/*- * Copyright (c) 2010-2015 Solarflare Communications Inc. * All rights reserved. * * This software was developed in part by Philip Paeps under contract for * Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/efx.h" #include "sfxge.h" #include "sfxge_rx.h" #include "sfxge_ioc.h" #include "sfxge_version.h" #define SFXGE_CAP (IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM | \ IFCAP_RXCSUM | IFCAP_TXCSUM | \ IFCAP_RXCSUM_IPV6 | IFCAP_TXCSUM_IPV6 | \ IFCAP_TSO4 | IFCAP_TSO6 | \ IFCAP_JUMBO_MTU | \ IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWSTATS) #define SFXGE_CAP_ENABLE SFXGE_CAP #define SFXGE_CAP_FIXED (IFCAP_VLAN_MTU | \ IFCAP_JUMBO_MTU | IFCAP_LINKSTATE | IFCAP_HWSTATS) MALLOC_DEFINE(M_SFXGE, "sfxge", "Solarflare 10GigE driver"); SYSCTL_NODE(_hw, OID_AUTO, sfxge, CTLFLAG_RD, 0, "SFXGE driver parameters"); #define SFXGE_PARAM_RX_RING SFXGE_PARAM(rx_ring) static int sfxge_rx_ring_entries = SFXGE_NDESCS; TUNABLE_INT(SFXGE_PARAM_RX_RING, &sfxge_rx_ring_entries); SYSCTL_INT(_hw_sfxge, OID_AUTO, rx_ring, CTLFLAG_RDTUN, &sfxge_rx_ring_entries, 0, "Maximum number of descriptors in a receive ring"); #define SFXGE_PARAM_TX_RING SFXGE_PARAM(tx_ring) static int sfxge_tx_ring_entries = SFXGE_NDESCS; TUNABLE_INT(SFXGE_PARAM_TX_RING, &sfxge_tx_ring_entries); SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_ring, CTLFLAG_RDTUN, &sfxge_tx_ring_entries, 0, "Maximum number of descriptors in a transmit ring"); #define SFXGE_PARAM_STATS_UPDATE_PERIOD SFXGE_PARAM(stats_update_period) static int sfxge_stats_update_period = SFXGE_CALLOUT_TICKS; TUNABLE_INT(SFXGE_PARAM_STATS_UPDATE_PERIOD, &sfxge_stats_update_period); SYSCTL_INT(_hw_sfxge, OID_AUTO, stats_update_period, CTLFLAG_RDTUN, &sfxge_stats_update_period, 0, "netstat interface statistics update period in ticks"); #define SFXGE_PARAM_RESTART_ATTEMPTS SFXGE_PARAM(restart_attempts) static int sfxge_restart_attempts = 3; TUNABLE_INT(SFXGE_PARAM_RESTART_ATTEMPTS, &sfxge_restart_attempts); SYSCTL_INT(_hw_sfxge, OID_AUTO, restart_attempts, CTLFLAG_RDTUN, &sfxge_restart_attempts, 0, "Maximum number of attempts to bring interface up after reset"); #if EFSYS_OPT_MCDI_LOGGING #define SFXGE_PARAM_MCDI_LOGGING SFXGE_PARAM(mcdi_logging) static int sfxge_mcdi_logging = 0; TUNABLE_INT(SFXGE_PARAM_MCDI_LOGGING, &sfxge_mcdi_logging); #endif static void sfxge_reset(void *arg, int npending); static int sfxge_estimate_rsrc_limits(struct sfxge_softc *sc) { efx_drv_limits_t limits; int rc; unsigned int evq_max; uint32_t evq_allocated; uint32_t rxq_allocated; uint32_t txq_allocated; /* * Limit the number of event queues to: * - number of CPUs * - hardwire maximum RSS channels * - administratively specified maximum RSS channels */ evq_max = MIN(mp_ncpus, EFX_MAXRSS); if (sc->max_rss_channels > 0) evq_max = MIN(evq_max, sc->max_rss_channels); memset(&limits, 0, sizeof(limits)); limits.edl_min_evq_count = 1; limits.edl_max_evq_count = evq_max; limits.edl_min_txq_count = SFXGE_TXQ_NTYPES; limits.edl_max_txq_count = evq_max + SFXGE_TXQ_NTYPES - 1; limits.edl_min_rxq_count = 1; limits.edl_max_rxq_count = evq_max; efx_nic_set_drv_limits(sc->enp, &limits); if ((rc = efx_nic_init(sc->enp)) != 0) return (rc); rc = efx_nic_get_vi_pool(sc->enp, &evq_allocated, &rxq_allocated, &txq_allocated); if (rc != 0) { efx_nic_fini(sc->enp); return (rc); } KASSERT(txq_allocated >= SFXGE_TXQ_NTYPES, ("txq_allocated < SFXGE_TXQ_NTYPES")); sc->evq_max = MIN(evq_allocated, evq_max); sc->evq_max = MIN(rxq_allocated, sc->evq_max); sc->evq_max = MIN(txq_allocated - (SFXGE_TXQ_NTYPES - 1), sc->evq_max); KASSERT(sc->evq_max <= evq_max, ("allocated more than maximum requested")); /* * NIC is kept initialized in the case of success to be able to * initialize port to find out media types. */ return (0); } static int sfxge_set_drv_limits(struct sfxge_softc *sc) { efx_drv_limits_t limits; memset(&limits, 0, sizeof(limits)); /* Limits are strict since take into account initial estimation */ limits.edl_min_evq_count = limits.edl_max_evq_count = sc->intr.n_alloc; limits.edl_min_txq_count = limits.edl_max_txq_count = sc->intr.n_alloc + SFXGE_TXQ_NTYPES - 1; limits.edl_min_rxq_count = limits.edl_max_rxq_count = sc->intr.n_alloc; return (efx_nic_set_drv_limits(sc->enp, &limits)); } static int sfxge_start(struct sfxge_softc *sc) { int rc; SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); if (sc->init_state == SFXGE_STARTED) return (0); if (sc->init_state != SFXGE_REGISTERED) { rc = EINVAL; goto fail; } /* Set required resource limits */ if ((rc = sfxge_set_drv_limits(sc)) != 0) goto fail; if ((rc = efx_nic_init(sc->enp)) != 0) goto fail; /* Start processing interrupts. */ if ((rc = sfxge_intr_start(sc)) != 0) goto fail2; /* Start processing events. */ if ((rc = sfxge_ev_start(sc)) != 0) goto fail3; /* Fire up the port. */ if ((rc = sfxge_port_start(sc)) != 0) goto fail4; /* Start the receiver side. */ if ((rc = sfxge_rx_start(sc)) != 0) goto fail5; /* Start the transmitter side. */ if ((rc = sfxge_tx_start(sc)) != 0) goto fail6; sc->init_state = SFXGE_STARTED; /* Tell the stack we're running. */ sc->ifnet->if_drv_flags |= IFF_DRV_RUNNING; sc->ifnet->if_drv_flags &= ~IFF_DRV_OACTIVE; return (0); fail6: sfxge_rx_stop(sc); fail5: sfxge_port_stop(sc); fail4: sfxge_ev_stop(sc); fail3: sfxge_intr_stop(sc); fail2: efx_nic_fini(sc->enp); fail: device_printf(sc->dev, "sfxge_start: %d\n", rc); return (rc); } static void sfxge_if_init(void *arg) { struct sfxge_softc *sc; sc = (struct sfxge_softc *)arg; SFXGE_ADAPTER_LOCK(sc); (void)sfxge_start(sc); SFXGE_ADAPTER_UNLOCK(sc); } static void sfxge_stop(struct sfxge_softc *sc) { SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); if (sc->init_state != SFXGE_STARTED) return; sc->init_state = SFXGE_REGISTERED; /* Stop the transmitter. */ sfxge_tx_stop(sc); /* Stop the receiver. */ sfxge_rx_stop(sc); /* Stop the port. */ sfxge_port_stop(sc); /* Stop processing events. */ sfxge_ev_stop(sc); /* Stop processing interrupts. */ sfxge_intr_stop(sc); efx_nic_fini(sc->enp); sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING; } static int sfxge_vpd_ioctl(struct sfxge_softc *sc, sfxge_ioc_t *ioc) { efx_vpd_value_t value; int rc = 0; switch (ioc->u.vpd.op) { case SFXGE_VPD_OP_GET_KEYWORD: value.evv_tag = ioc->u.vpd.tag; value.evv_keyword = ioc->u.vpd.keyword; rc = efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value); if (rc != 0) break; ioc->u.vpd.len = MIN(ioc->u.vpd.len, value.evv_length); if (ioc->u.vpd.payload != 0) { rc = copyout(value.evv_value, ioc->u.vpd.payload, ioc->u.vpd.len); } break; case SFXGE_VPD_OP_SET_KEYWORD: if (ioc->u.vpd.len > sizeof(value.evv_value)) return (EINVAL); value.evv_tag = ioc->u.vpd.tag; value.evv_keyword = ioc->u.vpd.keyword; value.evv_length = ioc->u.vpd.len; rc = copyin(ioc->u.vpd.payload, value.evv_value, value.evv_length); if (rc != 0) break; rc = efx_vpd_set(sc->enp, sc->vpd_data, sc->vpd_size, &value); if (rc != 0) break; rc = efx_vpd_verify(sc->enp, sc->vpd_data, sc->vpd_size); if (rc != 0) break; rc = efx_vpd_write(sc->enp, sc->vpd_data, sc->vpd_size); break; default: rc = EOPNOTSUPP; break; } return (rc); } static int sfxge_private_ioctl(struct sfxge_softc *sc, sfxge_ioc_t *ioc) { switch (ioc->op) { case SFXGE_MCDI_IOC: return (sfxge_mcdi_ioctl(sc, ioc)); case SFXGE_NVRAM_IOC: return (sfxge_nvram_ioctl(sc, ioc)); case SFXGE_VPD_IOC: return (sfxge_vpd_ioctl(sc, ioc)); default: return (EOPNOTSUPP); } } static int sfxge_if_ioctl(struct ifnet *ifp, unsigned long command, caddr_t data) { struct sfxge_softc *sc; struct ifreq *ifr; sfxge_ioc_t ioc; int error; ifr = (struct ifreq *)data; sc = ifp->if_softc; error = 0; switch (command) { case SIOCSIFFLAGS: SFXGE_ADAPTER_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) { sfxge_mac_filter_set(sc); } } else sfxge_start(sc); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) sfxge_stop(sc); sc->if_flags = ifp->if_flags; SFXGE_ADAPTER_UNLOCK(sc); break; case SIOCSIFMTU: if (ifr->ifr_mtu == ifp->if_mtu) { /* Nothing to do */ error = 0; } else if (ifr->ifr_mtu > SFXGE_MAX_MTU) { error = EINVAL; } else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { ifp->if_mtu = ifr->ifr_mtu; error = 0; } else { /* Restart required */ SFXGE_ADAPTER_LOCK(sc); sfxge_stop(sc); ifp->if_mtu = ifr->ifr_mtu; error = sfxge_start(sc); SFXGE_ADAPTER_UNLOCK(sc); if (error != 0) { ifp->if_flags &= ~IFF_UP; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; if_down(ifp); } } break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) sfxge_mac_filter_set(sc); break; case SIOCSIFCAP: { int reqcap = ifr->ifr_reqcap; int capchg_mask; SFXGE_ADAPTER_LOCK(sc); /* Capabilities to be changed in accordance with request */ capchg_mask = ifp->if_capenable ^ reqcap; /* * The networking core already rejects attempts to * enable capabilities we don't have. We still have * to reject attempts to disable capabilities that we * can't (yet) disable. */ KASSERT((reqcap & ~ifp->if_capabilities) == 0, ("Unsupported capabilities 0x%x requested 0x%x vs " "supported 0x%x", reqcap & ~ifp->if_capabilities, reqcap , ifp->if_capabilities)); if (capchg_mask & SFXGE_CAP_FIXED) { error = EINVAL; SFXGE_ADAPTER_UNLOCK(sc); break; } /* Check request before any changes */ if ((capchg_mask & IFCAP_TSO4) && (reqcap & (IFCAP_TSO4 | IFCAP_TXCSUM)) == IFCAP_TSO4) { error = EAGAIN; SFXGE_ADAPTER_UNLOCK(sc); if_printf(ifp, "enable txcsum before tso4\n"); break; } if ((capchg_mask & IFCAP_TSO6) && (reqcap & (IFCAP_TSO6 | IFCAP_TXCSUM_IPV6)) == IFCAP_TSO6) { error = EAGAIN; SFXGE_ADAPTER_UNLOCK(sc); if_printf(ifp, "enable txcsum6 before tso6\n"); break; } if (reqcap & IFCAP_TXCSUM) { ifp->if_hwassist |= (CSUM_IP | CSUM_TCP | CSUM_UDP); } else { ifp->if_hwassist &= ~(CSUM_IP | CSUM_TCP | CSUM_UDP); if (reqcap & IFCAP_TSO4) { reqcap &= ~IFCAP_TSO4; if_printf(ifp, "tso4 disabled due to -txcsum\n"); } } if (reqcap & IFCAP_TXCSUM_IPV6) { ifp->if_hwassist |= (CSUM_TCP_IPV6 | CSUM_UDP_IPV6); } else { ifp->if_hwassist &= ~(CSUM_TCP_IPV6 | CSUM_UDP_IPV6); if (reqcap & IFCAP_TSO6) { reqcap &= ~IFCAP_TSO6; if_printf(ifp, "tso6 disabled due to -txcsum6\n"); } } /* * The kernel takes both IFCAP_TSOx and CSUM_TSO into * account before using TSO. So, we do not touch * checksum flags when IFCAP_TSOx is modified. * Note that CSUM_TSO is (CSUM_IP_TSO|CSUM_IP6_TSO), * but both bits are set in IPv4 and IPv6 mbufs. */ ifp->if_capenable = reqcap; SFXGE_ADAPTER_UNLOCK(sc); break; } case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->media, command); break; #ifdef SIOCGI2C case SIOCGI2C: { struct ifi2creq i2c; error = copyin(ifr->ifr_data, &i2c, sizeof(i2c)); if (error != 0) break; if (i2c.len > sizeof(i2c.data)) { error = EINVAL; break; } SFXGE_ADAPTER_LOCK(sc); error = efx_phy_module_get_info(sc->enp, i2c.dev_addr, i2c.offset, i2c.len, &i2c.data[0]); SFXGE_ADAPTER_UNLOCK(sc); if (error == 0) error = copyout(&i2c, ifr->ifr_data, sizeof(i2c)); break; } #endif case SIOCGPRIVATE_0: error = priv_check(curthread, PRIV_DRIVER); if (error != 0) break; error = copyin(ifr->ifr_data, &ioc, sizeof(ioc)); if (error != 0) return (error); error = sfxge_private_ioctl(sc, &ioc); if (error == 0) { error = copyout(&ioc, ifr->ifr_data, sizeof(ioc)); } break; default: error = ether_ioctl(ifp, command, data); } return (error); } static void sfxge_tick(void *arg) { struct sfxge_softc *sc = arg; sfxge_port_update_stats(sc); sfxge_tx_update_stats(sc); callout_reset(&sc->tick_callout, sfxge_stats_update_period, sfxge_tick, sc); } static void sfxge_ifnet_fini(struct ifnet *ifp) { struct sfxge_softc *sc = ifp->if_softc; callout_drain(&sc->tick_callout); SFXGE_ADAPTER_LOCK(sc); sfxge_stop(sc); SFXGE_ADAPTER_UNLOCK(sc); ifmedia_removeall(&sc->media); ether_ifdetach(ifp); if_free(ifp); } static int sfxge_ifnet_init(struct ifnet *ifp, struct sfxge_softc *sc) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); device_t dev; int rc; dev = sc->dev; sc->ifnet = ifp; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_init = sfxge_if_init; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sfxge_if_ioctl; ifp->if_capabilities = SFXGE_CAP; ifp->if_capenable = SFXGE_CAP_ENABLE; ifp->if_hw_tsomax = SFXGE_TSO_MAX_SIZE; ifp->if_hw_tsomaxsegcount = SFXGE_TX_MAPPING_MAX_SEG; ifp->if_hw_tsomaxsegsize = PAGE_SIZE; #ifdef SFXGE_LRO ifp->if_capabilities |= IFCAP_LRO; ifp->if_capenable |= IFCAP_LRO; #endif if (encp->enc_hw_tx_insert_vlan_enabled) { ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; ifp->if_capenable |= IFCAP_VLAN_HWTAGGING; } ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | CSUM_TCP_IPV6 | CSUM_UDP_IPV6; ether_ifattach(ifp, encp->enc_mac_addr); ifp->if_transmit = sfxge_if_transmit; ifp->if_qflush = sfxge_if_qflush; callout_init(&sc->tick_callout, B_TRUE); DBGPRINT(sc->dev, "ifmedia_init"); if ((rc = sfxge_port_ifmedia_init(sc)) != 0) goto fail; callout_reset(&sc->tick_callout, sfxge_stats_update_period, sfxge_tick, sc); return (0); fail: ether_ifdetach(sc->ifnet); return (rc); } void sfxge_sram_buf_tbl_alloc(struct sfxge_softc *sc, size_t n, uint32_t *idp) { KASSERT(sc->buffer_table_next + n <= efx_nic_cfg_get(sc->enp)->enc_buftbl_limit, ("buffer table full")); *idp = sc->buffer_table_next; sc->buffer_table_next += n; } static int sfxge_bar_init(struct sfxge_softc *sc) { efsys_bar_t *esbp = &sc->bar; esbp->esb_rid = PCIR_BAR(EFX_MEM_BAR); if ((esbp->esb_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &esbp->esb_rid, RF_ACTIVE)) == NULL) { device_printf(sc->dev, "Cannot allocate BAR region %d\n", EFX_MEM_BAR); return (ENXIO); } esbp->esb_tag = rman_get_bustag(esbp->esb_res); esbp->esb_handle = rman_get_bushandle(esbp->esb_res); SFXGE_BAR_LOCK_INIT(esbp, device_get_nameunit(sc->dev)); return (0); } static void sfxge_bar_fini(struct sfxge_softc *sc) { efsys_bar_t *esbp = &sc->bar; bus_release_resource(sc->dev, SYS_RES_MEMORY, esbp->esb_rid, esbp->esb_res); SFXGE_BAR_LOCK_DESTROY(esbp); } static int sfxge_create(struct sfxge_softc *sc) { device_t dev; efx_nic_t *enp; int error; char rss_param_name[sizeof(SFXGE_PARAM(%d.max_rss_channels))]; #if EFSYS_OPT_MCDI_LOGGING char mcdi_log_param_name[sizeof(SFXGE_PARAM(%d.mcdi_logging))]; #endif dev = sc->dev; SFXGE_ADAPTER_LOCK_INIT(sc, device_get_nameunit(sc->dev)); sc->max_rss_channels = 0; snprintf(rss_param_name, sizeof(rss_param_name), SFXGE_PARAM(%d.max_rss_channels), (int)device_get_unit(dev)); TUNABLE_INT_FETCH(rss_param_name, &sc->max_rss_channels); #if EFSYS_OPT_MCDI_LOGGING sc->mcdi_logging = sfxge_mcdi_logging; snprintf(mcdi_log_param_name, sizeof(mcdi_log_param_name), SFXGE_PARAM(%d.mcdi_logging), (int)device_get_unit(dev)); TUNABLE_INT_FETCH(mcdi_log_param_name, &sc->mcdi_logging); #endif sc->stats_node = SYSCTL_ADD_NODE( device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLFLAG_RD, NULL, "Statistics"); if (sc->stats_node == NULL) { error = ENOMEM; goto fail; } TASK_INIT(&sc->task_reset, 0, sfxge_reset, sc); (void) pci_enable_busmaster(dev); /* Initialize DMA mappings. */ DBGPRINT(sc->dev, "dma_init..."); if ((error = sfxge_dma_init(sc)) != 0) goto fail; /* Map the device registers. */ DBGPRINT(sc->dev, "bar_init..."); if ((error = sfxge_bar_init(sc)) != 0) goto fail; error = efx_family(pci_get_vendor(dev), pci_get_device(dev), &sc->family); KASSERT(error == 0, ("Family should be filtered by sfxge_probe()")); DBGPRINT(sc->dev, "nic_create..."); /* Create the common code nic object. */ SFXGE_EFSYS_LOCK_INIT(&sc->enp_lock, device_get_nameunit(sc->dev), "nic"); if ((error = efx_nic_create(sc->family, (efsys_identifier_t *)sc, &sc->bar, &sc->enp_lock, &enp)) != 0) goto fail3; sc->enp = enp; if (!ISP2(sfxge_rx_ring_entries) || (sfxge_rx_ring_entries < EFX_RXQ_MINNDESCS) || (sfxge_rx_ring_entries > EFX_RXQ_MAXNDESCS)) { log(LOG_ERR, "%s=%d must be power of 2 from %u to %u", SFXGE_PARAM_RX_RING, sfxge_rx_ring_entries, EFX_RXQ_MINNDESCS, EFX_RXQ_MAXNDESCS); error = EINVAL; goto fail_rx_ring_entries; } sc->rxq_entries = sfxge_rx_ring_entries; if (!ISP2(sfxge_tx_ring_entries) || (sfxge_tx_ring_entries < EFX_TXQ_MINNDESCS) || (sfxge_tx_ring_entries > EFX_TXQ_MAXNDESCS(efx_nic_cfg_get(enp)))) { log(LOG_ERR, "%s=%d must be power of 2 from %u to %u", SFXGE_PARAM_TX_RING, sfxge_tx_ring_entries, EFX_TXQ_MINNDESCS, EFX_TXQ_MAXNDESCS(efx_nic_cfg_get(enp))); error = EINVAL; goto fail_tx_ring_entries; } sc->txq_entries = sfxge_tx_ring_entries; /* Initialize MCDI to talk to the microcontroller. */ DBGPRINT(sc->dev, "mcdi_init..."); if ((error = sfxge_mcdi_init(sc)) != 0) goto fail4; /* Probe the NIC and build the configuration data area. */ DBGPRINT(sc->dev, "nic_probe..."); if ((error = efx_nic_probe(enp)) != 0) goto fail5; SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "version", CTLFLAG_RD, SFXGE_VERSION_STRING, 0, "Driver version"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "phy_type", CTLFLAG_RD, NULL, efx_nic_cfg_get(enp)->enc_phy_type, "PHY type"); /* Initialize the NVRAM. */ DBGPRINT(sc->dev, "nvram_init..."); if ((error = efx_nvram_init(enp)) != 0) goto fail6; /* Initialize the VPD. */ DBGPRINT(sc->dev, "vpd_init..."); if ((error = efx_vpd_init(enp)) != 0) goto fail7; efx_mcdi_new_epoch(enp); /* Reset the NIC. */ DBGPRINT(sc->dev, "nic_reset..."); if ((error = efx_nic_reset(enp)) != 0) goto fail8; /* Initialize buffer table allocation. */ sc->buffer_table_next = 0; /* * Guarantee minimum and estimate maximum number of event queues * to take it into account when MSI-X interrupts are allocated. * It initializes NIC and keeps it initialized on success. */ if ((error = sfxge_estimate_rsrc_limits(sc)) != 0) goto fail8; /* Set up interrupts. */ DBGPRINT(sc->dev, "intr_init..."); if ((error = sfxge_intr_init(sc)) != 0) goto fail9; /* Initialize event processing state. */ DBGPRINT(sc->dev, "ev_init..."); if ((error = sfxge_ev_init(sc)) != 0) goto fail11; /* Initialize port state. */ DBGPRINT(sc->dev, "port_init..."); if ((error = sfxge_port_init(sc)) != 0) goto fail12; /* Initialize receive state. */ DBGPRINT(sc->dev, "rx_init..."); if ((error = sfxge_rx_init(sc)) != 0) goto fail13; /* Initialize transmit state. */ DBGPRINT(sc->dev, "tx_init..."); if ((error = sfxge_tx_init(sc)) != 0) goto fail14; sc->init_state = SFXGE_INITIALIZED; DBGPRINT(sc->dev, "success"); return (0); fail14: sfxge_rx_fini(sc); fail13: sfxge_port_fini(sc); fail12: sfxge_ev_fini(sc); fail11: sfxge_intr_fini(sc); fail9: efx_nic_fini(sc->enp); fail8: efx_vpd_fini(enp); fail7: efx_nvram_fini(enp); fail6: efx_nic_unprobe(enp); fail5: sfxge_mcdi_fini(sc); fail4: fail_tx_ring_entries: fail_rx_ring_entries: sc->enp = NULL; efx_nic_destroy(enp); SFXGE_EFSYS_LOCK_DESTROY(&sc->enp_lock); fail3: sfxge_bar_fini(sc); (void) pci_disable_busmaster(sc->dev); fail: DBGPRINT(sc->dev, "failed %d", error); sc->dev = NULL; SFXGE_ADAPTER_LOCK_DESTROY(sc); return (error); } static void sfxge_destroy(struct sfxge_softc *sc) { efx_nic_t *enp; /* Clean up transmit state. */ sfxge_tx_fini(sc); /* Clean up receive state. */ sfxge_rx_fini(sc); /* Clean up port state. */ sfxge_port_fini(sc); /* Clean up event processing state. */ sfxge_ev_fini(sc); /* Clean up interrupts. */ sfxge_intr_fini(sc); /* Tear down common code subsystems. */ efx_nic_reset(sc->enp); efx_vpd_fini(sc->enp); efx_nvram_fini(sc->enp); efx_nic_unprobe(sc->enp); /* Tear down MCDI. */ sfxge_mcdi_fini(sc); /* Destroy common code context. */ enp = sc->enp; sc->enp = NULL; efx_nic_destroy(enp); /* Free DMA memory. */ sfxge_dma_fini(sc); /* Free mapped BARs. */ sfxge_bar_fini(sc); (void) pci_disable_busmaster(sc->dev); taskqueue_drain(taskqueue_thread, &sc->task_reset); /* Destroy the softc lock. */ SFXGE_ADAPTER_LOCK_DESTROY(sc); } static int sfxge_vpd_handler(SYSCTL_HANDLER_ARGS) { struct sfxge_softc *sc = arg1; efx_vpd_value_t value; int rc; value.evv_tag = arg2 >> 16; value.evv_keyword = arg2 & 0xffff; if ((rc = efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value)) != 0) return (rc); return (SYSCTL_OUT(req, value.evv_value, value.evv_length)); } static void sfxge_vpd_try_add(struct sfxge_softc *sc, struct sysctl_oid_list *list, efx_vpd_tag_t tag, const char *keyword) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); efx_vpd_value_t value; /* Check whether VPD tag/keyword is present */ value.evv_tag = tag; value.evv_keyword = EFX_VPD_KEYWORD(keyword[0], keyword[1]); if (efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value) != 0) return; SYSCTL_ADD_PROC( ctx, list, OID_AUTO, keyword, CTLTYPE_STRING|CTLFLAG_RD, sc, tag << 16 | EFX_VPD_KEYWORD(keyword[0], keyword[1]), sfxge_vpd_handler, "A", ""); } static int sfxge_vpd_init(struct sfxge_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); struct sysctl_oid *vpd_node; struct sysctl_oid_list *vpd_list; char keyword[3]; efx_vpd_value_t value; int rc; if ((rc = efx_vpd_size(sc->enp, &sc->vpd_size)) != 0) { /* * Unpriviledged functions deny VPD access. * Simply skip VPD in this case. */ if (rc == EACCES) goto done; goto fail; } sc->vpd_data = malloc(sc->vpd_size, M_SFXGE, M_WAITOK); if ((rc = efx_vpd_read(sc->enp, sc->vpd_data, sc->vpd_size)) != 0) goto fail2; /* Copy ID (product name) into device description, and log it. */ value.evv_tag = EFX_VPD_ID; if (efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value) == 0) { value.evv_value[value.evv_length] = 0; device_set_desc_copy(sc->dev, value.evv_value); device_printf(sc->dev, "%s\n", value.evv_value); } vpd_node = SYSCTL_ADD_NODE( ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "vpd", CTLFLAG_RD, NULL, "Vital Product Data"); vpd_list = SYSCTL_CHILDREN(vpd_node); /* Add sysctls for all expected and any vendor-defined keywords. */ sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, "PN"); sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, "EC"); sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, "SN"); keyword[0] = 'V'; keyword[2] = 0; for (keyword[1] = '0'; keyword[1] <= '9'; keyword[1]++) sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, keyword); for (keyword[1] = 'A'; keyword[1] <= 'Z'; keyword[1]++) sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, keyword); done: return (0); fail2: free(sc->vpd_data, M_SFXGE); fail: return (rc); } static void sfxge_vpd_fini(struct sfxge_softc *sc) { free(sc->vpd_data, M_SFXGE); } static void sfxge_reset(void *arg, int npending) { struct sfxge_softc *sc; int rc; unsigned attempt; (void)npending; sc = (struct sfxge_softc *)arg; SFXGE_ADAPTER_LOCK(sc); if (sc->init_state != SFXGE_STARTED) goto done; sfxge_stop(sc); efx_nic_reset(sc->enp); for (attempt = 0; attempt < sfxge_restart_attempts; ++attempt) { if ((rc = sfxge_start(sc)) == 0) goto done; device_printf(sc->dev, "start on reset failed (%d)\n", rc); DELAY(100000); } device_printf(sc->dev, "reset failed; interface is now stopped\n"); done: SFXGE_ADAPTER_UNLOCK(sc); } void sfxge_schedule_reset(struct sfxge_softc *sc) { taskqueue_enqueue(taskqueue_thread, &sc->task_reset); } static int sfxge_attach(device_t dev) { struct sfxge_softc *sc; struct ifnet *ifp; int error; sc = device_get_softc(dev); sc->dev = dev; /* Allocate ifnet. */ ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "Couldn't allocate ifnet\n"); error = ENOMEM; goto fail; } sc->ifnet = ifp; /* Initialize hardware. */ DBGPRINT(sc->dev, "create nic"); if ((error = sfxge_create(sc)) != 0) goto fail2; /* Create the ifnet for the port. */ DBGPRINT(sc->dev, "init ifnet"); if ((error = sfxge_ifnet_init(ifp, sc)) != 0) goto fail3; DBGPRINT(sc->dev, "init vpd"); if ((error = sfxge_vpd_init(sc)) != 0) goto fail4; /* * NIC is initialized inside sfxge_create() and kept inialized * to be able to initialize port to discover media types in * sfxge_ifnet_init(). */ efx_nic_fini(sc->enp); sc->init_state = SFXGE_REGISTERED; DBGPRINT(sc->dev, "success"); return (0); fail4: sfxge_ifnet_fini(ifp); fail3: efx_nic_fini(sc->enp); sfxge_destroy(sc); fail2: if_free(sc->ifnet); fail: DBGPRINT(sc->dev, "failed %d", error); return (error); } static int sfxge_detach(device_t dev) { struct sfxge_softc *sc; sc = device_get_softc(dev); sfxge_vpd_fini(sc); /* Destroy the ifnet. */ sfxge_ifnet_fini(sc->ifnet); /* Tear down hardware. */ sfxge_destroy(sc); return (0); } static int sfxge_probe(device_t dev) { uint16_t pci_vendor_id; uint16_t pci_device_id; efx_family_t family; int rc; pci_vendor_id = pci_get_vendor(dev); pci_device_id = pci_get_device(dev); DBGPRINT(dev, "PCI ID %04x:%04x", pci_vendor_id, pci_device_id); rc = efx_family(pci_vendor_id, pci_device_id, &family); if (rc != 0) { DBGPRINT(dev, "efx_family fail %d", rc); return (ENXIO); } if (family == EFX_FAMILY_SIENA) { device_set_desc(dev, "Solarflare SFC9000 family"); return (0); } if (family == EFX_FAMILY_HUNTINGTON) { device_set_desc(dev, "Solarflare SFC9100 family"); return (0); } DBGPRINT(dev, "impossible controller family %d", family); return (ENXIO); } static device_method_t sfxge_methods[] = { DEVMETHOD(device_probe, sfxge_probe), DEVMETHOD(device_attach, sfxge_attach), DEVMETHOD(device_detach, sfxge_detach), DEVMETHOD_END }; static devclass_t sfxge_devclass; static driver_t sfxge_driver = { "sfxge", sfxge_methods, sizeof(struct sfxge_softc) }; DRIVER_MODULE(sfxge, pci, sfxge_driver, sfxge_devclass, 0, 0);