/* $NetBSD: uhci.c,v 1.24 1999/02/20 23:26:16 augustss Exp $ */ /* $FreeBSD$ */ /* * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (augustss@carlstedt.se) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB Universal Host Controller driver. * Handles PIIX3 and PIIX4. * * Data sheets: ftp://download.intel.com/design/intarch/datashts/29055002.pdf * ftp://download.intel.com/design/intarch/datashts/29056201.pdf * UHCI spec: http://www.intel.com/design/usb/uhci11d.pdf * USB spec: http://www.usb.org/cgi-usb/mailmerge.cgi/home/usb/docs/developers/ cgiform.tpl */ #include #include #include #include #if defined(__NetBSD__) #include #elif defined(__FreeBSD__) #include #include #endif #include #include #include #if defined(__FreeBSD__) #include #endif #include #include #include #include #include #include #include #include #if defined(__FreeBSD__) #include #define delay(d) DELAY(d) #endif #ifdef UHCI_DEBUG #define DPRINTF(x) if (uhcidebug) logprintf x #define DPRINTFN(n,x) if (uhcidebug>(n)) logprintf x int uhcidebug = 1; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define MS_TO_TICKS(ms) ((ms) * hz / 1000) struct uhci_pipe { struct usbd_pipe pipe; uhci_intr_info_t *iinfo; int nexttoggle; union { /* Control pipe */ struct { uhci_soft_qh_t *sqh; usb_dma_t reqdma; usb_dma_t datadma; uhci_soft_td_t *setup, *stat; u_int length; } ctl; /* Interrupt pipe */ struct { usb_dma_t datadma; int npoll; uhci_soft_qh_t **qhs; } intr; /* Bulk pipe */ struct { uhci_soft_qh_t *sqh; usb_dma_t datadma; u_int length; int isread; } bulk; /* Iso pipe */ struct iso { u_int bufsize; u_int nbuf; usb_dma_t *bufs; uhci_soft_td_t **stds; } iso; } u; }; /* * The uhci_intr_info free list can be global since they contain * no dma specific data. The other free lists do. */ LIST_HEAD(, uhci_intr_info) uhci_ii_free = LIST_HEAD_INITIALIZER(uhci_ii_free); /* initialisation */ usbd_status uhci_init_framelist __P((uhci_softc_t *sc)); /* modification of the host controller's status */ void uhci_busreset __P((uhci_softc_t *sc)); usbd_status uhci_run __P((uhci_softc_t *sc, int run)); /* resource management */ uhci_soft_td_t *uhci_alloc_std __P((uhci_softc_t *sc)); void uhci_free_std __P((uhci_softc_t *sc, uhci_soft_td_t *std)); usbd_status uhci_alloc_std_chain __P((uhci_softc_t *sc, struct uhci_pipe *upipe, int datalen, int isread, int spd, usb_dma_t *dma, uhci_soft_td_t **std, uhci_soft_td_t **stdend)); void uhci_free_std_chain __P((uhci_softc_t *sc, uhci_soft_td_t *std, uhci_soft_td_t *stdend)); uhci_soft_qh_t *uhci_alloc_sqh __P((uhci_softc_t *sc)); void uhci_free_sqh __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh)); uhci_intr_info_t *uhci_alloc_intr_info __P((uhci_softc_t *sc)); void uhci_free_intr_info __P((uhci_intr_info_t *ii)); /* locking of the framelist */ void uhci_lock_frames __P((uhci_softc_t *sc)); void uhci_unlock_frames __P((uhci_softc_t *sc)); /* handling of interrupts */ void uhci_poll __P((struct usbd_bus *bus)); void uhci_waitintr __P((uhci_softc_t *sc, usbd_request_handle reqh)); void uhci_timeout __P((void *priv)); /* check the list of TDs for an interrupt */ void uhci_check_intr __P((uhci_softc_t *sc, uhci_intr_info_t *ii)); /* handle a completed request */ void uhci_ii_done __P((uhci_intr_info_t *ii, int timedout)); void uhci_ctrl_done __P((uhci_intr_info_t *ii)); void uhci_bulk_done __P((uhci_intr_info_t *ii)); void uhci_intr_done __P((uhci_intr_info_t *ii)); void uhci_isoc_done __P((uhci_intr_info_t *ii)); /* pipe methods for devices and root hub; the latter doesn't use iso or bulk */ usbd_status uhci_open __P((usbd_pipe_handle pipe)); usbd_status uhci_device_request __P((usbd_request_handle reqh)); usbd_status uhci_device_ctrl_transfer __P((usbd_request_handle reqh)); usbd_status uhci_device_ctrl_start __P((usbd_request_handle reqh)); void uhci_device_ctrl_abort __P((usbd_request_handle reqh)); void uhci_device_ctrl_close __P((usbd_pipe_handle pipe)); usbd_status uhci_device_bulk_transfer __P((usbd_request_handle reqh)); usbd_status uhci_device_bulk_start __P((usbd_request_handle reqh)); void uhci_device_bulk_abort __P((usbd_request_handle reqh)); void uhci_device_bulk_close __P((usbd_pipe_handle pipe)); usbd_status uhci_device_intr_transfer __P((usbd_request_handle reqh)); usbd_status uhci_device_intr_start __P((usbd_request_handle reqh)); void uhci_device_intr_abort __P((usbd_request_handle reqh)); void uhci_device_intr_close __P((usbd_pipe_handle pipe)); usbd_status uhci_device_intr_interval __P((uhci_softc_t *sc, struct uhci_pipe *upipe, int ival)); usbd_status uhci_device_isoc_transfer __P((usbd_request_handle reqh)); usbd_status uhci_device_isoc_start __P((usbd_request_handle reqh)); void uhci_device_isoc_abort __P((usbd_request_handle reqh)); void uhci_device_isoc_close __P((usbd_pipe_handle pipe)); usbd_status uhci_device_isoc_setbuf __P((usbd_pipe_handle pipe, u_int bufsize, u_int nbuf)); usbd_status uhci_root_ctrl_transfer __P((usbd_request_handle reqh)); usbd_status uhci_root_ctrl_start __P((usbd_request_handle reqh)); void uhci_root_ctrl_abort __P((usbd_request_handle reqh)); void uhci_root_ctrl_close __P((usbd_pipe_handle pipe)); usbd_status uhci_root_intr_transfer __P((usbd_request_handle reqh)); usbd_status uhci_root_intr_start __P((usbd_request_handle reqh)); void uhci_root_intr_abort __P((usbd_request_handle reqh)); void uhci_root_intr_close __P((usbd_pipe_handle pipe)); void uhci_root_intr_sim __P((void *priv)); void uhci_add_ctrl __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh)); void uhci_remove_ctrl __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh)); void uhci_add_bulk __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh)); void uhci_remove_bulk __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh)); void uhci_add_intr __P((uhci_softc_t *, int pos, uhci_soft_qh_t *sqh)); void uhci_remove_intr __P((uhci_softc_t *, int pos, uhci_soft_qh_t *sqh)); /* isochroneous mode transfers not yet supported */ /* the simulated root hub */ usbd_status uhci_roothub_ctrl_transfer __P((uhci_softc_t *sc, usb_device_request_t *req, void *buf, int *actlen)); usbd_status uhci_roothub_intr_transfer __P((uhci_softc_t *sc, u_int8_t *buf, int buflen, int *actlen)); int uhci_roothub_string_descriptor __P((usb_string_descriptor_t *sd, int datalen, char *string)); #ifdef UHCI_DEBUG void uhci_dumpregs __P((uhci_softc_t *)); void uhci_dump_tds __P((uhci_soft_td_t *)); void uhci_dump_qh __P((uhci_soft_qh_t *)); void uhci_dump __P((void)); void uhci_dump_td __P((uhci_soft_td_t *)); #endif #if defined(__NetBSD__) #define UWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)) #define UWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)) #define UREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r)) #define UREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r)) #elif defined(__FreeBSD__) #define UWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)) #define UWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)) #define UREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r)) #define UREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r)) #define UREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r)) #endif #define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd) #define UHCISTS(sc) UREAD2(sc, UHCI_STS) #define UHCI_RESET_TIMEOUT 100 /* reset timeout */ #define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK) #define UHCI_INTR_ENDPT 1 usbd_status uhci_init(uhci_softc_t *sc) { usbd_status err; usb_dma_t dma; DPRINTFN(1,("uhci_init: start\n")); uhci_run(sc, 0); /* stop the controller */ #if defined(__NetBSD__) UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */ #elif defined(__FreeBSD__) /* * FreeBSD does this in the probe of the chip. Otherwise we * get spurious interrupts */ #endif uhci_busreset(sc); /* Allocate and initialize real frame array. */ err = usb_allocmem(sc->sc_dmatag, UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t), UHCI_FRAMELIST_ALIGN, &dma); if (err) return(err); sc->sc_pframes = KERNADDR(&dma); sc->sc_flbase = DMAADDR(&dma); err = uhci_init_framelist(sc); if (err) { usb_freemem(sc->sc_dmatag, &dma); return(err); } LIST_INIT(&sc->sc_intrhead); /* Set up the bus struct. */ sc->sc_bus.open_pipe = uhci_open; sc->sc_bus.pipe_size = sizeof(struct uhci_pipe); sc->sc_bus.do_poll = uhci_poll; DPRINTFN(1,("uhci_init: enabling\n")); return uhci_reset(sc); } usbd_status uhci_init_framelist(uhci_softc_t *sc) { uhci_soft_qh_t *csqh, *bsqh, *sqh; uhci_soft_td_t *std; int i, j; /* see uhcivar.h for an explanation of the queuing used */ /* Allocate the QH where bulk traffic will be queued. */ bsqh = uhci_alloc_sqh(sc); if (!bsqh) return(USBD_NOMEM); bsqh->qh->qh_hlink = UHCI_PTR_T; /* end of QH chain */ bsqh->qh->qh_elink = UHCI_PTR_T; sc->sc_bulk_start = sc->sc_bulk_end = bsqh; /* Allocate the QH where control traffic will be queued. */ csqh = uhci_alloc_sqh(sc); if (!csqh) { uhci_free_sqh(sc, bsqh); return(USBD_NOMEM); } csqh->qh->hlink = bsqh; /* link to bulk QH */ csqh->qh->qh_hlink = bsqh->physaddr | UHCI_PTR_Q; csqh->qh->qh_elink = UHCI_PTR_T; sc->sc_ctl_start = sc->sc_ctl_end = csqh; /* * Make all (virtual) frame list pointers point to the interrupt * queue heads and the interrupt queue heads point to the control * queue head. Insert the elements for the virtual frame list multiple * times in the physical framelist * (UHCI_FRAMELIST_COUNT/UHCI_VFRAMELIST_COUNT times). */ for(i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { /* Allocate the iso TD and the interrupt QH */ std = uhci_alloc_std(sc); sqh = uhci_alloc_sqh(sc); if (!std || !sqh) { /* not allocated -> free the lot we've done previously */ if (std) uhci_free_std(sc, std); for (i--; i >= 0; i--) { std = sc->sc_vframes[i].htd; sqh = std->td->link.sqh; uhci_free_sqh(sc, sqh); uhci_free_std(sc, std); } uhci_free_sqh(sc, csqh); uhci_free_sqh(sc, bsqh); return(USBD_NOMEM); } /* QH for interrupt transfers */ sqh->qh->hlink = csqh; /* link to control QH */ sqh->qh->qh_hlink = csqh->physaddr | UHCI_PTR_Q; sqh->qh->elink = NULL; sqh->qh->qh_elink = UHCI_PTR_T; /* dummy TD for isochroneous transfers */ std->td->link.sqh = sqh; /* link to inter. QH */ std->td->td_link = sqh->physaddr | UHCI_PTR_Q; std->td->td_status = UHCI_TD_IOS; /* iso, inactive */ std->td->td_token = 0; std->td->td_buffer = NULL; /* enter the iso TD in the virtual frame list */ sc->sc_vframes[i].htd = std; sc->sc_vframes[i].etd = std; sc->sc_vframes[i].hqh = sqh; sc->sc_vframes[i].eqh = sqh; /* * copy the entry in the virtual frame list * UHCI_FRAMELIST_COUNT/UHCI_VFRAMELIST_COUNT times */ for (j = i; j < UHCI_FRAMELIST_COUNT; j += UHCI_VFRAMELIST_COUNT) sc->sc_pframes[j] = std->physaddr; } return(USBD_NORMAL_COMPLETION); } void uhci_busreset(sc) uhci_softc_t *sc; { UHCICMD(sc, UHCI_CMD_GRESET); /* global reset */ usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */ UHCICMD(sc, 0); /* do nothing */ } usbd_status uhci_reset(sc) uhci_softc_t *sc; { int n; /* Reset the host controller */ UHCICMD(sc, UHCI_CMD_HCRESET); /* The reset bit goes low when the controller is done. */ for (n = 0; n < UHCI_RESET_TIMEOUT && (UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++) delay(100); if (n >= UHCI_RESET_TIMEOUT) printf("%s: controller did not reset\n", USBDEVNAME(sc->sc_bus.bdev)); UWRITE2(sc, UHCI_FRNUM, 0); /* set frame number to 0 */ UWRITE4(sc, UHCI_FLBASEADDR, sc->sc_flbase); /* set frame list address */ UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE | UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* enable interrupts */ return(uhci_run(sc, 1)); /* and here we go... */ } usbd_status uhci_run(sc, run) uhci_softc_t *sc; int run; { int s, n, running; s = splusb(); running = ((UREAD2(sc, UHCI_STS) & UHCI_STS_HCH) == 0); if (run == running) { splx(s); return(USBD_NORMAL_COMPLETION); } UWRITE2(sc, UHCI_CMD, run ? UHCI_CMD_RS : 0); for(n = 0; n < 10; n++) { running = ((UREAD2(sc, UHCI_STS) & UHCI_STS_HCH) == 0); /* return when we've entered the state we want */ if (run == running) { splx(s); return(USBD_NORMAL_COMPLETION); } usb_delay_ms(&sc->sc_bus, 1); } splx(s); printf("%s: cannot %s\n", USBDEVNAME(sc->sc_bus.bdev), run ? "start" : "stop"); return(USBD_IOERROR); } /* * check whether the host controller has flagged an * interrupt. */ void uhci_poll(bus) struct usbd_bus *bus; { uhci_softc_t *sc = (uhci_softc_t *)bus; if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT) uhci_intr(sc); } /* * Wait here until controller claims to have an interrupt. * Then call uhci_intr and return. Use timeout to avoid waiting * too long. * Only used during boot when interrupts are not enabled yet. * XXX this function is not re-entrant * */ void uhci_waitintr(sc, reqh) uhci_softc_t *sc; usbd_request_handle reqh; { int timeout = reqh->timeout; int usecs; uhci_intr_info_t *ii; DPRINTFN(15,("uhci_waitintr: timeout = %ds\n", timeout)); /* XXX NWH setting status here might give race condition */ reqh->status = USBD_IN_PROGRESS; for (usecs = timeout * 1000000 / hz; usecs > 0; usecs -= 1000) { uhci_poll(&sc->sc_bus); if (reqh->status != USBD_IN_PROGRESS) return; usb_delay_ms(&sc->sc_bus, 1); } /* Timeout */ DPRINTF(("uhci_waitintr: timeout\n")); /* Find the intr info in the queue */ for (ii = LIST_FIRST(&sc->sc_intrhead); ii && ii->reqh != reqh; ii = LIST_NEXT(ii, list)) /* noop */ ; if (ii) uhci_ii_done(ii, 1); else /* this can only happen if there are 2 or more tasks * polling or interrupts are enabled. This is not * possible during boot. * In that case the request has been handled already. * If it does happen this should be non-fatal. */ #ifdef UHCI_DEBUG panic("lost intr_info\n"); #else printf("lost intr_info\n"); #endif } /* * Called when a request does not complete. */ void uhci_timeout(priv) void *priv; { uhci_intr_info_t *ii = priv; uhci_ii_done(ii, 1); } /* * Handle interrupt from the host controller. We search the list of TDs * for completed ones and call uhci_ii_done for those. */ int uhci_intr(priv) void *priv; { uhci_softc_t *sc = priv; int status; int ack = 0; uhci_intr_info_t *ii; sc->sc_intrs++; #if defined(UHCI_DEBUG) if (uhcidebug > 15) { DPRINTF(("%s: uhci_intr\n", USBDEVNAME(sc->sc_bus.bdev))); uhci_dumpregs(sc); } #endif status = UREAD2(sc, UHCI_STS); if (status & UHCI_STS_USBINT) ack |= UHCI_STS_USBINT; if (status & UHCI_STS_USBEI) ack |= UHCI_STS_USBEI; if (status & UHCI_STS_RD) { ack |= UHCI_STS_RD; printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev)); } if (status & UHCI_STS_HSE) { ack |= UHCI_STS_HSE; printf("%s: host controller process error\n", USBDEVNAME(sc->sc_bus.bdev)); } if (status & UHCI_STS_HCPE) { ack |= UHCI_STS_HCPE; printf("%s: host system error\n", USBDEVNAME(sc->sc_bus.bdev)); } if (status & UHCI_STS_HCH) { /* no acknowledge needed */ printf("%s: host controller halted\n", USBDEVNAME(sc->sc_bus.bdev)); } if (ack) /* acknowledge the ints */ UWRITE2(sc, UHCI_STS, ack); else /* nothing to acknowledge */ return 0; /* * Interrupts on UHCI really suck. When the host controller * interrupts because a transfer is completed there is no * way of knowing which transfer it was. You can scan down * the TDs and QHs of the previous frame to limit the search, * but that assumes that the interrupt was not delayed by more * than 1 ms, which may not always be true (e.g. after debug * output on a slow console). * We scan all interrupt descriptors to see if any have * completed. */ for (ii = LIST_FIRST(&sc->sc_intrhead); ii; ii = LIST_NEXT(ii, list)) uhci_check_intr(sc, ii); DPRINTFN(10, ("uhci_intr: exit\n")); return 1; } /* * Check the list of TDs for completeness. * If there is an error in the middle of the list of TDs or * a short packet, retire the list and call uhci_ii_done for the ii */ void uhci_check_intr(sc, ii) uhci_softc_t *sc; uhci_intr_info_t *ii; { uhci_soft_td_t *std; u_int32_t status; DPRINTFN(15, ("uhci_check_intr: ii=%p\n", ii)); #ifdef DIAGNOSTIC if (!ii) { printf("uhci_check_intr: no ii? %p\n", ii); return; } if (!ii->stdend) { printf("uhci_check_intr: ii->stdend==0\n"); return; } #endif if (!ii->stdstart) return; if (ii->stdend->td->td_status & UHCI_TD_ACTIVE) { /* * If the last TD is still active we need to check whether there * is a an error somewhere in the middle or whether there was a * short packet (SPD and not ACTIVE). */ for (std = ii->stdstart; std != ii->stdend; std = std->td->link.std) { status = std->td->td_status; if ((status & UHCI_TD_STALLED) || (status&(UHCI_TD_SPD|UHCI_TD_ACTIVE))==UHCI_TD_SPD) goto done; } return; } done: usb_untimeout(uhci_timeout, ii, ii->timeout_handle); uhci_ii_done(ii, 0); } void uhci_ii_done(ii, timedout) uhci_intr_info_t *ii; int timedout; /* timeout that triggered function call? */ { usbd_request_handle reqh = ii->reqh; uhci_soft_td_t *std; /* error status of last inactive transfer */ usbd_status err = USBD_NORMAL_COMPLETION; int actlen = 0; /* accumulated actual length for queue */ int s; #ifdef DIAGNOSTIC { /* avoid finishing a transfer more than once */ int s = splusb(); if (ii->isdone) { splx(s); printf("uhci_ii_done: is done!\n"); return; } ii->isdone = 1; splx(s); } #endif /* * The transfer is done; compute actual length and status * XXX Is this correct for control transfers? Should not * only the data stage be calculated? */ for (std = ii->stdstart; std; std = std->td->link.std) { if (std->td->td_status & UHCI_TD_ACTIVE) break; /* error status of last TD for error handling below */ err = std->td->td_status & UHCI_TD_ERROR; if (UHCI_TD_GET_PID(std->td->td_token) != UHCI_TD_PID_SETUP) actlen += UHCI_TD_GET_ACTLEN(std->td->td_status); } DPRINTFN(10, ("uhci_ii_done: ii=%p%s, actlen=%d err=0x%x\n", ii, timedout? " timed out":"", actlen, err)); #ifdef UHCI_DEBUG if (uhcidebug > 10 && (err || timedout)) uhci_dump_tds(ii->stdstart); #endif if (err) { DPRINTFN(-1+((err & ~UHCI_TD_STALLED) != 0), ("uhci_ii_done: error, addr=%d, endpt=0x%02x, " "err=0x%b\n", reqh->pipe->device->address, reqh->pipe->endpoint->edesc->bEndpointAddress, (int)err, "\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27" "STALLED\30ACTIVE")); if (err & ~UHCI_TD_STALLED) { /* more then STALLED, like +BABBLE or +CRC/TIMEOUT */ reqh->status = USBD_IOERROR; /* more info XXX */ } else { reqh->status = USBD_STALLED; } } else { reqh->status = USBD_NORMAL_COMPLETION; } reqh->actlen = actlen; if (timedout) { s = splusb(); /* We got a timeout. Make sure transaction is not active. */ for (std = ii->stdstart; std != 0; std = std->td->link.std) std->td->td_status &= ~UHCI_TD_ACTIVE; splx(s); /* XXX should we wait 1 ms */ reqh->status = USBD_TIMEOUT; } /* select the proper type termination of the transfer * based on the transfer type for the queue */ switch (reqh->pipe->endpoint->edesc->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: uhci_ctrl_done(ii); usb_start_next(reqh->pipe); break; case UE_BULK: uhci_bulk_done(ii); usb_start_next(reqh->pipe); break; case UE_INTERRUPT: uhci_intr_done(ii); break; case UE_ISOCHRONOUS: uhci_isoc_done(ii); usb_start_next(reqh->pipe); break; } /* And finally execute callback. */ reqh->xfercb(reqh); } /* Deallocate request data structures */ void uhci_ctrl_done(ii) uhci_intr_info_t *ii; { uhci_softc_t *sc = ii->sc; usbd_request_handle reqh = ii->reqh; struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; u_int datalen = upipe->u.ctl.length; usb_dma_t *dma; #ifdef DIAGNOSTIC if (!reqh->isreq) panic("uhci_ctrl_done: not a request\n"); #endif LIST_REMOVE(ii, list); /* remove from active list */ uhci_remove_ctrl(sc, upipe->u.ctl.sqh); if (datalen != 0) { /* there was a data stage */ dma = &upipe->u.ctl.datadma; if (reqh->request.bmRequestType & UT_READ) memcpy(reqh->buffer, KERNADDR(dma), datalen); /* * when freeing the chain skip the first (setup) and last * (status) TD. */ uhci_free_std_chain(sc, ii->stdstart->td->link.std, ii->stdend); usb_freemem(sc->sc_dmatag, dma); } DPRINTFN(5, ("uhci_ctrl_done: length=%d\n", reqh->actlen)); } /* Deallocate request data structures */ void uhci_bulk_done(ii) uhci_intr_info_t *ii; { uhci_softc_t *sc = ii->sc; usbd_request_handle reqh = ii->reqh; struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; uhci_soft_td_t *std; u_int datalen = upipe->u.bulk.length; usb_dma_t *dma; LIST_REMOVE(ii, list); /* remove from active list */ uhci_remove_bulk(sc, upipe->u.bulk.sqh); /* find the toggle for the last transfer and invert it */ for (std = ii->stdstart; std; std = std->td->link.std) { if (std->td->td_status & UHCI_TD_ACTIVE) break; upipe->nexttoggle = UHCI_TD_GET_DT(std->td->td_token); } upipe->nexttoggle ^= 1; /* copy the data from dma memory to userland storage */ dma = &upipe->u.bulk.datadma; if (upipe->u.bulk.isread) memcpy(reqh->buffer, KERNADDR(dma), datalen); /* free the whole chain of TDs */ uhci_free_std_chain(sc, ii->stdstart, 0); usb_freemem(sc->sc_dmatag, dma); } void uhci_intr_done(ii) uhci_intr_info_t *ii; { uhci_softc_t *sc = ii->sc; usbd_request_handle reqh = ii->reqh; struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usb_dma_t *dma; uhci_soft_qh_t *sqh; int i, npoll; DPRINTFN(5, ("uhci_intr_done: length=%d\n", reqh->actlen)); dma = &upipe->u.intr.datadma; memcpy(reqh->buffer, KERNADDR(dma), reqh->actlen); npoll = upipe->u.intr.npoll; for(i = 0; i < npoll; i++) { sqh = upipe->u.intr.qhs[i]; sqh->qh->elink = 0; sqh->qh->qh_elink = UHCI_PTR_T; } uhci_free_std_chain(sc, ii->stdstart, NULL); /* XXX Wasteful. */ if (reqh->pipe->intrreqh == reqh && reqh->status == USBD_NORMAL_COMPLETION) { uhci_soft_td_t *std, *stdend; /* This alloc cannot fail since we freed the chain above. */ upipe->pipe.endpoint->toggle = upipe->nexttoggle; uhci_alloc_std_chain(sc, upipe, reqh->length, 1, reqh->flags & USBD_SHORT_XFER_OK, dma, &std, &stdend); stdend->td->td_status |= UHCI_TD_IOC; #ifdef UHCI_DEBUG if (uhcidebug > 10) { DPRINTF(("uhci_device_intr_done: xfer\n")); uhci_dump_tds(std); uhci_dump_qh(upipe->u.intr.qhs[0]); } #endif ii->stdstart = std; ii->stdend = stdend; #ifdef DIAGNOSTIC ii->isdone = 0; #endif for (i = 0; i < npoll; i++) { sqh = upipe->u.intr.qhs[i]; sqh->qh->elink = std; sqh->qh->qh_elink = std->physaddr; } } else { usb_freemem(sc->sc_dmatag, dma); ii->stdstart = NULL; /* mark as inactive */ } } void uhci_isoc_done(ii) uhci_intr_info_t *ii; { } /* * Memory management routines. * uhci_alloc_std allocates TDs * uhci_alloc_std_chain allocates a chain of TDs * uhci_alloc_sqh allocates QHs * These two routines do their own free list management, * partly for speed, partly because allocating DMAable memory * has page size granularaity so much memory would be wasted if * only one TD/QH (32 bytes) was placed in each allocated chunk. */ uhci_soft_td_t * uhci_alloc_std(sc) uhci_softc_t *sc; { uhci_soft_td_t *std; usbd_status err; int i; usb_dma_t dma; if (!sc->sc_freetds) { DPRINTFN(2,("uhci_alloc_std: allocating chunk\n")); std = malloc(sizeof(uhci_soft_td_t) * UHCI_TD_CHUNK, M_USBDEV, M_NOWAIT); if (!std) return(0); err = usb_allocmem(sc->sc_dmatag, UHCI_TD_SIZE * UHCI_TD_CHUNK, UHCI_TD_ALIGN, &dma); if (err != USBD_NORMAL_COMPLETION) { free(std, M_USBDEV); return(0); } for(i = 0; i < UHCI_TD_CHUNK; i++, std++) { std->physaddr = DMAADDR(&dma) + i * UHCI_TD_SIZE; std->td = (uhci_td_t *) ((char *)KERNADDR(&dma) + i * UHCI_TD_SIZE); std->td->link.std = sc->sc_freetds; sc->sc_freetds = std; } } std = sc->sc_freetds; sc->sc_freetds = std->td->link.std; memset(std->td, 0, UHCI_TD_SIZE); return std; } void uhci_free_std(sc, std) uhci_softc_t *sc; uhci_soft_td_t *std; { if (!std) #ifdef UHCI_DEBUG panic("invalid TD to be freed, std=%p", std); #else return; #endif #ifdef DIAGNOSTIC #define TD_IS_FREE 0x12345678 if (std->td->td_token == TD_IS_FREE) { printf("uhci_free_std: freeing free TD %p\n", std); return; } std->td->td_token = TD_IS_FREE; #endif std->td->link.std = sc->sc_freetds; sc->sc_freetds = std; } /* allocates and prepares a chain of TDs */ usbd_status uhci_alloc_std_chain(sc, upipe, datalen, isread, spd, dma, rstd, rstdend) uhci_softc_t *sc; struct uhci_pipe *upipe; int datalen; int isread, spd; usb_dma_t *dma; uhci_soft_td_t **rstd, **rstdend; { uhci_soft_td_t *std = NULL; /* soft TD we are working on */ uhci_soft_td_t *stdprev = NULL; /* std from prev iteration */ uhci_physaddr_t linkprev = UHCI_PTR_T; /* links real TDs together */ int i; /* index over TDs */ int ntd; /* number of TDs */ int l; /* len of data in current std */ int tog; /* current data toggle */ int maxpacketsize; u_int32_t status; /* pre computed status for TD */ int addr = upipe->pipe.device->address; /* shortcuts */ int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress; maxpacketsize = UGETW(upipe->pipe.endpoint->edesc->wMaxPacketSize); if (maxpacketsize == 0) { printf("uhci_alloc_std_chain: maxpacketsize = 0\n"); return(USBD_INVAL); } ntd = (datalen + maxpacketsize - 1) / maxpacketsize - 1; tog = upipe->pipe.endpoint->toggle; if (ntd % 2 == 1) /* toggle for last TD, list of TDs is initialised backwards */ tog ^= 1; /* * save the toggle for the first TD of the next transfer so we can * simply copy the value in transfers that transfer all the TDs. Bulk * with n out of m TDs transferrred have to recompute though. */ upipe->nexttoggle = tog ^ 1; DPRINTFN(10, ("uhci_alloc_std_chain: addr=%d endpt=%d datalen=%d " "toggle=%d, nexttoggle=%d, %s%s%s\n", addr, endpt, datalen, upipe->pipe.endpoint->toggle, upipe->nexttoggle, isread? "read":"write", upipe->pipe.device->lowspeed? ", lowspeed":"", spd? ", short packet":"")); if (datalen == 0) { *rstd = *rstdend = 0; return(USBD_NORMAL_COMPLETION); } status = UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE; if (upipe->pipe.device->lowspeed) status |= UHCI_TD_LOWSPEED; if (spd) status |= UHCI_TD_SPD; /* * create a list of std's, backwards. stdprev contains the std * from the previous iteration. */ for (i = ntd; i >= 0; i--) { std = uhci_alloc_std(sc); if (!std) { uhci_free_std_chain(sc, stdprev, NULL); return(USBD_NOMEM); } std->td->link.std = stdprev; stdprev = std; std->td->td_link = linkprev; linkprev = std->physaddr; std->td->td_status = status; if (i == ntd) { /* compute length of TD */ /* last TD is 0 > l >= maxPacketSize */ l = datalen % maxpacketsize; if (l == 0) l = maxpacketsize; *rstdend = std; /* end of list of TDs */ } else /* all other TDs should be max size */ l = maxpacketsize; std->td->td_token = isread ? UHCI_TD_IN(l, endpt, addr, tog) : UHCI_TD_OUT(l, endpt, addr, tog); std->td->td_buffer = DMAADDR(dma) + i * maxpacketsize; tog ^= 1; } *rstd = stdprev; return(USBD_NORMAL_COMPLETION); } void uhci_free_std_chain(sc, std, stdend) uhci_softc_t *sc; uhci_soft_td_t *std; uhci_soft_td_t *stdend; { uhci_soft_td_t *std_link; /* temp store of next pointer */ /* removes the chain up to (but excluding) the element stdend */ if (!std) #ifdef UHCI_DEBUG panic("invalid TD chain to be freed, std=%p", std); #else return; #endif for (; std != stdend; std = std_link) { std_link = std->td->link.std; uhci_free_std(sc, std); } } uhci_soft_qh_t * uhci_alloc_sqh(sc) uhci_softc_t *sc; { uhci_soft_qh_t *sqh; usbd_status err; int i, offs; usb_dma_t dma; if (!sc->sc_freeqhs) { DPRINTFN(2, ("uhci_alloc_sqh: allocating chunk\n")); sqh = malloc(sizeof(uhci_soft_qh_t) * UHCI_QH_CHUNK, M_USBDEV, M_NOWAIT); if (!sqh) return NULL; err = usb_allocmem(sc->sc_dmatag, UHCI_QH_SIZE * UHCI_QH_CHUNK, UHCI_QH_ALIGN, &dma); if (err != USBD_NORMAL_COMPLETION) { free(sqh, M_USBDEV); return NULL; } for(i = 0; i < UHCI_QH_CHUNK; i++, sqh++) { offs = i * UHCI_QH_SIZE; sqh->physaddr = DMAADDR(&dma) + offs; sqh->qh = (uhci_qh_t *) ((char *)KERNADDR(&dma) + offs); sqh->qh->hlink = sc->sc_freeqhs; sc->sc_freeqhs = sqh; } } sqh = sc->sc_freeqhs; sc->sc_freeqhs = sqh->qh->hlink; memset(sqh->qh, 0, UHCI_QH_SIZE); return(sqh); } void uhci_free_sqh(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { if (!sqh) /* safety net */ #ifdef UHCI_DEBUG panic("invalid QH to be freed, sqh=%p", sqh); #else return; #endif sqh->qh->hlink = sc->sc_freeqhs; sc->sc_freeqhs = sqh; } /* * Allocate an interrupt information struct. A free list is kept * for fast allocation. */ uhci_intr_info_t * uhci_alloc_intr_info(sc) uhci_softc_t *sc; { uhci_intr_info_t *ii; ii = LIST_FIRST(&uhci_ii_free); if (ii) LIST_REMOVE(ii, list); else { ii = malloc(sizeof(uhci_intr_info_t), M_USBDEV, M_NOWAIT); } ii->sc = sc; #if defined(__FreeBSD__) callout_handle_init(&ii->timeout_handle); #endif return ii; } void uhci_free_intr_info(ii) uhci_intr_info_t *ii; { if (!ii) #ifdef UHCI_DEBUG panic("invalid intr info to be freed, ii=%p", ii); #else return; #endif LIST_INSERT_HEAD(&uhci_ii_free, ii, list); /* and put on free list */ } /* * request and release lock on the frames list */ void uhci_lock_frames(sc) uhci_softc_t *sc; { int s = splusb(); while (sc->sc_vflock) { sc->sc_vflock |= UHCI_WANT_LOCK; tsleep(&sc->sc_vflock, PRIBIO, "uhcqhl", 0); } sc->sc_vflock = UHCI_HAS_LOCK; splx(s); } void uhci_unlock_frames(sc) uhci_softc_t *sc; { int s = splusb(); sc->sc_vflock &= ~UHCI_HAS_LOCK; if (sc->sc_vflock & UHCI_WANT_LOCK) wakeup(&sc->sc_vflock); splx(s); } struct usbd_methods uhci_device_ctrl_methods = { uhci_device_ctrl_transfer, uhci_device_ctrl_start, uhci_device_ctrl_abort, uhci_device_ctrl_close, 0, }; struct usbd_methods uhci_device_bulk_methods = { uhci_device_bulk_transfer, uhci_device_bulk_start, uhci_device_bulk_abort, uhci_device_bulk_close, 0, }; struct usbd_methods uhci_device_intr_methods = { uhci_device_intr_transfer, uhci_device_intr_start, uhci_device_intr_abort, uhci_device_intr_close, 0, }; struct usbd_methods uhci_device_isoc_methods = { uhci_device_isoc_transfer, uhci_device_isoc_start, uhci_device_isoc_abort, uhci_device_isoc_close, uhci_device_isoc_setbuf, }; struct usbd_methods uhci_root_ctrl_methods = { uhci_root_ctrl_transfer, uhci_root_ctrl_start, uhci_root_ctrl_abort, uhci_root_ctrl_close, 0, }; struct usbd_methods uhci_root_intr_methods = { uhci_root_intr_transfer, uhci_root_intr_start, uhci_root_intr_abort, uhci_root_intr_close, 0, }; usbd_status uhci_open(pipe) usbd_pipe_handle pipe; { uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; usbd_status err; DPRINTFN(1, ("uhci_open: pipe=%p, addr=%d, endpt=%d (%d)\n", pipe, pipe->device->address, ed->bEndpointAddress, sc->sc_addr)); if (pipe->device->address == sc->sc_addr) { /* root hub */ switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->methods = &uhci_root_ctrl_methods; break; case UE_IN | UHCI_INTR_ENDPT: pipe->methods = &uhci_root_intr_methods; break; default: return(USBD_INVAL); } } else { upipe->iinfo = uhci_alloc_intr_info(sc); if (upipe->iinfo == 0) return(USBD_NOMEM); upipe->nexttoggle = 0; switch (ed->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: pipe->methods = &uhci_device_ctrl_methods; upipe->u.ctl.sqh = uhci_alloc_sqh(sc); if (upipe->u.ctl.sqh == 0) goto bad; upipe->u.ctl.setup = uhci_alloc_std(sc); if (upipe->u.ctl.setup == 0) { uhci_free_sqh(sc, upipe->u.ctl.sqh); goto bad; } upipe->u.ctl.stat = uhci_alloc_std(sc); if (upipe->u.ctl.stat == 0) { uhci_free_sqh(sc, upipe->u.ctl.sqh); uhci_free_std(sc, upipe->u.ctl.setup); goto bad; } err = usb_allocmem(sc->sc_dmatag, sizeof(usb_device_request_t), 0, &upipe->u.ctl.reqdma); if (err != USBD_NORMAL_COMPLETION) { uhci_free_sqh(sc, upipe->u.ctl.sqh); uhci_free_std(sc, upipe->u.ctl.setup); uhci_free_std(sc, upipe->u.ctl.stat); goto bad; } break; case UE_INTERRUPT: pipe->methods = &uhci_device_intr_methods; return(uhci_device_intr_interval(sc, upipe, ed->bInterval)); case UE_ISOCHRONOUS: pipe->methods = &uhci_device_isoc_methods; upipe->u.iso.nbuf = 0; return(USBD_NORMAL_COMPLETION); case UE_BULK: pipe->methods = &uhci_device_bulk_methods; upipe->u.bulk.sqh = uhci_alloc_sqh(sc); if (upipe->u.bulk.sqh == 0) goto bad; break; } } return(USBD_NORMAL_COMPLETION); bad: uhci_free_intr_info(upipe->iinfo); return(USBD_NOMEM); } /* Control transfers are slightly more complicated as they consist of three * phases. This subroutine creates the three phases and schedules the chain */ usbd_status uhci_device_request(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usb_device_request_t *req = &reqh->request; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; int addr = dev->address; int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress; uhci_intr_info_t *ii = upipe->iinfo; uhci_soft_td_t *std, *stdend; uhci_soft_td_t *setup, *stat, *next; uhci_soft_qh_t *sqh; usb_dma_t *dmap; int datalen; u_int32_t ls; usbd_status err; int isread; int s; DPRINTFN(3,("uhci_device_request: bmRequestType=0x%02x, bRequest=0x%02x, " "wValue=0x%04x, wIndex=0x%04x, wLength=%d, addr=%d, endpt=%d\n", req->bmRequestType, req->bRequest, UGETW(req->wValue), UGETW(req->wIndex), UGETW(req->wLength), addr, endpt)); ls = dev->lowspeed ? UHCI_TD_LOWSPEED : 0; isread = req->bmRequestType & UT_READ; datalen = UGETW(req->wLength); setup = upipe->u.ctl.setup; stat = upipe->u.ctl.stat; sqh = upipe->u.ctl.sqh; dmap = &upipe->u.ctl.datadma; if (datalen != 0) { /* initialise the data stage */ err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap); if (err != USBD_NORMAL_COMPLETION) return(err); /* * data toggle starts at 0 with control requests, so first * data packet has toggle 1 */ upipe->pipe.endpoint->toggle = 1; err = uhci_alloc_std_chain(sc, upipe, datalen, isread, reqh->flags & USBD_SHORT_XFER_OK, dmap, &std, &stdend); if (err != USBD_NORMAL_COMPLETION) { usb_freemem(sc->sc_dmatag, dmap); return(err); } if (!isread) memcpy(KERNADDR(dmap), reqh->buffer, datalen); stdend->td->link.std = stat; stdend->td->td_link = stat->physaddr; next = std; } else { next = stat; } upipe->u.ctl.length = datalen; /* * initialise the setup stage and link it to either the data stage * or the status stage (in the case where there is no data stage) */ setup->td->link.std = next; setup->td->td_link = next->physaddr; setup->td->td_status = UHCI_TD_SET_ERRCNT(3) | ls | UHCI_TD_ACTIVE; setup->td->td_token = UHCI_TD_SETUP(sizeof *req, endpt, addr); setup->td->td_buffer = DMAADDR(&upipe->u.ctl.reqdma); memcpy(KERNADDR(&upipe->u.ctl.reqdma), req, sizeof *req); /* initialise the status stage */ stat->td->link.std = 0; stat->td->td_link = UHCI_PTR_T; stat->td->td_status = UHCI_TD_SET_ERRCNT(3) | ls | UHCI_TD_ACTIVE | UHCI_TD_IOC; stat->td->td_token = isread ? UHCI_TD_OUT(0, endpt, addr, 1) : UHCI_TD_IN (0, endpt, addr, 1); stat->td->td_buffer = 0; /* initialise interrupt info. */ ii->reqh = reqh; ii->stdstart = setup; ii->stdend = stat; #if defined(__FreeBSD__) callout_handle_init(&ii->timeout_handle); #endif #ifdef DIAGNOSTIC ii->isdone = 0; #endif #ifdef UHCI_DEBUG if (uhcidebug > 10) uhci_dump_tds(setup); #endif sqh->qh->elink = setup; sqh->qh->qh_elink = setup->physaddr; sqh->intr_info = ii; s = splusb(); uhci_add_ctrl(sc, sqh); LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list); if (reqh->timeout && !sc->sc_bus.use_polling) { usb_timeout(uhci_timeout, ii, MS_TO_TICKS(reqh->timeout), ii->timeout_handle); } splx(s); return(USBD_NORMAL_COMPLETION); } usbd_status uhci_device_ctrl_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status err; s = splusb(); err = usb_insert_transfer(reqh); splx(s); if (err != USBD_NORMAL_COMPLETION) return(err); else return(uhci_device_ctrl_start(reqh)); } usbd_status uhci_device_ctrl_start(reqh) usbd_request_handle reqh; { uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus; usbd_status err; if (!reqh->isreq) panic("uhci_device_ctrl_start: not a request\n"); err = uhci_device_request(reqh); if (err != USBD_NORMAL_COMPLETION) return(err); if (sc->sc_bus.use_polling) uhci_waitintr(sc, reqh); return(USBD_IN_PROGRESS); } void uhci_device_ctrl_abort(reqh) usbd_request_handle reqh; { /* XXX inactivate */ usb_delay_ms(reqh->pipe->device->bus, 1); /* make sure it is done */ /* XXX call done */ } void uhci_device_ctrl_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; uhci_free_intr_info(upipe->iinfo); /* XXX free other resources */ } usbd_status uhci_device_bulk_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status err; s = splusb(); err = usb_insert_transfer(reqh); splx(s); if (err != USBD_NORMAL_COMPLETION) return(err); else return(uhci_device_bulk_start(reqh)); } usbd_status uhci_device_bulk_start(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; uhci_intr_info_t *ii = upipe->iinfo; uhci_soft_td_t *std, *stdend; uhci_soft_qh_t *sqh; usb_dma_t *dmap; usbd_status err; int datalen, isread; int s; DPRINTFN(3, ("uhci_device_bulk_start: reqh=%p buf=%p datalen=%d " "flags=%d\n", reqh, reqh->buffer, reqh->length, reqh->flags)); if (reqh->isreq) panic("uhci_device_bulk_start: a request\n"); if (reqh->length == 0) return(USBD_INVAL); datalen = reqh->length; dmap = &upipe->u.bulk.datadma; isread = reqh->pipe->endpoint->edesc->bEndpointAddress & UE_IN; sqh = upipe->u.bulk.sqh; upipe->u.bulk.isread = isread; upipe->u.bulk.length = datalen; err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap); if (err != USBD_NORMAL_COMPLETION) return(err); upipe->pipe.endpoint->toggle = upipe->nexttoggle; err = uhci_alloc_std_chain(sc, upipe, datalen, isread, reqh->flags & USBD_SHORT_XFER_OK, dmap, &std, &stdend); if (err != USBD_NORMAL_COMPLETION) { usb_freemem(sc->sc_dmatag, dmap); return(err); } stdend->td->td_status |= UHCI_TD_IOC; if (!isread) memcpy(KERNADDR(dmap), reqh->buffer, datalen); #ifdef UHCI_DEBUG if (uhcidebug > 10) { DPRINTF(("uhci_device_bulk_start: xfer\n")); uhci_dump_tds(std); } #endif /* Set up interrupt info. */ ii->reqh = reqh; ii->stdstart = std; ii->stdend = stdend; #if defined(__FreeBSD__) callout_handle_init(&ii->timeout_handle); #endif #ifdef DIAGNOSTIC ii->isdone = 0; #endif sqh->qh->elink = std; sqh->qh->qh_elink = std->physaddr; sqh->intr_info = ii; s = splusb(); uhci_add_bulk(sc, sqh); LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list); if (reqh->timeout && !sc->sc_bus.use_polling) { usb_timeout(uhci_timeout, ii, MS_TO_TICKS(reqh->timeout), ii->timeout_handle); } splx(s); return(USBD_IN_PROGRESS); } void uhci_device_bulk_abort(reqh) usbd_request_handle reqh; { /* XXX inactivate */ usb_delay_ms(reqh->pipe->device->bus, 1);/* make sure it is done */ /* XXX call done */ } void uhci_device_bulk_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; uhci_free_sqh(sc, upipe->u.bulk.sqh); uhci_free_intr_info(upipe->iinfo); /* XXX free other resources */ } usbd_status uhci_device_intr_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status err; s = splusb(); err = usb_insert_transfer(reqh); splx(s); if (err != USBD_NORMAL_COMPLETION) return(err); else return(uhci_device_intr_start(reqh)); } usbd_status uhci_device_intr_start(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; uhci_intr_info_t *ii = upipe->iinfo; uhci_soft_td_t *std, *stdend; uhci_soft_qh_t *sqh; usb_dma_t *dmap; usbd_status err; int datalen, i; int s; DPRINTFN(3, ("uhci_device_intr_start: reqh=%p buf=%p datalen=%d " "flags=%d\n", reqh, reqh->buffer, reqh->length, reqh->flags)); if (reqh->isreq) panic("uhci_device_intr_start: a request\n"); datalen = reqh->length; dmap = &upipe->u.intr.datadma; if (datalen == 0) return(USBD_INVAL); /* XXX should it be? */ err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap); if (err != USBD_NORMAL_COMPLETION) return(err); upipe->pipe.endpoint->toggle = upipe->nexttoggle; err = uhci_alloc_std_chain(sc, upipe, datalen, 1, reqh->flags & USBD_SHORT_XFER_OK, dmap, &std, &stdend); if (err != USBD_NORMAL_COMPLETION) { if (datalen != 0) usb_freemem(sc->sc_dmatag, dmap); return err; } stdend->td->td_status |= UHCI_TD_IOC; #ifdef UHCI_DEBUG if (uhcidebug > 10) { DPRINTF(("uhci_device_intr_start: xfer\n")); uhci_dump_tds(std); uhci_dump_qh(upipe->u.intr.qhs[0]); } #endif s = splusb(); /* Set up interrupt info. */ ii->reqh = reqh; ii->stdstart = std; ii->stdend = stdend; #ifdef DIAGNOSTIC ii->isdone = 0; #endif DPRINTFN(10,("uhci_device_intr_start: qhs[0]=%p\n", upipe->u.intr.qhs[0])); for (i = 0; i < upipe->u.intr.npoll; i++) { sqh = upipe->u.intr.qhs[i]; sqh->qh->elink = std; sqh->qh->qh_elink = std->physaddr; } splx(s); return(USBD_IN_PROGRESS); } void uhci_device_intr_abort(reqh) usbd_request_handle reqh; { DPRINTFN(1, ("uhci_device_intr_abort: reqh=%p\n", reqh)); if (reqh->pipe->intrreqh == reqh) { DPRINTF(("uhci_device_intr_abort: remove\n")); reqh->pipe->intrreqh = 0; /* make sure it is done */ usb_delay_ms(reqh->pipe->device->bus, 2); } } void uhci_device_intr_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; int i, s, npoll; upipe->iinfo->stdstart = 0; /* inactive */ /* Unlink descriptors from controller data structures. */ npoll = upipe->u.intr.npoll; uhci_lock_frames(sc); for (i = 0; i < npoll; i++) uhci_remove_intr(sc, upipe->u.intr.qhs[i]->pos, upipe->u.intr.qhs[i]); uhci_unlock_frames(sc); /* * We now have to wait for any activity on the physical * descriptors to stop. */ usb_delay_ms(&sc->sc_bus, 2); for(i = 0; i < npoll; i++) uhci_free_sqh(sc, upipe->u.intr.qhs[i]); free(upipe->u.intr.qhs, M_USB); s = splusb(); LIST_REMOVE(upipe->iinfo, list); /* remove from active list */ splx(s); uhci_free_intr_info(upipe->iinfo); /* XXX free other resources */ } usbd_status uhci_device_isoc_transfer(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; #ifdef UHCI_DEBUG usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; #endif DPRINTFN(1,("uhci_device_isoc_transfer: sc=%p\n", sc)); if (upipe->u.iso.bufsize == 0) return(USBD_INVAL); /* XXX copy data */ return(USBD_XXX); } usbd_status uhci_device_isoc_start(reqh) usbd_request_handle reqh; { return(USBD_XXX); } void uhci_device_isoc_abort(reqh) usbd_request_handle reqh; { /* XXX Can't abort a single request. */ } void uhci_device_isoc_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; struct iso *iso; int i; /* * Make sure all TDs are marked as inactive. * Wait for completion. * Unschedule. * Deallocate. */ iso = &upipe->u.iso; for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) iso->stds[i]->td->td_status &= ~UHCI_TD_ACTIVE; usb_delay_ms(&sc->sc_bus, 2); /* wait for completion */ uhci_lock_frames(sc); for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { uhci_soft_td_t *std, *vstd; std = iso->stds[i]; for (vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd; vstd && vstd->td->link.std != std; vstd = vstd->td->link.std) ; if (!vstd) { /*panic*/ DPRINTF(("uhci_device_isoc_close: %p not found\n",std)); uhci_unlock_frames(sc); return; } vstd->td->link = std->td->link; vstd->td->td_link = std->td->td_link; uhci_free_std(sc, std); } uhci_unlock_frames(sc); for (i = 0; i < iso->nbuf; i++) usb_freemem(sc->sc_dmatag, &iso->bufs[i]); free(iso->stds, M_USB); free(iso->bufs, M_USB); /* XXX what else? */ } usbd_status uhci_device_isoc_setbuf(pipe, bufsize, nbuf) usbd_pipe_handle pipe; u_int bufsize; u_int nbuf; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; int addr = upipe->pipe.device->address; int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress; int isread = upipe->pipe.endpoint->edesc->bEndpointAddress & UE_IN; struct iso *iso; int i; usbd_status err; /* * For simplicity the number of buffers must fit nicely in the frame * list. */ if (UHCI_VFRAMELIST_COUNT % nbuf != 0) return(USBD_INVAL); iso = &upipe->u.iso; iso->bufsize = bufsize; iso->nbuf = nbuf; /* Allocate memory for buffers. */ iso->bufs = malloc(nbuf * sizeof(usb_dma_t), M_USB, M_WAITOK); iso->stds = malloc(UHCI_VFRAMELIST_COUNT * sizeof (uhci_soft_td_t *), M_USB, M_WAITOK); for (i = 0; i < nbuf; i++) { err = usb_allocmem(sc->sc_dmatag, bufsize, 0, &iso->bufs[i]); if (err != USBD_NORMAL_COMPLETION) { nbuf = i; goto bad1; } } /* Allocate the TDs. */ for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { iso->stds[i] = uhci_alloc_std(sc); if (iso->stds[i] == 0) goto bad2; } /* XXX check schedule */ /* XXX interrupts */ /* Insert TDs into schedule, all marked inactive. */ uhci_lock_frames(sc); for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { uhci_soft_td_t *std, *vstd; std = iso->stds[i]; std->td->td_status = UHCI_TD_IOS; /* iso, inactive */ std->td->td_token = isread ? UHCI_TD_IN (0, endpt, addr, 0) : UHCI_TD_OUT(0, endpt, addr, 0); std->td->td_buffer = DMAADDR(&iso->bufs[i % nbuf]); vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd; std->td->link = vstd->td->link; std->td->td_link = vstd->td->td_link; vstd->td->link.std = std; vstd->td->td_link = std->physaddr; } uhci_unlock_frames(sc); return(USBD_NORMAL_COMPLETION); bad2: while (--i >= 0) uhci_free_std(sc, iso->stds[i]); bad1: for (i = 0; i < nbuf; i++) usb_freemem(sc->sc_dmatag, &iso->bufs[i]); free(iso->stds, M_USB); free(iso->bufs, M_USB); return(USBD_NOMEM); } /* Set interval for interrupt transfer */ usbd_status uhci_device_intr_interval(sc, upipe, ival) uhci_softc_t *sc; struct uhci_pipe *upipe; int ival; { uhci_soft_qh_t *sqh; int i, npoll, s; u_int bestbw, bw, bestoffs, offs; DPRINTFN(2, ("uhci_setintr: pipe=%p\n", upipe)); if (ival == 0) { DPRINTF(("uhci_setintr: 0 interval\n")); return(USBD_INVAL); } if (ival > UHCI_VFRAMELIST_COUNT) ival = UHCI_VFRAMELIST_COUNT; npoll = (UHCI_VFRAMELIST_COUNT + ival - 1) / ival; DPRINTFN(2, ("uhci_setintr: ival=%d npoll=%d\n", ival, npoll)); upipe->u.intr.npoll = npoll; upipe->u.intr.qhs = malloc(npoll * sizeof(uhci_soft_qh_t *), M_USB, M_WAITOK); /* * Figure out which offset in the schedule that has most * bandwidth left over. */ #define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1)) for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) { for (bw = i = 0; i < npoll; i++) bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth; if (bw < bestbw) { bestbw = bw; bestoffs = offs; } } DPRINTFN(1, ("uhci_setintr: bw=%d offs=%d\n", bestbw, bestoffs)); upipe->iinfo->stdstart = 0; for(i = 0; i < npoll; i++) { upipe->u.intr.qhs[i] = sqh = uhci_alloc_sqh(sc); sqh->qh->elink = 0; sqh->qh->qh_elink = UHCI_PTR_T; sqh->pos = MOD(i * ival + bestoffs); sqh->intr_info = upipe->iinfo; } #undef MOD s = splusb(); LIST_INSERT_HEAD(&sc->sc_intrhead, upipe->iinfo, list); splx(s); uhci_lock_frames(sc); /* Enter QHs into the controller data structures. */ for(i = 0; i < npoll; i++) uhci_add_intr(sc, upipe->u.intr.qhs[i]->pos, upipe->u.intr.qhs[i]); uhci_unlock_frames(sc); DPRINTFN(5, ("uhci_setintr: returns %p\n", upipe)); return(USBD_NORMAL_COMPLETION); } usbd_status uhci_root_ctrl_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status err; s = splusb(); err = usb_insert_transfer(reqh); splx(s); if (err != USBD_NORMAL_COMPLETION) return(err); else return(uhci_root_ctrl_start(reqh)); } usbd_status uhci_root_ctrl_start(usbd_request_handle reqh) { uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus; if (!reqh->isreq) panic("uhci_root_ctrl_transfer: not a request\n"); reqh->status = uhci_roothub_ctrl_transfer(sc, &reqh->request, reqh->buffer, &reqh->actlen); reqh->xfercb(reqh); usb_start_next(reqh->pipe); return(USBD_IN_PROGRESS); } void uhci_root_ctrl_abort(reqh) usbd_request_handle reqh; { /* Nothing to do, all transfers are syncronous. */ } void uhci_root_ctrl_close(pipe) usbd_pipe_handle pipe; { usb_untimeout(uhci_root_intr_sim, pipe->intrreqh, pipe->intrreqh->timeout_handle); DPRINTF(("uhci_root_ctrl_close\n")); } usbd_status uhci_root_intr_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status err; s = splusb(); err = usb_insert_transfer(reqh); splx(s); if (err != USBD_NORMAL_COMPLETION) return(err); else return(uhci_root_intr_start(reqh)); } /* Start a transfer on the root interrupt pipe */ usbd_status uhci_root_intr_start(reqh) usbd_request_handle reqh; { usbd_pipe_handle pipe = reqh->pipe; uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usb_dma_t *dmap; usbd_status err; int datalen; DPRINTFN(3, ("uhci_root_intr_transfer: reqh=%p buf=%p datalen=%d " "flags=%d\n", reqh, reqh->buffer, reqh->length, reqh->flags)); datalen = reqh->length; dmap = &upipe->u.intr.datadma; if (datalen == 0) return(USBD_INVAL); /* XXX should it be? */ err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap); if (err != USBD_NORMAL_COMPLETION) return(err); sc->sc_ival = MS_TO_TICKS(reqh->pipe->endpoint->edesc->bInterval); usb_timeout(uhci_root_intr_sim, reqh, sc->sc_ival, reqh->timeout_handle); return(USBD_IN_PROGRESS); } /* Abort a root interrupt request. */ void uhci_root_intr_abort(reqh) usbd_request_handle reqh; { usb_untimeout(uhci_root_intr_sim, reqh, reqh->timeout_handle); } /* Close the root interrupt pipe. */ void uhci_root_intr_close(pipe) usbd_pipe_handle pipe; { usb_untimeout(uhci_root_intr_sim, pipe->intrreqh, pipe->intrreqh->timeout_handle); } /* * This routine is executed periodically and simulates interrupts * from the root controller interrupt pipe for port status change. */ void uhci_root_intr_sim(priv) void *priv; { usbd_request_handle reqh = priv; usbd_pipe_handle pipe = reqh->pipe; uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; int s; int actlen; u_int8_t *buf; int err; buf = KERNADDR(&upipe->u.intr.datadma); err = uhci_roothub_intr_transfer(sc, buf, reqh->length, &actlen); s = splusb(); if (err) { reqh->status = err; } else { reqh->actlen = actlen; reqh->status = USBD_NORMAL_COMPLETION; reqh->xfercb(reqh); } if (reqh->pipe->intrreqh == reqh) { usb_timeout(uhci_root_intr_sim, reqh, sc->sc_ival, reqh->timeout_handle); } else { usb_freemem(sc->sc_dmatag, &upipe->u.intr.datadma); usb_start_next(reqh->pipe); } splx(s); } /* Add control QH, called at splusb(). */ void uhci_add_ctrl(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_qh_t *eqh; DPRINTFN(10, ("uhci_add_ctrl: sqh=%p\n", sqh)); eqh = sc->sc_ctl_end->qh; sqh->qh->hlink = eqh->hlink; sqh->qh->qh_hlink = eqh->qh_hlink; eqh->hlink = sqh; eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q; sc->sc_ctl_end = sqh; } /* Remove control QH, called at splusb(). */ void uhci_remove_ctrl(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_soft_qh_t *pqh; DPRINTFN(10, ("uhci_remove_ctrl: sqh=%p\n", sqh)); for (pqh = sc->sc_ctl_start; pqh->qh->hlink != sqh; pqh=pqh->qh->hlink) #if defined(DIAGNOSTIC) || defined(UHCI_DEBUG) if (pqh->qh->qh_hlink & UHCI_PTR_T) { DPRINTF(("uhci_remove_ctrl: QH not found\n")); return; } #else ; #endif pqh->qh->hlink = sqh->qh->hlink; pqh->qh->qh_hlink = sqh->qh->qh_hlink; if (sc->sc_ctl_end == sqh) sc->sc_ctl_end = pqh; } /* Add bulk QH, called at splusb(). */ void uhci_add_bulk(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_qh_t *eqh; DPRINTFN(10, ("uhci_add_bulk: sqh=%p\n", sqh)); eqh = sc->sc_bulk_end->qh; sqh->qh->hlink = eqh->hlink; sqh->qh->qh_hlink = eqh->qh_hlink; eqh->hlink = sqh; eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q; sc->sc_bulk_end = sqh; } /* Remove bulk QH, called at splusb(). */ void uhci_remove_bulk(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_soft_qh_t *pqh; DPRINTFN(10, ("uhci_remove_bulk: sqh=%p\n", sqh)); for (pqh = sc->sc_bulk_start; pqh->qh->hlink != sqh; pqh = pqh->qh->hlink) #if defined(DIAGNOSTIC) if (pqh->qh->qh_hlink & UHCI_PTR_T) { printf("uhci_remove_bulk: QH not found\n"); return; } #else ; #endif pqh->qh->hlink = sqh->qh->hlink; pqh->qh->qh_hlink = sqh->qh->qh_hlink; if (sc->sc_bulk_end == sqh) sc->sc_bulk_end = pqh; } /* Add interrupt QH, called with vflock. */ void uhci_add_intr(sc, pos, sqh) uhci_softc_t *sc; int pos; uhci_soft_qh_t *sqh; { struct uhci_vframe *vf = &sc->sc_vframes[pos]; uhci_qh_t *eqh; DPRINTFN(4, ("uhci_add_intr: pos=%d sqh=%p\n", pos, sqh)); eqh = vf->eqh->qh; sqh->qh->hlink = eqh->hlink; sqh->qh->qh_hlink = eqh->qh_hlink; eqh->hlink = sqh; eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q; vf->eqh = sqh; vf->bandwidth++; } /* Remove interrupt QH, called with vflock. */ void uhci_remove_intr(sc, pos, sqh) uhci_softc_t *sc; int pos; uhci_soft_qh_t *sqh; { struct uhci_vframe *vf = &sc->sc_vframes[pos]; uhci_soft_qh_t *pqh; DPRINTFN(4, ("uhci_remove_intr: pos=%d sqh=%p\n", pos, sqh)); for (pqh = vf->hqh; pqh->qh->hlink != sqh; pqh = pqh->qh->hlink) #if defined(DIAGNOSTIC) if (pqh->qh->qh_hlink & UHCI_PTR_T) { printf("uhci_remove_intr: QH not found\n"); return; } #else ; #endif pqh->qh->hlink = sqh->qh->hlink; pqh->qh->qh_hlink = sqh->qh->qh_hlink; if (vf->eqh == sqh) vf->eqh = pqh; vf->bandwidth--; } /* * The simulated root hub */ /* Data structures */ usb_device_descriptor_t uhci_devd = { USB_DEVICE_DESCRIPTOR_SIZE, UDESC_DEVICE, /* type */ {0x00, 0x01}, /* USB version */ UCLASS_HUB, /* class */ USUBCLASS_HUB, /* subclass */ 0, /* protocol */ 64, /* max packet */ {0},{0},{0x00,0x01}, /* device id */ 1,2,0, /* string indicies */ 1 /* # of configurations */ }; usb_config_descriptor_t uhci_confd = { USB_CONFIG_DESCRIPTOR_SIZE, UDESC_CONFIG, {USB_CONFIG_DESCRIPTOR_SIZE + USB_INTERFACE_DESCRIPTOR_SIZE + USB_ENDPOINT_DESCRIPTOR_SIZE}, 1, 1, 0, UC_SELF_POWERED, 0 /* max power */ }; usb_interface_descriptor_t uhci_ifcd = { USB_INTERFACE_DESCRIPTOR_SIZE, UDESC_INTERFACE, 0, 0, 1, UCLASS_HUB, USUBCLASS_HUB, 0, 0 }; usb_endpoint_descriptor_t uhci_endpd = { USB_ENDPOINT_DESCRIPTOR_SIZE, UDESC_ENDPOINT, UE_IN | UHCI_INTR_ENDPT, UE_INTERRUPT, {8}, 255 }; usb_hub_descriptor_t uhci_hubd_piix = { USB_HUB_DESCRIPTOR_SIZE, UDESC_HUB, 2, { UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL, 0 }, 50, /* power on to power good */ 0, { 0x00 }, /* both ports are removable */ }; /* * creates the UNICODE-ified string descriptor for the root hub * returns the length copied */ int uhci_roothub_string_descriptor(sd, datalen, string) usb_string_descriptor_t *sd; int datalen; char *string; { int i; if (datalen == 0) return(0); sd->bLength = 2 * strlen(string) + 2; if (datalen == 1) return(1); sd->bDescriptorType = UDESC_STRING; datalen -= 2; for (i = 0; string[i] && datalen > 1; i++, datalen -= 2) USETW2(sd->bString[i], 0, string[i]); return(2*i+2); } /* function handling all requests for the root hub */ usbd_status uhci_roothub_ctrl_transfer(sc, req, buf, actlen) uhci_softc_t *sc; usb_device_request_t *req; void *buf; int *actlen; { int port; /* port number */ int x; /* temp storage for read register */ int datalen, value, index; /* values in request */ int l; /* temp storage for length to be copied */ *actlen = 0; DPRINTFN(12,("uhci_root_ctrl_control type=0x%02x request=%02x\n", req->bmRequestType, req->bRequest)); datalen = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); #define C(x,y) ((x) | ((y) << 8)) switch(C(req->bRequest, req->bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): if (datalen > 0) { *(u_int8_t *)buf = sc->sc_conf; *actlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): DPRINTFN(2,("uhci_root_ctrl_control wValue=0x%04x\n", value)); switch(value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { return USBD_IOERROR; } *actlen = l = min(datalen, USB_DEVICE_DESCRIPTOR_SIZE); memcpy(buf, &uhci_devd, l); break; case UDESC_CONFIG: if ((value & 0xff) != 0) { return USBD_IOERROR; } *actlen = l = min(datalen, USB_CONFIG_DESCRIPTOR_SIZE); memcpy(buf, &uhci_confd, l); buf = (char *)buf + l; datalen -= l; l = min(datalen, USB_INTERFACE_DESCRIPTOR_SIZE); *actlen += l; memcpy(buf, &uhci_ifcd, l); buf = (char *)buf + l; datalen -= l; l = min(datalen, USB_ENDPOINT_DESCRIPTOR_SIZE); *actlen += l; memcpy(buf, &uhci_endpd, l); break; case UDESC_STRING: if (datalen == 0) break; *(u_int8_t *)buf = 0; *actlen = 1; switch (value & 0xff) { case 1: /* Vendor */ *actlen = uhci_roothub_string_descriptor(buf, datalen, sc->sc_vendor); break; case 2: /* Product */ *actlen = uhci_roothub_string_descriptor(buf, datalen, "UHCI root hub"); break; } break; default: return USBD_IOERROR; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): if (datalen > 0) { *(u_int8_t *)buf = 0; *actlen = 1; } break; case C(UR_GET_STATUS, UT_READ_DEVICE): if (datalen > 1) { USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED); *actlen = 2; } break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): if (datalen > 1) { USETW(((usb_status_t *)buf)->wStatus, 0); *actlen = 2; } break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= USB_MAX_DEVICES) { return USBD_IOERROR; } sc->sc_addr = value; break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if (value != 0 && value != 1) { return USBD_IOERROR; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): return USBD_IOERROR; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(3, ("uhci_root_ctrl_control: UR_CLEAR_PORT_FEATURE " "port=%d feature=%d\n", index, value)); if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { return USBD_IOERROR; } switch(value) { case UHF_PORT_ENABLE: x = UREAD2(sc, port); UWRITE2(sc, port, x & ~UHCI_PORTSC_PE); break; case UHF_PORT_SUSPEND: x = UREAD2(sc, port); UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP); break; case UHF_PORT_RESET: x = UREAD2(sc, port); UWRITE2(sc, port, x & ~UHCI_PORTSC_PR); break; case UHF_C_PORT_CONNECTION: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_CSC); break; case UHF_C_PORT_ENABLE: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_POEDC); break; case UHF_C_PORT_OVER_CURRENT: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_OCIC); break; case UHF_C_PORT_RESET: sc->sc_isreset = 0; return USBD_NORMAL_COMPLETION; case UHF_PORT_CONNECTION: case UHF_PORT_OVER_CURRENT: case UHF_PORT_POWER: case UHF_PORT_LOW_SPEED: case UHF_C_PORT_SUSPEND: default: return USBD_IOERROR; } break; case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER): if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { return USBD_IOERROR; } if (datalen > 0) { *(u_int8_t *)buf = (UREAD2(sc, port) & UHCI_PORTSC_LS) >> UHCI_PORTSC_LS_SHIFT; *actlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if (value != 0) { return USBD_IOERROR; } l = min(datalen, USB_HUB_DESCRIPTOR_SIZE); *actlen = l; memcpy(buf, &uhci_hubd_piix, l); break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): if (datalen != 4) { return USBD_IOERROR; } memset(buf, 0, datalen); *actlen = datalen; break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): { int status, change; usb_port_status_t ps; if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { return USBD_IOERROR; } if (datalen != 4) { return USBD_IOERROR; } x = UREAD2(sc, port); status = change = 0; if (x & UHCI_PORTSC_CCS ) status |= UPS_CURRENT_CONNECT_STATUS; if (x & UHCI_PORTSC_CSC ) change |= UPS_C_CONNECT_STATUS; if (x & UHCI_PORTSC_PE ) status |= UPS_PORT_ENABLED; if (x & UHCI_PORTSC_POEDC) change |= UPS_C_PORT_ENABLED; if (x & UHCI_PORTSC_OCI ) status |= UPS_OVERCURRENT_INDICATOR; if (x & UHCI_PORTSC_OCIC ) change |= UPS_C_OVERCURRENT_INDICATOR; if (x & UHCI_PORTSC_SUSP ) status |= UPS_SUSPEND; if (x & UHCI_PORTSC_LSDA ) status |= UPS_LOW_SPEED; status |= UPS_PORT_POWER; if (sc->sc_isreset) change |= UPS_C_PORT_RESET; USETW(ps.wPortStatus, status); USETW(ps.wPortChange, change); l = min(datalen, sizeof ps); memcpy(buf, &ps, l); *actlen = l; break; } case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): return USBD_IOERROR; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { return USBD_IOERROR; } switch(value) { case UHF_PORT_ENABLE: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_PE); break; case UHF_PORT_SUSPEND: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_SUSP); break; case UHF_PORT_RESET: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_PR); usb_delay_ms(&sc->sc_bus, 10); UWRITE2(sc, port, x & ~UHCI_PORTSC_PR); delay(100); x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_PE); delay(100); DPRINTFN(3,("uhci port %d reset, status = 0x%04x\n", index, UREAD2(sc, port))); sc->sc_isreset = 1; break; case UHF_C_PORT_CONNECTION: case UHF_C_PORT_ENABLE: case UHF_C_PORT_OVER_CURRENT: case UHF_PORT_CONNECTION: case UHF_PORT_OVER_CURRENT: case UHF_PORT_POWER: case UHF_PORT_LOW_SPEED: case UHF_C_PORT_SUSPEND: case UHF_C_PORT_RESET: default: return USBD_IOERROR; } break; default: return USBD_IOERROR; } return USBD_NORMAL_COMPLETION; } usbd_status uhci_roothub_intr_transfer(uhci_softc_t *sc, u_int8_t *buf, int buflen, int *actlen) { if (buflen < 1) { DPRINTF(("%s: buffer too small, %d < 1\n", USBDEVNAME(sc->sc_bus.bdev), buflen)); return USBD_IOERROR; } buf[0] = 0; if (UREAD2(sc, UHCI_STS) & (UHCI_STS_RD)) buf[0] |= 1<<0; if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC)) buf[0] |= 1<<1; if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC)) buf[0] |= 1<<2; if (buf[0] != 0) *actlen = 1; else actlen = 0; return USBD_NORMAL_COMPLETION; } /* * debugging functions */ #ifdef UHCI_DEBUG void uhci_dumpregs(sc) uhci_softc_t *sc; { DPRINTF(("%s: regs: cmd=%04x, sts=%04x, intr=%04x, frnum=%04x, " "flbase=%08x, sof=%02x, portsc1=%04x, portsc2=%04x\n", USBDEVNAME(sc->sc_bus.bdev), UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS), UREAD2(sc, UHCI_INTR), UREAD2(sc, UHCI_FRNUM), UREAD4(sc, UHCI_FLBASEADDR), UREAD1(sc, UHCI_SOF), UREAD2(sc, UHCI_PORTSC1), UREAD2(sc, UHCI_PORTSC2))); } int uhci_longtd = 1; void uhci_dump_td(p) uhci_soft_td_t *p; { DPRINTF(("TD(%p) at %08lx link=0x%08lx st=0x%08lx tok=0x%08lx " "buf=0x%08lx\n", p, (long)p->physaddr, (long)p->td->td_link, (long)p->td->td_status, (long)p->td->td_token, (long)p->td->td_buffer)); if (uhci_longtd) DPRINTF((" %b %b,errcnt=%d,actlen=%d pid=%02x,addr=%d,endpt=%d," "D=%d,maxlen=%d\n", (int)p->td->td_link, "\20\1T\2Q\3VF", (int)p->td->td_status, "\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27" "STALLED\30ACTIVE\31IOC\32ISO\33LS\36SPD", UHCI_TD_GET_ERRCNT(p->td->td_status), UHCI_TD_GET_ACTLEN(p->td->td_status), UHCI_TD_GET_PID(p->td->td_token), UHCI_TD_GET_DEVADDR(p->td->td_token), UHCI_TD_GET_ENDPT(p->td->td_token), UHCI_TD_GET_DT(p->td->td_token), UHCI_TD_GET_MAXLEN(p->td->td_token))); } void uhci_dump_qh(p) uhci_soft_qh_t *p; { DPRINTF(("QH(%p) at %08x: hlink=%08x elink=%08x\n", p, (int)p->physaddr, p->qh->qh_hlink, p->qh->qh_elink)); } void uhci_dump_tds(std) uhci_soft_td_t *std; { uhci_soft_td_t *p; for(p = std; p; p = p->td->link.std) uhci_dump_td(p); } #endif