/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ /* $FreeBSD$ */ /*- * Copyright (c) 2006 by Damien Bergamini * Copyright (c) 2006 by Florian Stoehr * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * ZyDAS ZD1211/ZD1211B USB WLAN driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #include #include #include #include #include #ifdef USB_DEBUG #define ZYD_DEBUG #endif #ifdef ZYD_DEBUG #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) int zyddebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; /* various supported device vendors/products */ #define ZYD_ZD1211_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } #define ZYD_ZD1211B_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } static const struct zyd_type { struct usb_devno dev; uint8_t rev; #define ZYD_ZD1211 0 #define ZYD_ZD1211B 1 } zyd_devs[] = { ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), ZYD_ZD1211_DEV(ABOCOM, WL54), ZYD_ZD1211_DEV(ASUS, WL159G), ZYD_ZD1211_DEV(CYBERTAN, TG54USB), ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), ZYD_ZD1211_DEV(SAGEM, XG760A), ZYD_ZD1211_DEV(SENAO, NUB8301), ZYD_ZD1211_DEV(SITECOMEU, WL113), ZYD_ZD1211_DEV(SWEEX, ZD1211), ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), ZYD_ZD1211_DEV(TWINMOS, G240), ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), ZYD_ZD1211_DEV(UMEDIA, TEW429UB), ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), ZYD_ZD1211_DEV(ZCOM, ZD1211), ZYD_ZD1211_DEV(ZYDAS, ZD1211), ZYD_ZD1211_DEV(ZYXEL, AG225H), ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), ZYD_ZD1211_DEV(ZYXEL, G200V2), ZYD_ZD1211_DEV(ZYXEL, G202), ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), ZYD_ZD1211B_DEV(ACCTON, ZD1211B), ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), ZYD_ZD1211B_DEV(BELKIN, ZD1211B), ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), ZYD_ZD1211B_DEV(FIBERLINE, WL430U), ZYD_ZD1211B_DEV(MELCO, KG54L), ZYD_ZD1211B_DEV(PHILIPS, SNU5600), ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), ZYD_ZD1211B_DEV(SAGEM, XG76NA), ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), #if 0 /* Shall we needs? */ ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), #endif ZYD_ZD1211B_DEV(USR, USR5423), ZYD_ZD1211B_DEV(VTECH, ZD1211B), ZYD_ZD1211B_DEV(ZCOM, ZD1211B), ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), ZYD_ZD1211B_DEV(ZYXEL, M202), ZYD_ZD1211B_DEV(ZYXEL, G220V2), }; #define zyd_lookup(v, p) \ ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) static device_probe_t zyd_match; static device_attach_t zyd_attach; static device_detach_t zyd_detach; static int zyd_attachhook(struct zyd_softc *); static int zyd_complete_attach(struct zyd_softc *); static int zyd_open_pipes(struct zyd_softc *); static void zyd_close_pipes(struct zyd_softc *); static int zyd_alloc_tx_list(struct zyd_softc *); static void zyd_free_tx_list(struct zyd_softc *); static int zyd_alloc_rx_list(struct zyd_softc *); static void zyd_free_rx_list(struct zyd_softc *); static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *); static int zyd_media_change(struct ifnet *); static void zyd_task(void *); static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, void *, int, u_int); static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); static int zyd_rfwrite(struct zyd_softc *, uint32_t); static void zyd_lock_phy(struct zyd_softc *); static void zyd_unlock_phy(struct zyd_softc *); static int zyd_rfmd_init(struct zyd_rf *); static int zyd_rfmd_switch_radio(struct zyd_rf *, int); static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2230_init(struct zyd_rf *); static int zyd_al2230_switch_radio(struct zyd_rf *, int); static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2230_init_b(struct zyd_rf *); static int zyd_al7230B_init(struct zyd_rf *); static int zyd_al7230B_switch_radio(struct zyd_rf *, int); static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2210_init(struct zyd_rf *); static int zyd_al2210_switch_radio(struct zyd_rf *, int); static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); static int zyd_gct_init(struct zyd_rf *); static int zyd_gct_switch_radio(struct zyd_rf *, int); static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); static int zyd_maxim_init(struct zyd_rf *); static int zyd_maxim_switch_radio(struct zyd_rf *, int); static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); static int zyd_maxim2_init(struct zyd_rf *); static int zyd_maxim2_switch_radio(struct zyd_rf *, int); static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); static int zyd_rf_attach(struct zyd_softc *, uint8_t); static const char *zyd_rf_name(uint8_t); static int zyd_hw_init(struct zyd_softc *); static int zyd_read_eeprom(struct zyd_softc *); static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); static int zyd_switch_radio(struct zyd_softc *, int); static void zyd_set_led(struct zyd_softc *, int, int); static void zyd_set_multi(struct zyd_softc *); static int zyd_set_rxfilter(struct zyd_softc *); static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); static int zyd_set_beacon_interval(struct zyd_softc *, int); static uint8_t zyd_plcp_signal(int); static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); static int zyd_tx_data(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); static void zyd_start(struct ifnet *); static void zyd_watchdog(void *); static int zyd_ioctl(struct ifnet *, u_long, caddr_t); static void zyd_init(void *); static void zyd_stop(struct zyd_softc *, int); static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); static void zyd_iter_func(void *, struct ieee80211_node *); static void zyd_amrr_timeout(void *); static void zyd_newassoc(struct ieee80211_node *, int); static void zyd_scantask(void *); static void zyd_scan_start(struct ieee80211com *); static void zyd_scan_end(struct ieee80211com *); static void zyd_set_channel(struct ieee80211com *); static int zyd_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (!uaa->iface) return UMATCH_NONE; return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } static int zyd_attachhook(struct zyd_softc *sc) { u_char *firmware; int len, error; if (sc->mac_rev == ZYD_ZD1211) { firmware = (u_char *)zd1211_firmware; len = sizeof(zd1211_firmware); } else { firmware = (u_char *)zd1211b_firmware; len = sizeof(zd1211b_firmware); } error = zyd_loadfirmware(sc, firmware, len); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware (error=%d)\n", error); return error; } sc->sc_flags |= ZD1211_FWLOADED; /* complete the attach process */ return zyd_complete_attach(sc); } static int zyd_attach(device_t dev) { int error = ENXIO; struct zyd_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); usb_device_descriptor_t* ddesc; struct ifnet *ifp; sc->sc_dev = dev; ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); return ENXIO; } sc->sc_udev = uaa->device; sc->sc_flags = 0; sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; ddesc = usbd_get_device_descriptor(sc->sc_udev); if (UGETW(ddesc->bcdDevice) < 0x4330) { device_printf(dev, "device version mismatch: 0x%x " "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice)); goto bad; } ifp->if_softc = sc; if_initname(ifp, "zyd", device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_NEEDSGIANT; /* USB stack is still under Giant lock */ ifp->if_init = zyd_init; ifp->if_ioctl = zyd_ioctl; ifp->if_start = zyd_start; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); STAILQ_INIT(&sc->sc_rqh); error = zyd_attachhook(sc); if (error != 0) { bad: if_free(ifp); return error; } return 0; } static int zyd_complete_attach(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; usbd_status error; int bands; mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); usb_init_task(&sc->sc_scantask, zyd_scantask, sc); usb_init_task(&sc->sc_task, zyd_task, sc); callout_init(&sc->sc_amrr_ch, 0); callout_init(&sc->sc_watchdog_ch, 0); error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); if (error != 0) { device_printf(sc->sc_dev, "setting config no failed\n"); error = ENXIO; goto fail; } error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, &sc->sc_iface); if (error != 0) { device_printf(sc->sc_dev, "getting interface handle failed\n"); error = ENXIO; goto fail; } if ((error = zyd_open_pipes(sc)) != 0) { device_printf(sc->sc_dev, "could not open pipes\n"); goto fail; } if ((error = zyd_read_eeprom(sc)) != 0) { device_printf(sc->sc_dev, "could not read EEPROM\n"); goto fail; } if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", sc->rf_rev); goto fail; } if ((error = zyd_hw_init(sc)) != 0) { device_printf(sc->sc_dev, "hardware initialization failed\n"); goto fail; } device_printf(sc->sc_dev, "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", (sc->mac_rev == ZYD_ZD1211) ? "": "B", sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), sc->pa_rev, ether_sprintf(ic->ic_myaddr)); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_WPA /* 802.11i */ ; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1); ieee80211_ifattach(ic); ic->ic_node_alloc = zyd_node_alloc; ic->ic_newassoc = zyd_newassoc; /* enable s/w bmiss handling in sta mode */ ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; ic->ic_scan_start = zyd_scan_start; ic->ic_scan_end = zyd_scan_end; ic->ic_set_channel = zyd_set_channel; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = zyd_newstate; ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status); ieee80211_amrr_init(&sc->amrr, ic, IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD); bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap), &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof(sc->sc_rxtap); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtap); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); return error; fail: mtx_destroy(&sc->sc_mtx); return error; } static int zyd_detach(device_t dev) { struct zyd_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; if (!device_is_attached(dev)) return 0; /* protect a race when we have listeners related with the driver. */ ifp->if_flags &= ~IFF_UP; zyd_stop(sc, 1); usb_rem_task(sc->sc_udev, &sc->sc_scantask); usb_rem_task(sc->sc_udev, &sc->sc_task); callout_stop(&sc->sc_amrr_ch); callout_stop(&sc->sc_watchdog_ch); zyd_close_pipes(sc); bpfdetach(ifp); ieee80211_ifdetach(ic); if_free(ifp); mtx_destroy(&sc->sc_mtx); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); return 0; } static int zyd_open_pipes(struct zyd_softc *sc) { usb_endpoint_descriptor_t *edesc; int isize; usbd_status error; /* interrupt in */ edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); if (edesc == NULL) return EINVAL; isize = UGETW(edesc->wMaxPacketSize); if (isize == 0) /* should not happen */ return EINVAL; sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); if (sc->ibuf == NULL) return ENOMEM; error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, USBD_DEFAULT_INTERVAL); if (error != 0) { device_printf(sc->sc_dev, "open rx intr pipe failed: %s\n", usbd_errstr(error)); goto fail; } /* interrupt out (not necessarily an interrupt pipe) */ error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_IOUT]); if (error != 0) { device_printf(sc->sc_dev, "open tx intr pipe failed: %s\n", usbd_errstr(error)); goto fail; } /* bulk in */ error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_BIN]); if (error != 0) { device_printf(sc->sc_dev, "open rx pipe failed: %s\n", usbd_errstr(error)); goto fail; } /* bulk out */ error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_BOUT]); if (error != 0) { device_printf(sc->sc_dev, "open tx pipe failed: %s\n", usbd_errstr(error)); goto fail; } return 0; fail: zyd_close_pipes(sc); return ENXIO; } static void zyd_close_pipes(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_ENDPT_CNT; i++) { if (sc->zyd_ep[i] != NULL) { usbd_abort_pipe(sc->zyd_ep[i]); usbd_close_pipe(sc->zyd_ep[i]); sc->zyd_ep[i] = NULL; } } if (sc->ibuf != NULL) { free(sc->ibuf, M_USBDEV); sc->ibuf = NULL; } } static int zyd_alloc_tx_list(struct zyd_softc *sc) { int i, error; sc->tx_queued = 0; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->tx_data[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { device_printf(sc->sc_dev, "could not allocate tx xfer\n"); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); if (data->buf == NULL) { device_printf(sc->sc_dev, "could not allocate tx buffer\n"); error = ENOMEM; goto fail; } /* clear Tx descriptor */ bzero(data->buf, sizeof(struct zyd_tx_desc)); } return 0; fail: zyd_free_tx_list(sc); return error; } static void zyd_free_tx_list(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int zyd_alloc_rx_list(struct zyd_softc *sc) { int i, error; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { device_printf(sc->sc_dev, "could not allocate rx xfer\n"); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); if (data->buf == NULL) { device_printf(sc->sc_dev, "could not allocate rx buffer\n"); error = ENOMEM; goto fail; } } return 0; fail: zyd_free_rx_list(sc); return error; } static void zyd_free_rx_list(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } } } /* ARGUSED */ static struct ieee80211_node * zyd_node_alloc(struct ieee80211_node_table *nt __unused) { struct zyd_node *zn; zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO); return zn != NULL ? &zn->ni : NULL; } static int zyd_media_change(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & IFF_UP) == IFF_UP && (ifp->if_drv_flags & IFF_DRV_RUNNING) == IFF_DRV_RUNNING) zyd_init(sc); return 0; } static void zyd_task(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_RUN: { struct ieee80211_node *ni = ic->ic_bss; zyd_set_chan(sc, ic->ic_curchan); if (ic->ic_opmode != IEEE80211_M_MONITOR) { /* turn link LED on */ zyd_set_led(sc, ZYD_LED1, 1); /* make data LED blink upon Tx */ zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); zyd_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ zyd_newassoc(ni, 1); } /* start automatic rate control timer */ if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); break; } default: break; } sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); } static int zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct zyd_softc *sc = ic->ic_ifp->if_softc; usb_rem_task(sc->sc_udev, &sc->sc_task); callout_stop(&sc->sc_amrr_ch); /* do it in a process context */ sc->sc_state = nstate; sc->sc_arg = arg; if (nstate == IEEE80211_S_INIT) sc->sc_newstate(ic, nstate, arg); else usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); return 0; } static int zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, void *odata, int olen, u_int flags) { usbd_xfer_handle xfer; struct zyd_cmd cmd; struct rq rq; uint16_t xferflags; usbd_status error; if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) return ENOMEM; cmd.code = htole16(code); bcopy(idata, cmd.data, ilen); xferflags = USBD_FORCE_SHORT_XFER; if (!(flags & ZYD_CMD_FLAG_READ)) xferflags |= USBD_SYNCHRONOUS; else { rq.idata = idata; rq.odata = odata; rq.len = olen / sizeof(struct zyd_pair); STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); } usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, sizeof(uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); error = usbd_transfer(xfer); if (error != USBD_IN_PROGRESS && error != 0) { device_printf(sc->sc_dev, "could not send command (error=%s)\n", usbd_errstr(error)); (void)usbd_free_xfer(xfer); return EIO; } if (!(flags & ZYD_CMD_FLAG_READ)) { (void)usbd_free_xfer(xfer); return 0; /* write: don't wait for reply */ } /* wait at most one second for command reply */ error = tsleep(odata, PCATCH, "zydcmd", hz); if (error == EWOULDBLOCK) device_printf(sc->sc_dev, "zyd_read sleep timeout\n"); STAILQ_REMOVE(&sc->sc_rqh, &rq, rq, rq); (void)usbd_free_xfer(xfer); return error; } static int zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) { struct zyd_pair tmp; int error; reg = htole16(reg); error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp.val); return error; } static int zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) { struct zyd_pair tmp[2]; uint16_t regs[2]; int error; regs[0] = htole16(ZYD_REG32_HI(reg)); regs[1] = htole16(ZYD_REG32_LO(reg)); error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); return error; } static int zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) { struct zyd_pair pair; pair.reg = htole16(reg); pair.val = htole16(val); return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); } static int zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) { struct zyd_pair pair[2]; pair[0].reg = htole16(ZYD_REG32_HI(reg)); pair[0].val = htole16(val >> 16); pair[1].reg = htole16(ZYD_REG32_LO(reg)); pair[1].val = htole16(val & 0xffff); return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); } static int zyd_rfwrite(struct zyd_softc *sc, uint32_t val) { struct zyd_rf *rf = &sc->sc_rf; struct zyd_rfwrite req; uint16_t cr203; int i; (void)zyd_read16(sc, ZYD_CR203, &cr203); cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); req.code = htole16(2); req.width = htole16(rf->width); for (i = 0; i < rf->width; i++) { req.bit[i] = htole16(cr203); if (val & (1 << (rf->width - 1 - i))) req.bit[i] |= htole16(ZYD_RF_DATA); } return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); } static void zyd_lock_phy(struct zyd_softc *sc) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); tmp &= ~ZYD_UNLOCK_PHY_REGS; (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); } static void zyd_unlock_phy(struct zyd_softc *sc) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); tmp |= ZYD_UNLOCK_PHY_REGS; (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); } /* * RFMD RF methods. */ static int zyd_rfmd_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; static const uint32_t rfini[] = ZYD_RFMD_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init RFMD radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } static int zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); return 0; } static int zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_RFMD_CHANTABLE; (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); return 0; } /* * AL2230 RF methods. */ static int zyd_al2230_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; static const uint32_t rfini[] = ZYD_AL2230_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2230 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } static int zyd_al2230_init_b(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; static const uint32_t rfini[] = ZYD_AL2230_RF_B; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2230 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } static int zyd_al2230_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); return 0; } static int zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2, r3; } rfprog[] = ZYD_AL2230_CHANTABLE; (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); (void)zyd_write16(sc, ZYD_CR138, 0x28); (void)zyd_write16(sc, ZYD_CR203, 0x06); return 0; } /* * AL7230B RF methods. */ static int zyd_al7230B_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; int i, error; /* for AL7230B, PHY and RF need to be initialized in "phases" */ /* init RF-dependent PHY registers, part one */ for (i = 0; i < N(phyini_1); i++) { error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); if (error != 0) return error; } /* init AL7230B radio, part one */ for (i = 0; i < N(rfini_1); i++) { if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) return error; } /* init RF-dependent PHY registers, part two */ for (i = 0; i < N(phyini_2); i++) { error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); if (error != 0) return error; } /* init AL7230B radio, part two */ for (i = 0; i < N(rfini_2); i++) { if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) return error; } /* init RF-dependent PHY registers, part three */ for (i = 0; i < N(phyini_3); i++) { error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); if (error != 0) return error; } return 0; #undef N } static int zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); return 0; } static int zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_AL7230B_CHANTABLE; static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; int i, error; (void)zyd_write16(sc, ZYD_CR240, 0x57); (void)zyd_write16(sc, ZYD_CR251, 0x2f); for (i = 0; i < N(rfsc); i++) { if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) return error; } (void)zyd_write16(sc, ZYD_CR128, 0x14); (void)zyd_write16(sc, ZYD_CR129, 0x12); (void)zyd_write16(sc, ZYD_CR130, 0x10); (void)zyd_write16(sc, ZYD_CR38, 0x38); (void)zyd_write16(sc, ZYD_CR136, 0xdf); (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); (void)zyd_rfwrite(sc, 0x3c9000); (void)zyd_write16(sc, ZYD_CR251, 0x3f); (void)zyd_write16(sc, ZYD_CR203, 0x06); (void)zyd_write16(sc, ZYD_CR240, 0x08); return 0; #undef N } /* * AL2210 RF methods. */ static int zyd_al2210_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; static const uint32_t rfini[] = ZYD_AL2210_RF; uint32_t tmp; int i, error; (void)zyd_write32(sc, ZYD_CR18, 2); /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2210 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_write32(sc, ZYD_CR18, 3); return 0; #undef N } static int zyd_al2210_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } static int zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; uint32_t tmp; (void)zyd_write32(sc, ZYD_CR18, 2); (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); (void)zyd_write16(sc, ZYD_CR47, 0x1e); /* actually set the channel */ (void)zyd_rfwrite(sc, rfprog[chan - 1]); (void)zyd_write32(sc, ZYD_CR18, 3); return 0; } /* * GCT RF methods. */ static int zyd_gct_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; static const uint32_t rfini[] = ZYD_GCT_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init cgt radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } static int zyd_gct_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } static int zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; (void)zyd_rfwrite(sc, 0x1c0000); (void)zyd_rfwrite(sc, rfprog[chan - 1]); (void)zyd_rfwrite(sc, 0x1c0008); return 0; } /* * Maxim RF methods. */ static int zyd_maxim_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; uint16_t tmp; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } static int zyd_maxim_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } static int zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM_CHANTABLE; uint16_t tmp; int i, error; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); /* init maxim radio - skipping the two first values */ for (i = 2; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } /* * Maxim2 RF methods. */ static int zyd_maxim2_init(struct zyd_rf *rf) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; uint16_t tmp; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim2 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } static int zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } static int zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM2_CHANTABLE; uint16_t tmp; int i, error; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); /* init maxim2 radio - skipping the two first values */ for (i = 2; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } static int zyd_rf_attach(struct zyd_softc *sc, uint8_t type) { struct zyd_rf *rf = &sc->sc_rf; rf->rf_sc = sc; switch (type) { case ZYD_RF_RFMD: rf->init = zyd_rfmd_init; rf->switch_radio = zyd_rfmd_switch_radio; rf->set_channel = zyd_rfmd_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2230: if (sc->mac_rev == ZYD_ZD1211B) rf->init = zyd_al2230_init_b; else rf->init = zyd_al2230_init; rf->switch_radio = zyd_al2230_switch_radio; rf->set_channel = zyd_al2230_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL7230B: rf->init = zyd_al7230B_init; rf->switch_radio = zyd_al7230B_switch_radio; rf->set_channel = zyd_al7230B_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2210: rf->init = zyd_al2210_init; rf->switch_radio = zyd_al2210_switch_radio; rf->set_channel = zyd_al2210_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_GCT: rf->init = zyd_gct_init; rf->switch_radio = zyd_gct_switch_radio; rf->set_channel = zyd_gct_set_channel; rf->width = 21; /* 21-bit RF values */ break; case ZYD_RF_MAXIM_NEW: rf->init = zyd_maxim_init; rf->switch_radio = zyd_maxim_switch_radio; rf->set_channel = zyd_maxim_set_channel; rf->width = 18; /* 18-bit RF values */ break; case ZYD_RF_MAXIM_NEW2: rf->init = zyd_maxim2_init; rf->switch_radio = zyd_maxim2_switch_radio; rf->set_channel = zyd_maxim2_set_channel; rf->width = 18; /* 18-bit RF values */ break; default: device_printf(sc->sc_dev, "sorry, radio \"%s\" is not supported yet\n", zyd_rf_name(type)); return EINVAL; } return 0; } static const char * zyd_rf_name(uint8_t type) { static const char * const zyd_rfs[] = { "unknown", "unknown", "UW2451", "UCHIP", "AL2230", "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", "PHILIPS" }; return zyd_rfs[(type > 15) ? 0 : type]; } static int zyd_hw_init(struct zyd_softc *sc) { struct zyd_rf *rf = &sc->sc_rf; const struct zyd_phy_pair *phyp; uint32_t tmp; int error; /* specify that the plug and play is finished */ (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); /* retrieve firmware revision number */ (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); /* disable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); /* PHY init */ zyd_lock_phy(sc); phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; for (; phyp->reg != 0; phyp++) { if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) goto fail; } if (sc->fix_cr157) { if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) (void)zyd_write32(sc, ZYD_CR157, tmp >> 8); } zyd_unlock_phy(sc); /* HMAC init */ zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); if (sc->mac_rev == ZYD_ZD1211) { zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); } else { zyd_write32(sc, ZYD_MACB_MAX_RETRY, 0x02020202); zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); } zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); /* RF chip init */ zyd_lock_phy(sc); error = (*rf->init)(rf); zyd_unlock_phy(sc); if (error != 0) { device_printf(sc->sc_dev, "radio initialization failed, error %d\n", error); goto fail; } /* init beacon interval to 100ms */ if ((error = zyd_set_beacon_interval(sc, 100)) != 0) goto fail; fail: return error; } static int zyd_read_eeprom(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; uint16_t val; int i; /* read MAC address */ (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); ic->ic_myaddr[0] = tmp & 0xff; ic->ic_myaddr[1] = tmp >> 8; ic->ic_myaddr[2] = tmp >> 16; ic->ic_myaddr[3] = tmp >> 24; (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); ic->ic_myaddr[4] = tmp & 0xff; ic->ic_myaddr[5] = tmp >> 8; (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); sc->rf_rev = tmp & 0x0f; sc->fix_cr47 = (tmp >> 8 ) & 0x01; sc->fix_cr157 = (tmp >> 13) & 0x01; sc->pa_rev = (tmp >> 16) & 0x0f; /* read regulatory domain (currently unused) */ (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); sc->regdomain = tmp >> 16; DPRINTF(("regulatory domain %x\n", sc->regdomain)); /* read Tx power calibration tables */ for (i = 0; i < 7; i++) { (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); sc->pwr_cal[i * 2] = val >> 8; sc->pwr_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); sc->pwr_int[i * 2] = val >> 8; sc->pwr_int[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); sc->ofdm36_cal[i * 2] = val >> 8; sc->ofdm36_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); sc->ofdm48_cal[i * 2] = val >> 8; sc->ofdm48_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); sc->ofdm54_cal[i * 2] = val >> 8; sc->ofdm54_cal[i * 2 + 1] = val & 0xff; } return 0; } static int zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); tmp = addr[5] << 8 | addr[4]; (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); return 0; } static int zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); tmp = addr[5] << 8 | addr[4]; (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); return 0; } static int zyd_switch_radio(struct zyd_softc *sc, int on) { struct zyd_rf *rf = &sc->sc_rf; int error; zyd_lock_phy(sc); error = (*rf->switch_radio)(rf, on); zyd_unlock_phy(sc); return error; } static void zyd_set_led(struct zyd_softc *sc, int which, int on) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); tmp &= ~which; if (on) tmp |= which; (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); } static void zyd_set_multi(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ifmultiaddr *ifma; uint32_t low, high; uint8_t v; if (!(ifp->if_flags & IFF_UP)) return; low = 0x00000000; high = 0x80000000; if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) { low = 0xffffffff; high = 0xffffffff; } else { IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; v = ((uint8_t *)LLADDR((struct sockaddr_dl *) ifma->ifma_addr))[5] >> 2; if (v < 32) low |= 1 << v; else high |= 1 << (v - 32); } IF_ADDR_UNLOCK(ifp); } /* reprogram multicast global hash table */ zyd_write32(sc, ZYD_MAC_GHTBL, low); zyd_write32(sc, ZYD_MAC_GHTBH, high); } static int zyd_set_rxfilter(struct zyd_softc *sc) { uint32_t rxfilter; switch (sc->sc_ic.ic_opmode) { case IEEE80211_M_STA: rxfilter = ZYD_FILTER_BSS; break; case IEEE80211_M_IBSS: case IEEE80211_M_HOSTAP: rxfilter = ZYD_FILTER_HOSTAP; break; case IEEE80211_M_MONITOR: rxfilter = ZYD_FILTER_MONITOR; break; default: /* should not get there */ return EINVAL; } return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); } static void zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; struct zyd_rf *rf = &sc->sc_rf; uint32_t tmp; u_int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) { /* XXX should NEVER happen */ device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, chan); return; } zyd_lock_phy(sc); (*rf->set_channel)(rf, chan); /* update Tx power */ (void)zyd_write16(sc, ZYD_CR31, sc->pwr_int[chan - 1]); if (sc->mac_rev == ZYD_ZD1211B) { (void)zyd_write16(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); (void)zyd_write16(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); (void)zyd_write16(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); (void)zyd_write16(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); (void)zyd_write16(sc, ZYD_CR69, 0x28); (void)zyd_write16(sc, ZYD_CR69, 0x2a); } if (sc->fix_cr47) { /* set CCK baseband gain from EEPROM */ if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) (void)zyd_write16(sc, ZYD_CR47, tmp & 0xff); } (void)zyd_write32(sc, ZYD_CR_CONFIG_PHILIPS, 0); zyd_unlock_phy(sc); sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); } static int zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) { /* XXX this is probably broken.. */ (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); return 0; } static uint8_t zyd_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } static void zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_softc *sc = (struct zyd_softc *)priv; struct zyd_cmd *cmd; uint32_t datalen; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->zyd_ep[ZYD_ENDPT_IIN]); } return; } cmd = (struct zyd_cmd *)sc->ibuf; if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { struct zyd_notif_retry *retry = (struct zyd_notif_retry *)cmd->data; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; struct ieee80211_node *ni; DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", le16toh(retry->rate), ether_sprintf(retry->macaddr), le16toh(retry->count) & 0xff, le16toh(retry->count))); /* * Find the node to which the packet was sent and update its * retry statistics. In BSS mode, this node is the AP we're * associated to so no lookup is actually needed. */ if (ic->ic_opmode != IEEE80211_M_STA) { ni = ieee80211_find_node(&ic->ic_sta, retry->macaddr); if (ni == NULL) return; /* just ignore */ } else ni = ic->ic_bss; ((struct zyd_node *)ni)->amn.amn_retrycnt++; if (le16toh(retry->count) & 0x100) ifp->if_oerrors++; /* too many retries */ } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) { struct rq *rqp; if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) return; /* HMAC interrupt */ usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL); datalen -= sizeof(cmd->code); datalen -= 2; /* XXX: padding? */ STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { int i; if (sizeof(struct zyd_pair) * rqp->len != datalen) continue; for (i = 0; i < rqp->len; i++) { if (*(((const uint16_t *)rqp->idata) + i) != (((struct zyd_pair *)cmd->data) + i)->reg) break; } if (i != rqp->len) continue; /* copy answer into caller-supplied buffer */ bcopy(cmd->data, rqp->odata, sizeof(struct zyd_pair) * rqp->len); wakeup(rqp->odata); /* wakeup caller */ return; } return; /* unexpected IORD notification */ } else { device_printf(sc->sc_dev, "unknown notification %x\n", le16toh(cmd->code)); } } static __inline uint8_t zyd_plcp2ieee(int signal, int isofdm) { if (isofdm) { static const uint8_t ofdmrates[16] = { 0, 0, 0, 0, 0, 0, 0, 96, 48, 24, 12, 108, 72, 36, 18 }; return ofdmrates[signal & 0xf]; } else { static const uint8_t cckrates[16] = { 0, 0, 0, 0, 4, 0, 0, 11, 0, 0, 2, 0, 0, 0, 22, 0 }; return cckrates[signal & 0xf]; } } static void zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; struct ieee80211_node *ni; const struct zyd_plcphdr *plcp; const struct zyd_rx_stat *stat; struct mbuf *m; int rlen; if (len < ZYD_MIN_FRAGSZ) { DPRINTF(("%s: frame too short (length=%d)\n", device_get_nameunit(sc->sc_dev), len)); ifp->if_ierrors++; return; } plcp = (const struct zyd_plcphdr *)buf; stat = (const struct zyd_rx_stat *) (buf + len - sizeof(struct zyd_rx_stat)); if (stat->flags & ZYD_RX_ERROR) { DPRINTF(("%s: RX status indicated error (%x)\n", device_get_nameunit(sc->sc_dev), stat->flags)); ifp->if_ierrors++; return; } /* compute actual frame length */ rlen = len - sizeof(struct zyd_plcphdr) - sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; /* allocate a mbuf to store the frame */ if (rlen > MHLEN) m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) { DPRINTF(("%s: could not allocate rx mbuf\n", device_get_nameunit(sc->sc_dev))); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = rlen; bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); if (bpf_peers_present(sc->sc_drvbpf)) { struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (stat->flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; /* XXX toss, no way to express errors */ if (stat->flags & ZYD_RX_DECRYPTERR) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; tap->wr_rate = zyd_plcp2ieee(plcp->signal, stat->flags & ZYD_RX_OFDM); tap->wr_antsignal = stat->rssi + -95; tap->wr_antnoise = -95; /* XXX */ bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); ieee80211_input(ic, m, ni, stat->rssi > 63 ? 127 : 2 * stat->rssi, -95/*XXX*/, 0); /* node is no longer needed */ ieee80211_free_node(ni); } static void zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_rx_data *data = priv; struct zyd_softc *sc = data->sc; struct ifnet *ifp = sc->sc_ifp; const struct zyd_rx_desc *desc; int len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < ZYD_MIN_RXBUFSZ) { DPRINTFN(3, ("%s: xfer too short (length=%d)\n", device_get_nameunit(sc->sc_dev), len)); ifp->if_ierrors++; /* XXX not really errors */ goto skip; } desc = (const struct zyd_rx_desc *) (data->buf + len - sizeof(struct zyd_rx_desc)); if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { const uint8_t *p = data->buf, *end = p + len; int i; DPRINTFN(3, ("received multi-frame transfer\n")); for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { const uint16_t len16 = UGETW(desc->len[i]); if (len16 == 0 || p + len16 > end) break; zyd_rx_data(sc, p, len16); /* next frame is aligned on a 32-bit boundary */ p += (len16 + 3) & ~3; } } else { DPRINTFN(3, ("received single-frame transfer\n")); zyd_rx_data(sc, data->buf, len); } skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); (void)usbd_transfer(xfer); } static int zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; int xferlen, totlen, rate; uint16_t pktlen; usbd_status error; data = &sc->tx_data[0]; desc = (struct zyd_tx_desc *)data->buf; rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; data->ni = ni; data->m = m0; wh = mtod(m0, struct ieee80211_frame *); xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* fill Tx descriptor */ desc->len = htole16(totlen); desc->flags = ZYD_TX_FLAG_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > ic->ic_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } else desc->flags |= ZYD_TX_FLAG_MULTICAST; if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); desc->phy = zyd_plcp_signal(rate); if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; /* actual transmit length (XXX why +10?) */ pktlen = sizeof(struct zyd_tx_desc) + 10; if (sc->mac_rev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); desc->plcp_length = (16 * totlen + rate - 1) / rate; desc->plcp_service = 0; if (rate == 22) { const int remainder = (16 * totlen) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= ZYD_PLCP_LENGEXT; } if (bpf_peers_present(sc->sc_drvbpf)) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + sizeof(struct zyd_tx_desc)); DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n", device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, ZYD_TX_TIMEOUT, zyd_txeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { ifp->if_oerrors++; return EIO; } sc->tx_queued++; return 0; } static void zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_tx_data *data = priv; struct zyd_softc *sc = data->sc; struct ifnet *ifp = sc->sc_ifp; struct ieee80211_node *ni; struct mbuf *m; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; device_printf(sc->sc_dev, "could not transmit buffer: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->zyd_ep[ZYD_ENDPT_BOUT]); } ifp->if_oerrors++; return; } ni = data->ni; /* update rate control statistics */ ((struct zyd_node *)ni)->amn.amn_txcnt++; /* * Do any tx complete callback. Note this must * be done before releasing the node reference. */ m = data->m; if (m != NULL && m->m_flags & M_TXCB) { ieee80211_process_callback(ni, m, 0); /* XXX status? */ m_freem(m); data->m = NULL; } ieee80211_free_node(ni); data->ni = NULL; sc->tx_queued--; ifp->if_opackets++; sc->tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; zyd_start(ifp); } static int zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = sc->sc_ifp; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; int xferlen, totlen, rate; uint16_t pktlen; usbd_status error; wh = mtod(m0, struct ieee80211_frame *); data = &sc->tx_data[0]; desc = (struct zyd_tx_desc *)data->buf; desc->flags = ZYD_TX_FLAG_BACKOFF; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { rate = ic->ic_mcast_rate; desc->flags |= ZYD_TX_FLAG_MULTICAST; } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate]; else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; rate &= IEEE80211_RATE_VAL; if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } data->ni = ni; data->m = NULL; xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* fill Tx descriptor */ desc->len = htole16(totlen); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > ic->ic_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); desc->phy = zyd_plcp_signal(rate); if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; /* actual transmit length (XXX why +10?) */ pktlen = sizeof(struct zyd_tx_desc) + 10; if (sc->mac_rev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); desc->plcp_length = (16 * totlen + rate - 1) / rate; desc->plcp_service = 0; if (rate == 22) { const int remainder = (16 * totlen) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= ZYD_PLCP_LENGEXT; } if (bpf_peers_present(sc->sc_drvbpf)) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + sizeof(struct zyd_tx_desc)); DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n", device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen)); m_freem(m0); /* mbuf no longer needed */ usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, ZYD_TX_TIMEOUT, zyd_txeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { ifp->if_oerrors++; return EIO; } sc->tx_queued++; return 0; } static void zyd_start(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ether_header *eh; struct ieee80211_node *ni; struct mbuf *m0; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->tx_queued >= ZYD_TX_LIST_CNT) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; if (bpf_peers_present(ic->ic_rawbpf)) bpf_mtap(ic->ic_rawbpf, m0); if (zyd_tx_mgt(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= ZYD_TX_LIST_CNT) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); /* * Cancel any background scan. */ if (ic->ic_flags & IEEE80211_F_SCAN) ieee80211_cancel_scan(ic); if (m0->m_len < sizeof(struct ether_header) && !(m0 = m_pullup(m0, sizeof(struct ether_header)))) continue; eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } if (bpf_peers_present(ifp->if_bpf)) bpf_mtap(ifp->if_bpf, m0); if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } if (bpf_peers_present(ic->ic_rawbpf)) bpf_mtap(ic->ic_rawbpf, m0); if (zyd_tx_data(sc, m0, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } } sc->tx_timer = 5; ic->ic_lastdata = ticks; callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc); } } static void zyd_watchdog(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; if (sc->tx_timer > 0) { if (--sc->tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); /* zyd_init(ifp); XXX needs a process context ? */ ifp->if_oerrors++; return; } callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc); } } static int zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error = 0; ZYD_LOCK(sc); switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) zyd_set_multi(sc); } else zyd_init(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) zyd_stop(sc, 1); } sc->sc_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) zyd_set_multi(sc); break; default: error = ieee80211_ioctl(ic, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & IFF_UP) == IFF_UP && (ifp->if_drv_flags & IFF_DRV_RUNNING) == IFF_DRV_RUNNING) zyd_init(sc); error = 0; } ZYD_UNLOCK(sc); return error; } static void zyd_init(void *priv) { struct zyd_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; int i, error; zyd_stop(sc, 0); IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = zyd_set_macaddr(sc, ic->ic_myaddr); if (error != 0) return; /* we'll do software WEP decryption for now */ DPRINTF(("setting encryption type\n")); error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); if (error != 0) return; /* promiscuous mode */ (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 0); /* multicast setup */ (void)zyd_set_multi(sc); (void)zyd_set_rxfilter(sc); /* switch radio transmitter ON */ (void)zyd_switch_radio(sc, 1); /* XXX wrong, can't set here */ /* set basic rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); else if (ic->ic_curmode == IEEE80211_MODE_11A) (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); else /* assumes 802.11b/g */ (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); /* set mandatory rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); else if (ic->ic_curmode == IEEE80211_MODE_11A) (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); else /* assumes 802.11b/g */ (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); /* set default BSS channel */ zyd_set_chan(sc, ic->ic_curchan); /* enable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); /* * Allocate Tx and Rx xfer queues. */ if ((error = zyd_alloc_tx_list(sc)) != 0) { device_printf(sc->sc_dev, "could not allocate Tx list\n"); goto fail; } if ((error = zyd_alloc_rx_list(sc)) != 0) { device_printf(sc->sc_dev, "could not allocate Rx list\n"); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { device_printf(sc->sc_dev, "could not queue Rx transfer\n"); goto fail; } } ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; if (ic->ic_opmode != IEEE80211_M_MONITOR) { if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return; fail: zyd_stop(sc, 1); return; } static void zyd_stop(struct zyd_softc *sc, int disable) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = &sc->sc_ic; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ sc->tx_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); /* switch radio transmitter OFF */ (void)zyd_switch_radio(sc, 0); /* disable Rx */ (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); /* disable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); zyd_free_rx_list(sc); zyd_free_tx_list(sc); } static int zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) { usb_device_request_t req; uint16_t addr; uint8_t stat; DPRINTF(("firmware size=%zu\n", size)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADREQ; USETW(req.wIndex, 0); addr = ZYD_FIRMWARE_START_ADDR; while (size > 0) { #if 0 const int mlen = min(size, 4096); #else /* * XXXX: When the transfer size is 4096 bytes, it is not * likely to be able to transfer it. * The cause is port or machine or chip? */ const int mlen = min(size, 64); #endif DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, addr)); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (usbd_do_request(sc->sc_udev, &req, fw) != 0) return EIO; addr += mlen / 2; fw += mlen; size -= mlen; } /* check whether the upload succeeded */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADSTS; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, sizeof(stat)); if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) return EIO; return (stat & 0x80) ? EIO : 0; } static void zyd_iter_func(void *arg, struct ieee80211_node *ni) { struct zyd_softc *sc = arg; struct zyd_node *zn = (struct zyd_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); } static void zyd_amrr_timeout(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; ZYD_LOCK(sc); if (ic->ic_opmode == IEEE80211_M_STA) zyd_iter_func(sc, ic->ic_bss); else ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc); ZYD_UNLOCK(sc); callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc); } static void zyd_newassoc(struct ieee80211_node *ni, int isnew) { struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc; int i; ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; } static void zyd_scan_start(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_ifp->if_softc; usb_rem_task(sc->sc_udev, &sc->sc_scantask); /* do it in a process context */ sc->sc_scan_action = ZYD_SCAN_START; usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER); } static void zyd_scan_end(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_ifp->if_softc; usb_rem_task(sc->sc_udev, &sc->sc_scantask); /* do it in a process context */ sc->sc_scan_action = ZYD_SCAN_END; usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER); } static void zyd_set_channel(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_ifp->if_softc; usb_rem_task(sc->sc_udev, &sc->sc_scantask); /* do it in a process context */ sc->sc_scan_action = ZYD_SET_CHANNEL; usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER); } static void zyd_scantask(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; ZYD_LOCK(sc); switch (sc->sc_scan_action) { case ZYD_SCAN_START: zyd_set_bssid(sc, ifp->if_broadcastaddr); break; case ZYD_SCAN_END: zyd_set_bssid(sc, ic->ic_bss->ni_bssid); break; case ZYD_SET_CHANNEL: mtx_lock(&Giant); zyd_set_chan(sc, ic->ic_curchan); mtx_unlock(&Giant); break; default: device_printf(sc->sc_dev, "unknown scan action %d\n", sc->sc_scan_action); break; } ZYD_UNLOCK(sc); } static device_method_t zyd_methods[] = { /* Device interface */ DEVMETHOD(device_probe, zyd_match), DEVMETHOD(device_attach, zyd_attach), DEVMETHOD(device_detach, zyd_detach), { 0, 0 } }; static driver_t zyd_driver = { "zyd", zyd_methods, sizeof(struct zyd_softc) }; static devclass_t zyd_devclass; DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, usbd_driver_load, 0); MODULE_DEPEND(zyd, wlan, 1, 1, 1); MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1); MODULE_DEPEND(zyd, usb, 1, 1, 1);