/*- * Copyright (c) 2002 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_MCA, "MCA", "Machine Check Architecture"); struct mca_info { STAILQ_ENTRY(mca_info) mi_link; char mi_name[32]; size_t mi_recsz; char mi_record[0]; }; static STAILQ_HEAD(, mca_info) mca_records = STAILQ_HEAD_INITIALIZER(mca_records); int64_t mca_info_size[SAL_INFO_TYPES]; vm_offset_t mca_info_block; struct mtx mca_info_block_lock; SYSCTL_NODE(_hw, OID_AUTO, mca, CTLFLAG_RW, 0, "MCA container"); static int mca_count; /* Number of records stored. */ static int mca_first; /* First (lowest) record ID. */ static int mca_last; /* Last (highest) record ID. */ SYSCTL_INT(_hw_mca, OID_AUTO, count, CTLFLAG_RD, &mca_count, 0, "Record count"); SYSCTL_INT(_hw_mca, OID_AUTO, first, CTLFLAG_RD, &mca_first, 0, "First record id"); SYSCTL_INT(_hw_mca, OID_AUTO, last, CTLFLAG_RD, &mca_last, 0, "Last record id"); static int mca_sysctl_handler(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, arg2); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, arg2); return (error); } void ia64_mca_populate(void) { struct mca_info *rec; mtx_lock_spin(&mca_info_block_lock); while (!STAILQ_EMPTY(&mca_records)) { rec = STAILQ_FIRST(&mca_records); STAILQ_REMOVE_HEAD(&mca_records, mi_link); mtx_unlock_spin(&mca_info_block_lock); (void)SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO, rec->mi_name, CTLTYPE_OPAQUE | CTLFLAG_RD, rec->mi_record, rec->mi_recsz, mca_sysctl_handler, "S,MCA", "Error record"); mtx_lock_spin(&mca_info_block_lock); } mtx_unlock_spin(&mca_info_block_lock); } void ia64_mca_save_state(int type) { struct ia64_sal_result result; struct mca_record_header *hdr; struct mca_info *rec; uint64_t seqnr; size_t recsz; /* * Don't try to get the state if we couldn't get the size of * the state information previously. */ if (mca_info_size[type] == -1) return; if (mca_info_block == 0) return; mtx_lock_spin(&mca_info_block_lock); while (1) { result = ia64_sal_entry(SAL_GET_STATE_INFO, type, 0, mca_info_block, 0, 0, 0, 0); if (result.sal_status < 0) { mtx_unlock_spin(&mca_info_block_lock); return; } hdr = (struct mca_record_header *)mca_info_block; recsz = hdr->rh_length; seqnr = hdr->rh_seqnr; mtx_unlock_spin(&mca_info_block_lock); rec = malloc(sizeof(struct mca_info) + recsz, M_MCA, M_NOWAIT | M_ZERO); if (rec == NULL) /* XXX: Not sure what to do. */ return; sprintf(rec->mi_name, "%lld", (long long)seqnr); mtx_lock_spin(&mca_info_block_lock); /* * If the info block doesn't have our record anymore because * we temporarily unlocked it, get it again from SAL. I assume * that it's possible that we could get a different record. * I expect this to happen in a SMP configuration where the * record has been cleared by a different processor. So, if * we get a different record we simply abort with this record * and start over. */ if (seqnr != hdr->rh_seqnr) { result = ia64_sal_entry(SAL_GET_STATE_INFO, type, 0, mca_info_block, 0, 0, 0, 0); if (seqnr != hdr->rh_seqnr) { mtx_unlock_spin(&mca_info_block_lock); free(rec, M_MCA); mtx_lock_spin(&mca_info_block_lock); continue; } } rec->mi_recsz = recsz; bcopy((char*)mca_info_block, rec->mi_record, recsz); if (mca_count > 0) { if (seqnr < mca_first) mca_first = seqnr; else if (seqnr > mca_last) mca_last = seqnr; } else mca_first = mca_last = seqnr; mca_count++; STAILQ_INSERT_TAIL(&mca_records, rec, mi_link); /* * Clear the state so that we get any other records when * they exist. */ result = ia64_sal_entry(SAL_CLEAR_STATE_INFO, type, 0, 0, 0, 0, 0, 0); } } void ia64_mca_init(void) { struct ia64_sal_result result; uint64_t max_size; char *p; int i; /* * Get the sizes of the state information we can get from SAL and * allocate a common block (forgive me my Fortran :-) for use by * support functions. We create a region 7 address to make it * easy on the OS_MCA or OS_INIT handlers to get the state info * under unreliable conditions. */ max_size = 0; for (i = 0; i < SAL_INFO_TYPES; i++) { result = ia64_sal_entry(SAL_GET_STATE_INFO_SIZE, i, 0, 0, 0, 0, 0, 0); if (result.sal_status == 0) { mca_info_size[i] = result.sal_result[0]; if (mca_info_size[i] > max_size) max_size = mca_info_size[i]; } else mca_info_size[i] = -1; } max_size = round_page(max_size); p = (max_size) ? contigmalloc(max_size, M_TEMP, 0, 0ul, 256*1024*1024 - 1, PAGE_SIZE, 256*1024*1024) : NULL; if (p != NULL) { mca_info_block = IA64_PHYS_TO_RR7(ia64_tpa((u_int64_t)p)); if (bootverbose) printf("MCA: allocated %ld bytes for state info.\n", max_size); } /* * Initialize the spin lock used to protect the info block. When APs * get launched, there's a short moment of contention, but in all other * cases it's not a hot spot. I think it's possible to have the MCA * handler be called on multiple processors at the same time, but that * should be rare. On top of that, performance is not an issue when * dealing with machine checks... */ mtx_init(&mca_info_block_lock, "MCA spin lock", NULL, MTX_SPIN); /* * Get and save any processor and platfom error records. Note that in * a SMP configuration the processor records are for the BSP only. We * let the APs get and save their own records when we wake them up. */ for (i = 0; i < SAL_INFO_TYPES; i++) ia64_mca_save_state(i); }