baud(t->c_ispeed); if(ospeed < 0 || t->c_ispeed != t->c_ospeed) return(EINVAL); if(t->c_ospeed == 0) { sClrDTR(cp); return(0); } rp->rp_fifo_lw = ((t->c_ospeed*2) / 1000) +1; /* Set baud rate ----- we only pay attention to ispeed */ sSetDTR(cp); sSetRTS(cp); sSetBaud(cp, ospeed); if(cflag & CSTOPB) { sSetStop2(cp); } else { sSetStop1(cp); } if(cflag & PARENB) { sEnParity(cp); if(cflag & PARODD) { sSetOddParity(cp); } else { sSetEvenParity(cp); } } else { sDisParity(cp); } if((cflag & CSIZE) == CS8) { sSetData8(cp); rp->rp_imask = 0xFF; } else { sSetData7(cp); rp->rp_imask = 0x7F; } if(iflag & ISTRIP) { rp->rp_imask &= 0x7F; } if(cflag & CLOCAL) { rp->rp_intmask &= ~DELTA_CD; } else { rp->rp_intmask |= DELTA_CD; } /* Put flow control stuff here */ if(cflag & CCTS_OFLOW) { sEnCTSFlowCtl(cp); } else { sDisCTSFlowCtl(cp); } if(cflag & CRTS_IFLOW) { rp->rp_rts_iflow = 1; } else { rp->rp_rts_iflow = 0; } if(cflag & CRTS_IFLOW) { sEnRTSFlowCtl(cp); } else { sDisRTSFlowCtl(cp); } return(0); } static void rpstart(struct tty *tp) { struct rp_port *rp; CHANNEL_t *cp; char flags; int xmit_fifo_room; int i, count, wcount; rp = tty_softc(tp); cp = &rp->rp_channel; flags = rp->rp_channel.TxControl[3]; if(rp->rp_xmit_stopped) { sEnTransmit(cp); rp->rp_xmit_stopped = 0; } xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); count = ttydisc_getc(tp, &rp->TxBuf, xmit_fifo_room); if(xmit_fifo_room > 0) { for( i = 0, wcount = count >> 1; wcount > 0; i += 2, wcount-- ) { rp_writech2(cp, sGetTxRxDataIO(cp), le16dec(&rp->TxBuf[i])); } if ( count & 1 ) { rp_writech1(cp, sGetTxRxDataIO(cp), rp->TxBuf[(count-1)]); } } }