/*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The KLSI USB to ethernet adapter chip contains an USB serial interface, * ethernet MAC and embedded microcontroller (called the QT Engine). * The chip must have firmware loaded into it before it will operate. * Packets are passed between the chip and host via bulk transfers. * There is an interrupt endpoint mentioned in the software spec, however * it's currently unused. This device is 10Mbps half-duplex only, hence * there is no media selection logic. The MAC supports a 128 entry * multicast filter, though the exact size of the filter can depend * on the firmware. Curiously, while the software spec describes various * ethernet statistics counters, my sample adapter and firmware combination * claims not to support any statistics counters at all. * * Note that once we load the firmware in the device, we have to be * careful not to load it again: if you restart your computer but * leave the adapter attached to the USB controller, it may remain * powered on and retain its firmware. In this case, we don't need * to load the firmware a second time. * * Special thanks to Rob Furr for providing an ADS Technologies * adapter for development and testing. No monkeys were harmed during * the development of this driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #include #include #include MODULE_DEPEND(kue, usb, 1, 1, 1); MODULE_DEPEND(kue, ether, 1, 1, 1); /* * Various supported device vendors/products. */ static struct kue_type kue_devs[] = { { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 }, { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460 }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450 }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX }, { USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 }, { USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2 }, { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT }, { USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA }, { USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1 }, { USB_VENDOR_KLSI, USB_PRODUCT_AOX_USB101 }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN }, { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T }, { USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9 }, { USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA }, { USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA }, { USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_U2E }, { USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_GPE }, { USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB }, { 0, 0 } }; static device_probe_t kue_match; static device_attach_t kue_attach; static device_detach_t kue_detach; static device_shutdown_t kue_shutdown; static int kue_encap(struct kue_softc *, struct mbuf *, int); static void kue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void kue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void kue_start(struct ifnet *); static void kue_rxstart(struct ifnet *); static int kue_ioctl(struct ifnet *, u_long, caddr_t); static void kue_init(void *); static void kue_stop(struct kue_softc *); static void kue_watchdog(struct ifnet *); static void kue_setmulti(struct kue_softc *); static void kue_reset(struct kue_softc *); static usbd_status kue_do_request(usbd_device_handle, usb_device_request_t *, void *); static usbd_status kue_ctl(struct kue_softc *, int, u_int8_t, u_int16_t, char *, int); static usbd_status kue_setword(struct kue_softc *, u_int8_t, u_int16_t); static int kue_load_fw(struct kue_softc *); static device_method_t kue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, kue_match), DEVMETHOD(device_attach, kue_attach), DEVMETHOD(device_detach, kue_detach), DEVMETHOD(device_shutdown, kue_shutdown), { 0, 0 } }; static driver_t kue_driver = { "kue", kue_methods, sizeof(struct kue_softc) }; static devclass_t kue_devclass; DRIVER_MODULE(kue, uhub, kue_driver, kue_devclass, usbd_driver_load, 0); /* * We have a custom do_request function which is almost like the * regular do_request function, except it has a much longer timeout. * Why? Because we need to make requests over the control endpoint * to download the firmware to the device, which can take longer * than the default timeout. */ static usbd_status kue_do_request(usbd_device_handle dev, usb_device_request_t *req, void *data) { usbd_xfer_handle xfer; usbd_status err; xfer = usbd_alloc_xfer(dev); usbd_setup_default_xfer(xfer, dev, 0, 500000, req, data, UGETW(req->wLength), USBD_SHORT_XFER_OK, 0); err = usbd_sync_transfer(xfer); usbd_free_xfer(xfer); return(err); } static usbd_status kue_setword(struct kue_softc *sc, u_int8_t breq, u_int16_t word) { usbd_device_handle dev; usb_device_request_t req; usbd_status err; if (sc->kue_dying) return(USBD_NORMAL_COMPLETION); dev = sc->kue_udev; KUE_LOCK(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, word); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = kue_do_request(dev, &req, NULL); KUE_UNLOCK(sc); return(err); } static usbd_status kue_ctl(struct kue_softc *sc, int rw, u_int8_t breq, u_int16_t val, char *data, int len) { usbd_device_handle dev; usb_device_request_t req; usbd_status err; dev = sc->kue_udev; if (sc->kue_dying) return(USBD_NORMAL_COMPLETION); KUE_LOCK(sc); if (rw == KUE_CTL_WRITE) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, val); USETW(req.wIndex, 0); USETW(req.wLength, len); err = kue_do_request(dev, &req, data); KUE_UNLOCK(sc); return(err); } static int kue_load_fw(struct kue_softc *sc) { usbd_status err; usb_device_descriptor_t *dd; int hwrev; dd = &sc->kue_udev->ddesc; hwrev = UGETW(dd->bcdDevice); /* * First, check if we even need to load the firmware. * If the device was still attached when the system was * rebooted, it may already have firmware loaded in it. * If this is the case, we don't need to do it again. * And in fact, if we try to load it again, we'll hang, * so we have to avoid this condition if we don't want * to look stupid. * * We can test this quickly by checking the bcdRevision * code. The NIC will return a different revision code if * it's probed while the firmware is still loaded and * running. */ if (hwrev == 0x0202) return(0); /* Load code segment */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_code_seg, sizeof(kue_code_seg)); if (err) { device_printf(sc->kue_dev, "failed to load code segment: %s\n", usbd_errstr(err)); return(ENXIO); } /* Load fixup segment */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_fix_seg, sizeof(kue_fix_seg)); if (err) { device_printf(sc->kue_dev, "failed to load fixup segment: %s\n", usbd_errstr(err)); return(ENXIO); } /* Send trigger command. */ err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, kue_trig_seg, sizeof(kue_trig_seg)); if (err) { device_printf(sc->kue_dev, "failed to load trigger segment: %s\n", usbd_errstr(err)); return(ENXIO); } return(0); } static void kue_setmulti(struct kue_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; int i = 0; ifp = sc->kue_ifp; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI; sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); return; } sc->kue_rxfilt &= ~KUE_RXFILT_ALLMULTI; IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * If there are too many addresses for the * internal filter, switch over to allmulti mode. */ if (i == KUE_MCFILTCNT(sc)) break; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), KUE_MCFILT(sc, i), ETHER_ADDR_LEN); i++; } IF_ADDR_UNLOCK(ifp); if (i == KUE_MCFILTCNT(sc)) sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI; else { sc->kue_rxfilt |= KUE_RXFILT_MULTICAST; kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS, i, sc->kue_mcfilters, i * ETHER_ADDR_LEN); } kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); return; } /* * Issue a SET_CONFIGURATION command to reset the MAC. This should be * done after the firmware is loaded into the adapter in order to * bring it into proper operation. */ static void kue_reset(struct kue_softc *sc) { if (usbd_set_config_no(sc->kue_udev, KUE_CONFIG_NO, 0) || usbd_device2interface_handle(sc->kue_udev, KUE_IFACE_IDX, &sc->kue_iface)) { device_printf(sc->kue_dev, "getting interface handle failed\n"); } /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a KLSI chip. */ static int kue_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct kue_type *t; if (!uaa->iface) return(UMATCH_NONE); t = kue_devs; while (t->kue_vid) { if (uaa->vendor == t->kue_vid && uaa->product == t->kue_did) return (UMATCH_VENDOR_PRODUCT); t++; } return (UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do * setup and ethernet/BPF attach. */ static int kue_attach(device_t self) { struct kue_softc *sc = device_get_softc(self); struct usb_attach_arg *uaa = device_get_ivars(self); struct ifnet *ifp; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; sc->kue_dev = self; sc->kue_iface = uaa->iface; sc->kue_udev = uaa->device; id = usbd_get_interface_descriptor(uaa->iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(uaa->iface, i); if (!ed) { device_printf(sc->kue_dev, "couldn't get ep %d\n", i); return ENXIO; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->kue_ed[KUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->kue_ed[KUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->kue_ed[KUE_ENDPT_INTR] = ed->bEndpointAddress; } } mtx_init(&sc->kue_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); KUE_LOCK(sc); /* Load the firmware into the NIC. */ if (kue_load_fw(sc)) { KUE_UNLOCK(sc); mtx_destroy(&sc->kue_mtx); return ENXIO; } /* Reset the adapter. */ kue_reset(sc); /* Read ethernet descriptor */ err = kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR, 0, (char *)&sc->kue_desc, sizeof(sc->kue_desc)); sc->kue_mcfilters = malloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN, M_USBDEV, M_NOWAIT); ifp = sc->kue_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(sc->kue_dev, "can not if_alloc()\n"); KUE_UNLOCK(sc); mtx_destroy(&sc->kue_mtx); return ENXIO; } ifp->if_softc = sc; if_initname(ifp, "kue", device_get_unit(sc->kue_dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_NEEDSGIANT; ifp->if_ioctl = kue_ioctl; ifp->if_start = kue_start; ifp->if_watchdog = kue_watchdog; ifp->if_init = kue_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; sc->kue_qdat.ifp = ifp; sc->kue_qdat.if_rxstart = kue_rxstart; /* * Call MI attach routine. */ ether_ifattach(ifp, sc->kue_desc.kue_macaddr); usb_register_netisr(); sc->kue_dying = 0; KUE_UNLOCK(sc); return 0; } static int kue_detach(device_t dev) { struct kue_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); KUE_LOCK(sc); ifp = sc->kue_ifp; sc->kue_dying = 1; if (ifp != NULL) { ether_ifdetach(ifp); if_free(ifp); } if (sc->kue_ep[KUE_ENDPT_TX] != NULL) usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (sc->kue_ep[KUE_ENDPT_RX] != NULL) usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (sc->kue_mcfilters != NULL) free(sc->kue_mcfilters, M_USBDEV); KUE_UNLOCK(sc); mtx_destroy(&sc->kue_mtx); return(0); } static void kue_rxstart(struct ifnet *ifp) { struct kue_softc *sc; struct ue_chain *c; sc = ifp->if_softc; KUE_LOCK(sc); c = &sc->kue_cdata.ue_rx_chain[sc->kue_cdata.ue_rx_prod]; c->ue_mbuf = usb_ether_newbuf(); if (c->ue_mbuf == NULL) { device_printf(sc->kue_dev, "no memory for rx list " "-- packet dropped!\n"); ifp->if_ierrors++; KUE_UNLOCK(sc); return; } /* Setup new transfer. */ usbd_setup_xfer(c->ue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->ue_xfer); KUE_UNLOCK(sc); return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void kue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct kue_softc *sc; struct ue_chain *c; struct mbuf *m; struct ifnet *ifp; int total_len = 0; u_int16_t len; c = priv; sc = c->ue_sc; KUE_LOCK(sc); ifp = sc->kue_ifp; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { KUE_UNLOCK(sc); return; } if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { KUE_UNLOCK(sc); return; } if (usbd_ratecheck(&sc->kue_rx_notice)) device_printf(sc->kue_dev, "usb error on rx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); m = c->ue_mbuf; if (total_len <= 1) goto done; len = *mtod(m, u_int16_t *); m_adj(m, sizeof(u_int16_t)); /* No errors; receive the packet. */ total_len = len; if (len < sizeof(struct ether_header)) { ifp->if_ierrors++; goto done; } ifp->if_ipackets++; m->m_pkthdr.rcvif = (void *)&sc->kue_qdat; m->m_pkthdr.len = m->m_len = total_len; /* Put the packet on the special USB input queue. */ usb_ether_input(m); KUE_UNLOCK(sc); return; done: /* Setup new transfer. */ usbd_setup_xfer(c->ue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->ue_xfer); KUE_UNLOCK(sc); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void kue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct kue_softc *sc; struct ue_chain *c; struct ifnet *ifp; usbd_status err; c = priv; sc = c->ue_sc; KUE_LOCK(sc); ifp = sc->kue_ifp; ifp->if_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { KUE_UNLOCK(sc); return; } device_printf(sc->kue_dev, "usb error on tx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_TX]); KUE_UNLOCK(sc); return; } usbd_get_xfer_status(c->ue_xfer, NULL, NULL, NULL, &err); if (c->ue_mbuf != NULL) { c->ue_mbuf->m_pkthdr.rcvif = ifp; usb_tx_done(c->ue_mbuf); c->ue_mbuf = NULL; } if (err) ifp->if_oerrors++; else ifp->if_opackets++; KUE_UNLOCK(sc); return; } static int kue_encap(struct kue_softc *sc, struct mbuf *m, int idx) { int total_len; struct ue_chain *c; usbd_status err; c = &sc->kue_cdata.ue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->ue_buf + 2); c->ue_mbuf = m; total_len = m->m_pkthdr.len + 2; total_len += 64 - (total_len % 64); /* Frame length is specified in the first 2 bytes of the buffer. */ c->ue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->ue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); usbd_setup_xfer(c->ue_xfer, sc->kue_ep[KUE_ENDPT_TX], c, c->ue_buf, total_len, 0, 10000, kue_txeof); /* Transmit */ err = usbd_transfer(c->ue_xfer); if (err != USBD_IN_PROGRESS) { kue_stop(sc); return(EIO); } sc->kue_cdata.ue_tx_cnt++; return(0); } static void kue_start(struct ifnet *ifp) { struct kue_softc *sc; struct mbuf *m_head = NULL; sc = ifp->if_softc; KUE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { KUE_UNLOCK(sc); return; } IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) { KUE_UNLOCK(sc); return; } if (kue_encap(sc, m_head, 0)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; KUE_UNLOCK(sc); return; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; KUE_UNLOCK(sc); return; } static void kue_init(void *xsc) { struct kue_softc *sc = xsc; struct ifnet *ifp = sc->kue_ifp; struct ue_chain *c; usbd_status err; int i; KUE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { KUE_UNLOCK(sc); return; } /* Set MAC address */ kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, IF_LLADDR(sc->kue_ifp), ETHER_ADDR_LEN); sc->kue_rxfilt = KUE_RXFILT_UNICAST|KUE_RXFILT_BROADCAST; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); /* I'm not sure how to tune these. */ #ifdef notdef /* * Leave this one alone for now; setting it * wrong causes lockups on some machines/controllers. */ kue_setword(sc, KUE_CMD_SET_SOFS, 1); #endif kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64); /* Init TX ring. */ if (usb_ether_tx_list_init(sc, &sc->kue_cdata, sc->kue_udev) == ENOBUFS) { device_printf(sc->kue_dev, "tx list init failed\n"); KUE_UNLOCK(sc); return; } /* Init RX ring. */ if (usb_ether_rx_list_init(sc, &sc->kue_cdata, sc->kue_udev) == ENOBUFS) { device_printf(sc->kue_dev, "rx list init failed\n"); KUE_UNLOCK(sc); return; } /* Load the multicast filter. */ kue_setmulti(sc); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_RX]); if (err) { device_printf(sc->kue_dev, "open rx pipe failed: %s\n", usbd_errstr(err)); KUE_UNLOCK(sc); return; } err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_TX]); if (err) { device_printf(sc->kue_dev, "open tx pipe failed: %s\n", usbd_errstr(err)); KUE_UNLOCK(sc); return; } /* Start up the receive pipe. */ for (i = 0; i < UE_RX_LIST_CNT; i++) { c = &sc->kue_cdata.ue_rx_chain[i]; usbd_setup_xfer(c->ue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, mtod(c->ue_mbuf, char *), UE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->ue_xfer); } ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; KUE_UNLOCK(sc); return; } static int kue_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct kue_softc *sc = ifp->if_softc; int error = 0; KUE_LOCK(sc); switch(command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->kue_if_flags & IFF_PROMISC)) { sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->kue_if_flags & IFF_PROMISC) { sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) kue_init(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) kue_stop(sc); } sc->kue_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: kue_setmulti(sc); error = 0; break; default: error = ether_ioctl(ifp, command, data); break; } KUE_UNLOCK(sc); return(error); } static void kue_watchdog(struct ifnet *ifp) { struct kue_softc *sc; struct ue_chain *c; usbd_status stat; sc = ifp->if_softc; KUE_LOCK(sc); ifp->if_oerrors++; device_printf(sc->kue_dev, "watchdog timeout\n"); c = &sc->kue_cdata.ue_tx_chain[0]; usbd_get_xfer_status(c->ue_xfer, NULL, NULL, NULL, &stat); kue_txeof(c->ue_xfer, c, stat); if (ifp->if_snd.ifq_head != NULL) kue_start(ifp); KUE_UNLOCK(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void kue_stop(struct kue_softc *sc) { usbd_status err; struct ifnet *ifp; KUE_LOCK(sc); ifp = sc->kue_ifp; ifp->if_timer = 0; /* Stop transfers. */ if (sc->kue_ep[KUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { device_printf(sc->kue_dev, "abort rx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { device_printf(sc->kue_dev, "close rx pipe failed: %s\n", usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_RX] = NULL; } if (sc->kue_ep[KUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { device_printf(sc->kue_dev, "abort tx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { device_printf(sc->kue_dev, "close tx pipe failed: %s\n", usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_TX] = NULL; } if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { device_printf(sc->kue_dev, "abort intr pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { device_printf(sc->kue_dev, "close intr pipe failed: %s\n", usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_INTR] = NULL; } /* Free RX resources. */ usb_ether_rx_list_free(&sc->kue_cdata); /* Free TX resources. */ usb_ether_tx_list_free(&sc->kue_cdata); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); KUE_UNLOCK(sc); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int kue_shutdown(device_t dev) { struct kue_softc *sc; sc = device_get_softc(dev); kue_stop(sc); return (0); }