/*- * Copyright (c) 1999 Cameron Grant * Copyright by Hannu Savolainen 1995 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * first, include kernel header files. */ #ifndef _OS_H_ #define _OS_H_ #ifdef _KERNEL #include #include #include #include #include #include #include #include #include /* for DATA_SET */ #include #include #include #include #include #include #include #include #if __FreeBSD_version < 500000 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #undef USING_MUTEX #undef USING_DEVFS #if __FreeBSD_version > 500000 #include #include #include #define USING_MUTEX #define USING_DEVFS #else #define INTR_TYPE_AV INTR_TYPE_TTY #define INTR_MPSAFE 0 #endif #define SND_DYNSYSCTL struct pcm_channel; struct pcm_feeder; struct snd_dbuf; struct snd_mixer; #include #include #include #include #include #include #include #define PCM_SOFTC_SIZE 512 #define SND_STATUSLEN 64 #define SOUND_MODVER 2 #define SOUND_MINVER SOUND_MODVER #define SOUND_PREFVER SOUND_MODVER #define SOUND_MAXVER SOUND_MODVER /* * We're abusing the fact that MAXMINOR still have enough room * for our bit twiddling and nobody ever need 512 unique soundcards, * 32 unique device types and 1024 unique cloneable devices for the * next 100 years... */ #define PCMMAXUNIT (snd_max_u()) #define PCMMAXDEV (snd_max_d()) #define PCMMAXCHAN (snd_max_c()) #define PCMMAXCLONE PCMMAXCHAN #define PCMUNIT(x) (snd_unit2u(dev2unit(x))) #define PCMDEV(x) (snd_unit2d(dev2unit(x))) #define PCMCHAN(x) (snd_unit2c(dev2unit(x))) /* * By design, limit possible channels for each direction. */ #define SND_MAXHWCHAN 256 #define SND_MAXVCHANS SND_MAXHWCHAN #define SD_F_SIMPLEX 0x00000001 #define SD_F_AUTOVCHAN 0x00000002 #define SD_F_SOFTPCMVOL 0x00000004 #define SD_F_PSWAPLR 0x00000008 #define SD_F_RSWAPLR 0x00000010 #define SD_F_DYING 0x00000020 #define SD_F_SUICIDE 0x00000040 #define SD_F_BUSY 0x00000080 #define SD_F_MPSAFE 0x00000100 #define SD_F_REGISTERED 0x00000200 #define SD_F_PRIO_RD 0x10000000 #define SD_F_PRIO_WR 0x20000000 #define SD_F_PRIO_SET (SD_F_PRIO_RD | SD_F_PRIO_WR) #define SD_F_DIR_SET 0x40000000 #define SD_F_TRANSIENT 0xf0000000 #define PCM_ALIVE(x) ((x) != NULL && (x)->lock != NULL && \ !((x)->flags & SD_F_DYING)) #define PCM_REGISTERED(x) (PCM_ALIVE(x) && \ ((x)->flags & SD_F_REGISTERED)) /* many variables should be reduced to a range. Here define a macro */ #define RANGE(var, low, high) (var) = \ (((var)<(low))? (low) : ((var)>(high))? (high) : (var)) #define DSP_BUFFSIZE (8192) /* * Macros for reading/writing PCM sample / int values from bytes array. * Since every process is done using signed integer (and to make our life * less miserable), unsigned sample will be converted to its signed * counterpart and restored during writing back. To avoid overflow, * we truncate 32bit (and only 32bit) samples down to 24bit (see below * for the reason), unless PCM_USE_64BIT_ARITH is defined. */ /* * Automatically turn on 64bit arithmetic on suitable archs * (amd64 64bit, ia64, etc..) for wider 32bit samples / integer processing. */ #if LONG_BIT >= 64 #undef PCM_USE_64BIT_ARITH #define PCM_USE_64BIT_ARITH 1 #else #if 0 #undef PCM_USE_64BIT_ARITH #define PCM_USE_64BIT_ARITH 1 #endif #endif #ifdef PCM_USE_64BIT_ARITH typedef int64_t intpcm_t; #else typedef int32_t intpcm_t; #endif /* 32bit fixed point shift */ #define PCM_FXSHIFT 8 #define PCM_S8_MAX 0x7f #define PCM_S8_MIN -0x80 #define PCM_S16_MAX 0x7fff #define PCM_S16_MIN -0x8000 #define PCM_S24_MAX 0x7fffff #define PCM_S24_MIN -0x800000 #ifdef PCM_USE_64BIT_ARITH #if LONG_BIT >= 64 #define PCM_S32_MAX 0x7fffffffL #define PCM_S32_MIN -0x80000000L #else #define PCM_S32_MAX 0x7fffffffLL #define PCM_S32_MIN -0x80000000LL #endif #else #define PCM_S32_MAX 0x7fffffff #define PCM_S32_MIN (-0x7fffffff - 1) #endif /* Bytes-per-sample definition */ #define PCM_8_BPS 1 #define PCM_16_BPS 2 #define PCM_24_BPS 3 #define PCM_32_BPS 4 #if BYTE_ORDER == LITTLE_ENDIAN #define PCM_READ_S16_LE(b8) *((int16_t *)(b8)) #define _PCM_READ_S32_LE(b8) *((int32_t *)(b8)) #define PCM_READ_S16_BE(b8) \ ((int32_t)((b8)[1] | ((int8_t)((b8)[0])) << 8)) #define _PCM_READ_S32_BE(b8) \ ((int32_t)((b8)[3] | (b8)[2] << 8 | (b8)[1] << 16 | \ ((int8_t)((b8)[0])) << 24)) #define PCM_WRITE_S16_LE(b8, val) *((int16_t *)(b8)) = (val) #define _PCM_WRITE_S32_LE(b8, val) *((int32_t *)(b8)) = (val) #define PCM_WRITE_S16_BE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[1] = val; \ b8[0] = val >> 8; \ } while(0) #define _PCM_WRITE_S32_BE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[3] = val; \ b8[2] = val >> 8; \ b8[1] = val >> 16; \ b8[0] = val >> 24; \ } while(0) #define PCM_READ_U16_LE(b8) ((int16_t)(*((uint16_t *)(b8)) ^ 0x8000)) #define _PCM_READ_U32_LE(b8) ((int32_t)(*((uint32_t *)(b8)) ^ 0x80000000)) #define PCM_READ_U16_BE(b8) \ ((int32_t)((b8)[1] | ((int8_t)((b8)[0] ^ 0x80)) << 8)) #define _PCM_READ_U32_BE(b8) \ ((int32_t)((b8)[3] | (b8)[2] << 8 | (b8)[1] << 16 | \ ((int8_t)((b8)[0] ^ 0x80)) << 24)) #define PCM_WRITE_U16_LE(b8, val) *((uint16_t *)(b8)) = (val) ^ 0x8000 #define _PCM_WRITE_U32_LE(b8, val) *((uint32_t *)(b8)) = (val) ^ 0x80000000 #define PCM_WRITE_U16_BE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[1] = val; \ b8[0] = (val >> 8) ^ 0x80; \ } while(0) #define _PCM_WRITE_U32_BE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[3] = val; \ b8[2] = val >> 8; \ b8[1] = val >> 16; \ b8[0] = (val >> 24) ^ 0x80; \ } while(0) #else /* !LITTLE_ENDIAN */ #define PCM_READ_S16_LE(b8) \ ((int32_t)((b8)[0] | ((int8_t)((b8)[1])) << 8)) #define _PCM_READ_S32_LE(b8) \ ((int32_t)((b8)[0] | (b8)[1] << 8 | (b8)[2] << 16 | \ ((int8_t)((b8)[3])) << 24)) #define PCM_READ_S16_BE(b8) *((int16_t *)(b8)) #define _PCM_READ_S32_BE(b8) *((int32_t *)(b8)) #define PCM_WRITE_S16_LE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[0] = val; \ b8[1] = val >> 8; \ } while(0) #define _PCM_WRITE_S32_LE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[0] = val; \ b8[1] = val >> 8; \ b8[2] = val >> 16; \ b8[3] = val >> 24; \ } while(0) #define PCM_WRITE_S16_BE(b8, val) *((int16_t *)(b8)) = (val) #define _PCM_WRITE_S32_BE(b8, val) *((int32_t *)(b8)) = (val) #define PCM_READ_U16_LE(b8) \ ((int32_t)((b8)[0] | ((int8_t)((b8)[1] ^ 0x80)) << 8)) #define _PCM_READ_U32_LE(b8) \ ((int32_t)((b8)[0] | (b8)[1] << 8 | (b8)[2] << 16 | \ ((int8_t)((b8)[3] ^ 0x80)) << 24)) #define PCM_READ_U16_BE(b8) ((int16_t)(*((uint16_t *)(b8)) ^ 0x8000)) #define _PCM_READ_U32_BE(b8) ((int32_t)(*((uint32_t *)(b8)) ^ 0x80000000)) #define PCM_WRITE_U16_LE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[0] = val; \ b8[1] = (val >> 8) ^ 0x80; \ } while(0) #define _PCM_WRITE_U32_LE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[0] = val; \ b8[1] = val >> 8; \ b8[2] = val >> 16; \ b8[3] = (val >> 24) ^ 0x80; \ } while(0) #define PCM_WRITE_U16_BE(b8, val) *((uint16_t *)(b8)) = (val) ^ 0x8000 #define _PCM_WRITE_U32_BE(b8, val) *((uint32_t *)(b8)) = (val) ^ 0x80000000 #endif #define PCM_READ_S24_LE(b8) \ ((int32_t)((b8)[0] | (b8)[1] << 8 | ((int8_t)((b8)[2])) << 16)) #define PCM_READ_S24_BE(b8) \ ((int32_t)((b8)[2] | (b8)[1] << 8 | ((int8_t)((b8)[0])) << 16)) #define PCM_WRITE_S24_LE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[0] = val; \ b8[1] = val >> 8; \ b8[2] = val >> 16; \ } while(0) #define PCM_WRITE_S24_BE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[2] = val; \ b8[1] = val >> 8; \ b8[0] = val >> 16; \ } while(0) #define PCM_READ_U24_LE(b8) \ ((int32_t)((b8)[0] | (b8)[1] << 8 | \ ((int8_t)((b8)[2] ^ 0x80)) << 16)) #define PCM_READ_U24_BE(b8) \ ((int32_t)((b8)[2] | (b8)[1] << 8 | \ ((int8_t)((b8)[0] ^ 0x80)) << 16)) #define PCM_WRITE_U24_LE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[0] = val; \ b8[1] = val >> 8; \ b8[2] = (val >> 16) ^ 0x80; \ } while(0) #define PCM_WRITE_U24_BE(bb8, vval) do { \ int32_t val = (vval); \ uint8_t *b8 = (bb8); \ b8[2] = val; \ b8[1] = val >> 8; \ b8[0] = (val >> 16) ^ 0x80; \ } while(0) #ifdef PCM_USE_64BIT_ARITH #define PCM_READ_S32_LE(b8) _PCM_READ_S32_LE(b8) #define PCM_READ_S32_BE(b8) _PCM_READ_S32_BE(b8) #define PCM_WRITE_S32_LE(b8, val) _PCM_WRITE_S32_LE(b8, val) #define PCM_WRITE_S32_BE(b8, val) _PCM_WRITE_S32_BE(b8, val) #define PCM_READ_U32_LE(b8) _PCM_READ_U32_LE(b8) #define PCM_READ_U32_BE(b8) _PCM_READ_U32_BE(b8) #define PCM_WRITE_U32_LE(b8, val) _PCM_WRITE_U32_LE(b8, val) #define PCM_WRITE_U32_BE(b8, val) _PCM_WRITE_U32_BE(b8, val) #else /* !PCM_USE_64BIT_ARITH */ /* * 24bit integer ?!? This is quite unfortunate, eh? Get the fact straight: * Dynamic range for: * 1) Human =~ 140db * 2) 16bit = 96db (close enough) * 3) 24bit = 144db (perfect) * 4) 32bit = 196db (way too much) * 5) Bugs Bunny = Gazillion!@%$Erbzzztt-EINVAL db * Since we're not Bugs Bunny ..uh..err.. avoiding 64bit arithmetic, 24bit * is pretty much sufficient for our signed integer processing. */ #define PCM_READ_S32_LE(b8) (_PCM_READ_S32_LE(b8) >> PCM_FXSHIFT) #define PCM_READ_S32_BE(b8) (_PCM_READ_S32_BE(b8) >> PCM_FXSHIFT) #define PCM_WRITE_S32_LE(b8, val) _PCM_WRITE_S32_LE(b8, (val) << PCM_FXSHIFT) #define PCM_WRITE_S32_BE(b8, val) _PCM_WRITE_S32_BE(b8, (val) << PCM_FXSHIFT) #define PCM_READ_U32_LE(b8) (_PCM_READ_U32_LE(b8) >> PCM_FXSHIFT) #define PCM_READ_U32_BE(b8) (_PCM_READ_U32_BE(b8) >> PCM_FXSHIFT) #define PCM_WRITE_U32_LE(b8, val) _PCM_WRITE_U32_LE(b8, (val) << PCM_FXSHIFT) #define PCM_WRITE_U32_BE(b8, val) _PCM_WRITE_U32_BE(b8, (val) << PCM_FXSHIFT) #endif /* * 8bit sample is pretty much useless since it doesn't provide * sufficient dynamic range throughout our filtering process. * For the sake of completeness, declare it anyway. */ #define PCM_READ_S8(b8) *((int8_t *)(b8)) #define PCM_READ_S8_NE(b8) PCM_READ_S8(b8) #define PCM_READ_U8(b8) ((int8_t)(*((uint8_t *)(b8)) ^ 0x80)) #define PCM_READ_U8_NE(b8) PCM_READ_U8(b8) #define PCM_WRITE_S8(b8, val) *((int8_t *)(b8)) = (val) #define PCM_WRITE_S8_NE(b8, val) PCM_WRITE_S8(b8, val) #define PCM_WRITE_U8(b8, val) *((uint8_t *)(b8)) = (val) ^ 0x80 #define PCM_WRITE_U8_NE(b8, val) PCM_WRITE_U8(b8, val) #define PCM_CLAMP_S8(val) \ (((val) > PCM_S8_MAX) ? PCM_S8_MAX : \ (((val) < PCM_S8_MIN) ? PCM_S8_MIN : (val))) #define PCM_CLAMP_S16(val) \ (((val) > PCM_S16_MAX) ? PCM_S16_MAX : \ (((val) < PCM_S16_MIN) ? PCM_S16_MIN : (val))) #define PCM_CLAMP_S24(val) \ (((val) > PCM_S24_MAX) ? PCM_S24_MAX : \ (((val) < PCM_S24_MIN) ? PCM_S24_MIN : (val))) #ifdef PCM_USE_64BIT_ARITH #define PCM_CLAMP_S32(val) \ (((val) > PCM_S32_MAX) ? PCM_S32_MAX : \ (((val) < PCM_S32_MIN) ? PCM_S32_MIN : (val))) #else #define PCM_CLAMP_S32(val) \ (((val) > PCM_S24_MAX) ? PCM_S32_MAX : \ (((val) < PCM_S24_MIN) ? PCM_S32_MIN : \ ((val) << PCM_FXSHIFT))) #endif #define PCM_CLAMP_U8(val) PCM_CLAMP_S8(val) #define PCM_CLAMP_U16(val) PCM_CLAMP_S16(val) #define PCM_CLAMP_U24(val) PCM_CLAMP_S24(val) #define PCM_CLAMP_U32(val) PCM_CLAMP_S32(val) /* make figuring out what a format is easier. got AFMT_STEREO already */ #define AFMT_32BIT (AFMT_S32_LE | AFMT_S32_BE | AFMT_U32_LE | AFMT_U32_BE) #define AFMT_24BIT (AFMT_S24_LE | AFMT_S24_BE | AFMT_U24_LE | AFMT_U24_BE) #define AFMT_16BIT (AFMT_S16_LE | AFMT_S16_BE | AFMT_U16_LE | AFMT_U16_BE) #define AFMT_8BIT (AFMT_MU_LAW | AFMT_A_LAW | AFMT_U8 | AFMT_S8) #define AFMT_SIGNED (AFMT_S32_LE | AFMT_S32_BE | AFMT_S24_LE | AFMT_S24_BE | \ AFMT_S16_LE | AFMT_S16_BE | AFMT_S8) #define AFMT_BIGENDIAN (AFMT_S32_BE | AFMT_U32_BE | AFMT_S24_BE | AFMT_U24_BE | \ AFMT_S16_BE | AFMT_U16_BE) struct pcm_channel *fkchan_setup(device_t dev); int fkchan_kill(struct pcm_channel *c); /* * Minor numbers for the sound driver. * * Unfortunately Creative called the codec chip of SB as a DSP. For this * reason the /dev/dsp is reserved for digitized audio use. There is a * device for true DSP processors but it will be called something else. * In v3.0 it's /dev/sndproc but this could be a temporary solution. */ #define SND_DEV_CTL 0 /* Control port /dev/mixer */ #define SND_DEV_SEQ 1 /* Sequencer /dev/sequencer */ #define SND_DEV_MIDIN 2 /* Raw midi access */ #define SND_DEV_DSP 3 /* Digitized voice /dev/dsp */ #define SND_DEV_AUDIO 4 /* Sparc compatible /dev/audio */ #define SND_DEV_DSP16 5 /* Like /dev/dsp but 16 bits/sample */ #define SND_DEV_STATUS 6 /* /dev/sndstat */ /* #7 not in use now. */ #define SND_DEV_SEQ2 8 /* /dev/sequencer, level 2 interface */ #define SND_DEV_SNDPROC 9 /* /dev/sndproc for programmable devices */ #define SND_DEV_PSS SND_DEV_SNDPROC /* ? */ #define SND_DEV_NORESET 10 #define SND_DEV_DSPHW_PLAY 11 /* specific playback channel */ #define SND_DEV_DSPHW_VPLAY 12 /* specific virtual playback channel */ #define SND_DEV_DSPHW_REC 13 /* specific record channel */ #define SND_DEV_DSPHW_VREC 14 /* specific virtual record channel */ #define SND_DEV_DSPHW_CD 15 /* s16le/stereo 44100Hz CD */ #define SND_DEV_DSP_MMAP 16 /* OSSv4 compatible /dev/dsp_mmap */ #define SND_DEV_LAST SND_DEV_DSP_MMAP #define SND_DEV_MAX PCMMAXDEV #define DSP_DEFAULT_SPEED 8000 #define ON 1 #define OFF 0 extern int pcm_veto_load; extern int snd_unit; extern int snd_maxautovchans; extern int snd_verbose; extern devclass_t pcm_devclass; extern struct unrhdr *pcmsg_unrhdr; /* * some macros for debugging purposes * DDB/DEB to enable/disable debugging stuff * BVDDB to enable debugging when bootverbose */ #define BVDDB(x) if (bootverbose) x #ifndef DEB #define DEB(x) #endif SYSCTL_DECL(_hw_snd); struct pcm_channel *pcm_getfakechan(struct snddev_info *d); int pcm_chnalloc(struct snddev_info *d, struct pcm_channel **ch, int direction, pid_t pid, int devunit); int pcm_chnrelease(struct pcm_channel *c); int pcm_chnref(struct pcm_channel *c, int ref); int pcm_inprog(struct snddev_info *d, int delta); struct pcm_channel *pcm_chn_create(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls, int dir, int num, void *devinfo); int pcm_chn_destroy(struct pcm_channel *ch); int pcm_chn_add(struct snddev_info *d, struct pcm_channel *ch); int pcm_chn_remove(struct snddev_info *d, struct pcm_channel *ch); int pcm_addchan(device_t dev, int dir, kobj_class_t cls, void *devinfo); unsigned int pcm_getbuffersize(device_t dev, unsigned int minbufsz, unsigned int deflt, unsigned int maxbufsz); int pcm_register(device_t dev, void *devinfo, int numplay, int numrec); int pcm_unregister(device_t dev); int pcm_setstatus(device_t dev, char *str); u_int32_t pcm_getflags(device_t dev); void pcm_setflags(device_t dev, u_int32_t val); void *pcm_getdevinfo(device_t dev); int snd_setup_intr(device_t dev, struct resource *res, int flags, driver_intr_t hand, void *param, void **cookiep); void *snd_mtxcreate(const char *desc, const char *type); void snd_mtxfree(void *m); void snd_mtxassert(void *m); #define snd_mtxlock(m) mtx_lock(m) #define snd_mtxunlock(m) mtx_unlock(m) int sysctl_hw_snd_vchans(SYSCTL_HANDLER_ARGS); typedef int (*sndstat_handler)(struct sbuf *s, device_t dev, int verbose); int sndstat_acquire(struct thread *td); int sndstat_release(struct thread *td); int sndstat_register(device_t dev, char *str, sndstat_handler handler); int sndstat_registerfile(char *str); int sndstat_unregister(device_t dev); int sndstat_unregisterfile(char *str); #define SND_DECLARE_FILE(version) \ _SND_DECLARE_FILE(__LINE__, version) #define _SND_DECLARE_FILE(uniq, version) \ __SND_DECLARE_FILE(uniq, version) #define __SND_DECLARE_FILE(uniq, version) \ static char sndstat_vinfo[] = version; \ SYSINIT(sdf_ ## uniq, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, sndstat_registerfile, sndstat_vinfo); \ SYSUNINIT(sdf_ ## uniq, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, sndstat_unregisterfile, sndstat_vinfo); /* usage of flags in device config entry (config file) */ #define DV_F_DRQ_MASK 0x00000007 /* mask for secondary drq */ #define DV_F_DUAL_DMA 0x00000010 /* set to use secondary dma channel */ /* ought to be made obsolete but still used by mss */ #define DV_F_DEV_MASK 0x0000ff00 /* force device type/class */ #define DV_F_DEV_SHIFT 8 /* force device type/class */ #define PCM_DEBUG_MTX /* * this is rather kludgey- we need to duplicate these struct def'ns from sound.c * so that the macro versions of pcm_{,un}lock can dereference them. * we also have to do this now makedev() has gone away. */ struct snddev_info { struct { struct { SLIST_HEAD(, pcm_channel) head; struct { SLIST_HEAD(, pcm_channel) head; } busy; } pcm; } channels; TAILQ_HEAD(dsp_cdevinfo_linkhead, dsp_cdevinfo) dsp_cdevinfo_pool; struct snd_clone *clones; struct pcm_channel *fakechan; unsigned devcount, playcount, reccount, pvchancount, rvchancount ; unsigned flags; int inprog; unsigned int bufsz; void *devinfo; device_t dev; char status[SND_STATUSLEN]; struct mtx *lock; struct cdev *mixer_dev; uint32_t pvchanrate, pvchanformat; uint32_t rvchanrate, rvchanformat; struct sysctl_ctx_list play_sysctl_ctx, rec_sysctl_ctx; struct sysctl_oid *play_sysctl_tree, *rec_sysctl_tree; struct cv cv; }; void sound_oss_sysinfo(oss_sysinfo *); #ifdef PCM_DEBUG_MTX #define pcm_lock(d) mtx_lock(((struct snddev_info *)(d))->lock) #define pcm_unlock(d) mtx_unlock(((struct snddev_info *)(d))->lock) #else void pcm_lock(struct snddev_info *d); void pcm_unlock(struct snddev_info *d); #endif /* * For PCM_CV_[WAIT | ACQUIRE | RELEASE], be sure to surround these * with pcm_lock/unlock() sequence, or I'll come to gnaw upon you! */ #ifdef SND_DIAGNOSTIC #define PCM_WAIT(x) do { \ if (mtx_owned((x)->lock) == 0) \ panic("%s(%d): [PCM WAIT] Mutex not owned!", \ __func__, __LINE__); \ while ((x)->flags & SD_F_BUSY) { \ if (snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [PCM WAIT] calling cv_wait().\n", \ __func__, __LINE__); \ cv_wait(&(x)->cv, (x)->lock); \ } \ } while(0) #define PCM_ACQUIRE(x) do { \ if (mtx_owned((x)->lock) == 0) \ panic("%s(%d): [PCM ACQUIRE] Mutex not owned!", \ __func__, __LINE__); \ if ((x)->flags & SD_F_BUSY) \ panic("%s(%d): [PCM ACQUIRE] " \ "Trying to acquire BUSY cv!", __func__, __LINE__); \ (x)->flags |= SD_F_BUSY; \ } while(0) #define PCM_RELEASE(x) do { \ if (mtx_owned((x)->lock) == 0) \ panic("%s(%d): [PCM RELEASE] Mutex not owned!", \ __func__, __LINE__); \ if ((x)->flags & SD_F_BUSY) { \ (x)->flags &= ~SD_F_BUSY; \ if ((x)->cv.cv_waiters != 0) { \ if ((x)->cv.cv_waiters > 1 && snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [PCM RELEASE] " \ "cv_waiters=%d > 1!\n", \ __func__, __LINE__, \ (x)->cv.cv_waiters); \ cv_broadcast(&(x)->cv); \ } \ } else \ panic("%s(%d): [PCM RELEASE] Releasing non-BUSY cv!", \ __func__, __LINE__); \ } while(0) /* Quick version, for shorter path. */ #define PCM_ACQUIRE_QUICK(x) do { \ if (mtx_owned((x)->lock) != 0) \ panic("%s(%d): [PCM ACQUIRE QUICK] Mutex owned!", \ __func__, __LINE__); \ pcm_lock(x); \ PCM_WAIT(x); \ PCM_ACQUIRE(x); \ pcm_unlock(x); \ } while(0) #define PCM_RELEASE_QUICK(x) do { \ if (mtx_owned((x)->lock) != 0) \ panic("%s(%d): [PCM RELEASE QUICK] Mutex owned!", \ __func__, __LINE__); \ pcm_lock(x); \ PCM_RELEASE(x); \ pcm_unlock(x); \ } while(0) #define PCM_BUSYASSERT(x) do { \ if (!((x) != NULL && ((x)->flags & SD_F_BUSY))) \ panic("%s(%d): [PCM BUSYASSERT] " \ "Failed, snddev_info=%p", __func__, __LINE__, x); \ } while(0) #define PCM_GIANT_ENTER(x) do { \ int _pcm_giant = 0; \ if (mtx_owned((x)->lock) != 0) \ panic("%s(%d): [GIANT ENTER] PCM lock owned!", \ __func__, __LINE__); \ if (mtx_owned(&Giant) != 0 && snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [GIANT ENTER] Giant owned!\n", \ __func__, __LINE__); \ if (!((x)->flags & SD_F_MPSAFE) && mtx_owned(&Giant) == 0) \ do { \ mtx_lock(&Giant); \ _pcm_giant = 1; \ } while(0) #define PCM_GIANT_EXIT(x) do { \ if (mtx_owned((x)->lock) != 0) \ panic("%s(%d): [GIANT EXIT] PCM lock owned!", \ __func__, __LINE__); \ if (!(_pcm_giant == 0 || _pcm_giant == 1)) \ panic("%s(%d): [GIANT EXIT] _pcm_giant screwed!", \ __func__, __LINE__); \ if ((x)->flags & SD_F_MPSAFE) { \ if (_pcm_giant == 1) \ panic("%s(%d): [GIANT EXIT] MPSAFE Giant?", \ __func__, __LINE__); \ if (mtx_owned(&Giant) != 0 && snd_verbose > 3) \ device_printf((x)->dev, \ "%s(%d): [GIANT EXIT] Giant owned!\n", \ __func__, __LINE__); \ } \ if (_pcm_giant != 0) { \ if (mtx_owned(&Giant) == 0) \ panic("%s(%d): [GIANT EXIT] Giant not owned!", \ __func__, __LINE__); \ _pcm_giant = 0; \ mtx_unlock(&Giant); \ } \ } while(0) #else /* SND_DIAGNOSTIC */ #define PCM_WAIT(x) do { \ mtx_assert((x)->lock, MA_OWNED); \ while ((x)->flags & SD_F_BUSY) \ cv_wait(&(x)->cv, (x)->lock); \ } while(0) #define PCM_ACQUIRE(x) do { \ mtx_assert((x)->lock, MA_OWNED); \ KASSERT(!((x)->flags & SD_F_BUSY), \ ("%s(%d): [PCM ACQUIRE] Trying to acquire BUSY cv!", \ __func__, __LINE__)); \ (x)->flags |= SD_F_BUSY; \ } while(0) #define PCM_RELEASE(x) do { \ mtx_assert((x)->lock, MA_OWNED); \ KASSERT((x)->flags & SD_F_BUSY, \ ("%s(%d): [PCM RELEASE] Releasing non-BUSY cv!", \ __func__, __LINE__)); \ (x)->flags &= ~SD_F_BUSY; \ if ((x)->cv.cv_waiters != 0) \ cv_broadcast(&(x)->cv); \ } while(0) /* Quick version, for shorter path. */ #define PCM_ACQUIRE_QUICK(x) do { \ mtx_assert((x)->lock, MA_NOTOWNED); \ pcm_lock(x); \ PCM_WAIT(x); \ PCM_ACQUIRE(x); \ pcm_unlock(x); \ } while(0) #define PCM_RELEASE_QUICK(x) do { \ mtx_assert((x)->lock, MA_NOTOWNED); \ pcm_lock(x); \ PCM_RELEASE(x); \ pcm_unlock(x); \ } while(0) #define PCM_BUSYASSERT(x) KASSERT(x != NULL && \ ((x)->flags & SD_F_BUSY), \ ("%s(%d): [PCM BUSYASSERT] " \ "Failed, snddev_info=%p", \ __func__, __LINE__, x)) #define PCM_GIANT_ENTER(x) do { \ int _pcm_giant = 0; \ mtx_assert((x)->lock, MA_NOTOWNED); \ if (!((x)->flags & SD_F_MPSAFE) && mtx_owned(&Giant) == 0) \ do { \ mtx_lock(&Giant); \ _pcm_giant = 1; \ } while(0) #define PCM_GIANT_EXIT(x) do { \ mtx_assert((x)->lock, MA_NOTOWNED); \ KASSERT(_pcm_giant == 0 || _pcm_giant == 1, \ ("%s(%d): [GIANT EXIT] _pcm_giant screwed!", \ __func__, __LINE__)); \ KASSERT(!((x)->flags & SD_F_MPSAFE) || \ (((x)->flags & SD_F_MPSAFE) && _pcm_giant == 0), \ ("%s(%d): [GIANT EXIT] MPSAFE Giant?", \ __func__, __LINE__)); \ if (_pcm_giant != 0) { \ mtx_assert(&Giant, MA_OWNED); \ _pcm_giant = 0; \ mtx_unlock(&Giant); \ } \ } while(0) #endif /* !SND_DIAGNOSTIC */ #define PCM_GIANT_LEAVE(x) \ PCM_GIANT_EXIT(x); \ } while(0) #ifdef KLD_MODULE #define PCM_KLDSTRING(a) ("kld " # a) #else #define PCM_KLDSTRING(a) "" #endif #endif /* _KERNEL */ #endif /* _OS_H_ */