/*- * Copyright (c) 2006 John Baldwin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Machine independent bits of reader/writer lock implementation. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include static void db_show_rwlock(struct lock_object *lock); #endif struct lock_class lock_class_rw = { "rw", LC_SLEEPLOCK | LC_RECURSABLE | LC_UPGRADABLE, #ifdef DDB db_show_rwlock #endif }; /* * Return a pointer to the owning thread if the lock is write-locked or * NULL if the lock is unlocked or read-locked. */ #define rw_wowner(rw) \ ((rw)->rw_lock & RW_LOCK_READ ? NULL : \ (struct thread *)RW_OWNER((rw)->rw_lock)) /* * Return a pointer to the owning thread for this lock who should receive * any priority lent by threads that block on this lock. Currently this * is identical to rw_wowner(). */ #define rw_owner(rw) rw_wowner(rw) #ifndef INVARIANTS #define _rw_assert(rw, what, file, line) #endif void rw_init(struct rwlock *rw, const char *name) { rw->rw_lock = RW_UNLOCKED; lock_profile_object_init(&rw->rw_object, &lock_class_rw, name); lock_init(&rw->rw_object, &lock_class_rw, name, NULL, LO_WITNESS | LO_RECURSABLE | LO_UPGRADABLE); } void rw_destroy(struct rwlock *rw) { KASSERT(rw->rw_lock == RW_UNLOCKED, ("rw lock not unlocked")); lock_profile_object_destroy(&rw->rw_object); lock_destroy(&rw->rw_object); } void rw_sysinit(void *arg) { struct rw_args *args = arg; rw_init(args->ra_rw, args->ra_desc); } void _rw_wlock(struct rwlock *rw, const char *file, int line) { uint64_t waitstart; MPASS(curthread != NULL); KASSERT(rw_wowner(rw) != curthread, ("%s (%s): wlock already held @ %s:%d", __func__, rw->rw_object.lo_name, file, line)); WITNESS_CHECKORDER(&rw->rw_object, LOP_NEWORDER | LOP_EXCLUSIVE, file, line); lock_profile_waitstart(&waitstart); __rw_wlock(rw, curthread, file, line); lock_profile_obtain_lock_success(&rw->rw_object, waitstart, file, line); LOCK_LOG_LOCK("WLOCK", &rw->rw_object, 0, 0, file, line); WITNESS_LOCK(&rw->rw_object, LOP_EXCLUSIVE, file, line); curthread->td_locks++; } void _rw_wunlock(struct rwlock *rw, const char *file, int line) { MPASS(curthread != NULL); _rw_assert(rw, RA_WLOCKED, file, line); curthread->td_locks--; WITNESS_UNLOCK(&rw->rw_object, LOP_EXCLUSIVE, file, line); LOCK_LOG_LOCK("WUNLOCK", &rw->rw_object, 0, 0, file, line); lock_profile_release_lock(&rw->rw_object); __rw_wunlock(rw, curthread, file, line); } void _rw_rlock(struct rwlock *rw, const char *file, int line) { #ifdef SMP volatile struct thread *owner; #endif uint64_t waitstart; int contested; uintptr_t x; KASSERT(rw_wowner(rw) != curthread, ("%s (%s): wlock already held @ %s:%d", __func__, rw->rw_object.lo_name, file, line)); WITNESS_CHECKORDER(&rw->rw_object, LOP_NEWORDER, file, line); /* * Note that we don't make any attempt to try to block read * locks once a writer has blocked on the lock. The reason is * that we currently allow for read locks to recurse and we * don't keep track of all the holders of read locks. Thus, if * we were to block readers once a writer blocked and a reader * tried to recurse on their reader lock after a writer had * blocked we would end up in a deadlock since the reader would * be blocked on the writer, and the writer would be blocked * waiting for the reader to release its original read lock. */ lock_profile_waitstart(&waitstart); for (;;) { /* * Handle the easy case. If no other thread has a write * lock, then try to bump up the count of read locks. Note * that we have to preserve the current state of the * RW_LOCK_WRITE_WAITERS flag. If we fail to acquire a * read lock, then rw_lock must have changed, so restart * the loop. Note that this handles the case of a * completely unlocked rwlock since such a lock is encoded * as a read lock with no waiters. */ x = rw->rw_lock; if (x & RW_LOCK_READ) { /* * The RW_LOCK_READ_WAITERS flag should only be set * if another thread currently holds a write lock, * and in that case RW_LOCK_READ should be clear. */ MPASS((x & RW_LOCK_READ_WAITERS) == 0); if (atomic_cmpset_acq_ptr(&rw->rw_lock, x, x + RW_ONE_READER)) { lock_profile_obtain_lock_success(&rw->rw_object, waitstart, file, line); if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR4(KTR_LOCK, "%s: %p succeed %p -> %p", __func__, rw, (void *)x, (void *)(x + RW_ONE_READER)); break; } cpu_spinwait(); lock_profile_obtain_lock_failed(&rw->rw_object, &contested); continue; } /* * Okay, now it's the hard case. Some other thread already * has a write lock, so acquire the turnstile lock so we can * begin the process of blocking. */ turnstile_lock(&rw->rw_object); /* * The lock might have been released while we spun, so * recheck its state and restart the loop if there is no * longer a write lock. */ x = rw->rw_lock; if (x & RW_LOCK_READ) { turnstile_release(&rw->rw_object); cpu_spinwait(); continue; } /* * Ok, it's still a write lock. If the RW_LOCK_READ_WAITERS * flag is already set, then we can go ahead and block. If * it is not set then try to set it. If we fail to set it * drop the turnstile lock and restart the loop. */ if (!(x & RW_LOCK_READ_WAITERS)) { if (!atomic_cmpset_ptr(&rw->rw_lock, x, x | RW_LOCK_READ_WAITERS)) { turnstile_release(&rw->rw_object); cpu_spinwait(); continue; } if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p set read waiters flag", __func__, rw); } #ifdef SMP /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ owner = (struct thread *)RW_OWNER(x); if (TD_IS_RUNNING(owner)) { lock_profile_obtain_lock_failed(&rw->rw_object, &contested); turnstile_release(&rw->rw_object); if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, rw, owner); while ((struct thread*)RW_OWNER(rw->rw_lock)== owner && TD_IS_RUNNING(owner)) cpu_spinwait(); continue; } #endif /* * We were unable to acquire the lock and the read waiters * flag is set, so we must block on the turnstile. */ if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__, rw); turnstile_wait(&rw->rw_object, rw_owner(rw), TS_SHARED_QUEUE); if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from turnstile", __func__, rw); } /* * TODO: acquire "owner of record" here. Here be turnstile dragons * however. turnstiles don't like owners changing between calls to * turnstile_wait() currently. */ LOCK_LOG_LOCK("RLOCK", &rw->rw_object, 0, 0, file, line); WITNESS_LOCK(&rw->rw_object, 0, file, line); curthread->td_locks++; } void _rw_runlock(struct rwlock *rw, const char *file, int line) { struct turnstile *ts; uintptr_t x; _rw_assert(rw, RA_RLOCKED, file, line); curthread->td_locks--; WITNESS_UNLOCK(&rw->rw_object, 0, file, line); LOCK_LOG_LOCK("RUNLOCK", &rw->rw_object, 0, 0, file, line); /* TODO: drop "owner of record" here. */ for (;;) { /* * See if there is more than one read lock held. If so, * just drop one and return. */ x = rw->rw_lock; if (RW_READERS(x) > 1) { if (atomic_cmpset_ptr(&rw->rw_lock, x, x - RW_ONE_READER)) { if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR4(KTR_LOCK, "%s: %p succeeded %p -> %p", __func__, rw, (void *)x, (void *)(x - RW_ONE_READER)); break; } continue; } else lock_profile_release_lock(&rw->rw_object); /* * We should never have read waiters while at least one * thread holds a read lock. (See note above) */ KASSERT(!(x & RW_LOCK_READ_WAITERS), ("%s: waiting readers", __func__)); /* * If there aren't any waiters for a write lock, then try * to drop it quickly. */ if (!(x & RW_LOCK_WRITE_WAITERS)) { /* * There shouldn't be any flags set and we should * be the only read lock. If we fail to release * the single read lock, then another thread might * have just acquired a read lock, so go back up * to the multiple read locks case. */ MPASS(x == RW_READERS_LOCK(1)); if (atomic_cmpset_ptr(&rw->rw_lock, RW_READERS_LOCK(1), RW_UNLOCKED)) { if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p last succeeded", __func__, rw); break; } continue; } /* * There should just be one reader with one or more * writers waiting. */ MPASS(x == (RW_READERS_LOCK(1) | RW_LOCK_WRITE_WAITERS)); /* * Ok, we know we have a waiting writer and we think we * are the last reader, so grab the turnstile lock. */ turnstile_lock(&rw->rw_object); /* * Try to drop our lock leaving the lock in a unlocked * state. * * If you wanted to do explicit lock handoff you'd have to * do it here. You'd also want to use turnstile_signal() * and you'd have to handle the race where a higher * priority thread blocks on the write lock before the * thread you wakeup actually runs and have the new thread * "steal" the lock. For now it's a lot simpler to just * wakeup all of the waiters. * * As above, if we fail, then another thread might have * acquired a read lock, so drop the turnstile lock and * restart. */ if (!atomic_cmpset_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | RW_LOCK_WRITE_WAITERS, RW_UNLOCKED)) { turnstile_release(&rw->rw_object); continue; } if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p last succeeded with waiters", __func__, rw); /* * Ok. The lock is released and all that's left is to * wake up the waiters. Note that the lock might not be * free anymore, but in that case the writers will just * block again if they run before the new lock holder(s) * release the lock. */ ts = turnstile_lookup(&rw->rw_object); MPASS(ts != NULL); turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE); turnstile_unpend(ts, TS_SHARED_LOCK); break; } } /* * This function is called when we are unable to obtain a write lock on the * first try. This means that at least one other thread holds either a * read or write lock. */ void _rw_wlock_hard(struct rwlock *rw, uintptr_t tid, const char *file, int line) { #ifdef SMP volatile struct thread *owner; #endif int contested; uintptr_t v; if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, rw->rw_object.lo_name, (void *)rw->rw_lock, file, line); while (!_rw_write_lock(rw, tid)) { turnstile_lock(&rw->rw_object); v = rw->rw_lock; /* * If the lock was released while spinning on the * turnstile chain lock, try again. */ if (v == RW_UNLOCKED) { turnstile_release(&rw->rw_object); cpu_spinwait(); continue; } /* * If the lock was released by a writer with both readers * and writers waiting and a reader hasn't woken up and * acquired the lock yet, rw_lock will be set to the * value RW_UNLOCKED | RW_LOCK_WRITE_WAITERS. If we see * that value, try to acquire it once. Note that we have * to preserve the RW_LOCK_WRITE_WAITERS flag as there are * other writers waiting still. If we fail, restart the * loop. */ if (v == (RW_UNLOCKED | RW_LOCK_WRITE_WAITERS)) { if (atomic_cmpset_acq_ptr(&rw->rw_lock, RW_UNLOCKED | RW_LOCK_WRITE_WAITERS, tid | RW_LOCK_WRITE_WAITERS)) { turnstile_claim(&rw->rw_object); CTR2(KTR_LOCK, "%s: %p claimed by new writer", __func__, rw); break; } turnstile_release(&rw->rw_object); cpu_spinwait(); lock_profile_obtain_lock_failed(&rw->rw_object, &contested); continue; } /* * If the RW_LOCK_WRITE_WAITERS flag isn't set, then try to * set it. If we fail to set it, then loop back and try * again. */ if (!(v & RW_LOCK_WRITE_WAITERS)) { if (!atomic_cmpset_ptr(&rw->rw_lock, v, v | RW_LOCK_WRITE_WAITERS)) { turnstile_release(&rw->rw_object); cpu_spinwait(); lock_profile_obtain_lock_failed(&rw->rw_object, &contested); continue; } if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p set write waiters flag", __func__, rw); } #ifdef SMP /* * If the lock is write locked and the owner is * running on another CPU, spin until the owner stops * running or the state of the lock changes. */ owner = (struct thread *)RW_OWNER(v); if (!(v & RW_LOCK_READ) && TD_IS_RUNNING(owner)) { lock_profile_obtain_lock_failed(&rw->rw_object, &contested); turnstile_release(&rw->rw_object); if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, rw, owner); while ((struct thread*)RW_OWNER(rw->rw_lock)== owner && TD_IS_RUNNING(owner)) cpu_spinwait(); continue; } #endif /* * We were unable to acquire the lock and the write waiters * flag is set, so we must block on the turnstile. */ if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__, rw); turnstile_wait(&rw->rw_object, rw_owner(rw), TS_EXCLUSIVE_QUEUE); if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from turnstile", __func__, rw); } } /* * This function is called if the first try at releasing a write lock failed. * This means that one of the 2 waiter bits must be set indicating that at * least one thread is waiting on this lock. */ void _rw_wunlock_hard(struct rwlock *rw, uintptr_t tid, const char *file, int line) { struct turnstile *ts; uintptr_t v; int queue; KASSERT(rw->rw_lock & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS), ("%s: neither of the waiter flags are set", __func__)); if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p contested", __func__, rw); turnstile_lock(&rw->rw_object); ts = turnstile_lookup(&rw->rw_object); #ifdef SMP /* * There might not be a turnstile for this lock if all of * the waiters are adaptively spinning. In that case, just * reset the lock to the unlocked state and return. */ if (ts == NULL) { atomic_store_rel_ptr(&rw->rw_lock, RW_UNLOCKED); if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p no sleepers", __func__, rw); turnstile_release(&rw->rw_object); return; } #else MPASS(ts != NULL); #endif /* * Use the same algo as sx locks for now. Prefer waking up shared * waiters if we have any over writers. This is probably not ideal. * * 'v' is the value we are going to write back to rw_lock. If we * have waiters on both queues, we need to preserve the state of * the waiter flag for the queue we don't wake up. For now this is * hardcoded for the algorithm mentioned above. * * In the case of both readers and writers waiting we wakeup the * readers but leave the RW_LOCK_WRITE_WAITERS flag set. If a * new writer comes in before a reader it will claim the lock up * above. There is probably a potential priority inversion in * there that could be worked around either by waking both queues * of waiters or doing some complicated lock handoff gymnastics. * * Note that in the SMP case, if both flags are set, there might * not be any actual writers on the turnstile as they might all * be spinning. In that case, we don't want to preserve the * RW_LOCK_WRITE_WAITERS flag as the turnstile is going to go * away once we wakeup all the readers. */ v = RW_UNLOCKED; if (rw->rw_lock & RW_LOCK_READ_WAITERS) { queue = TS_SHARED_QUEUE; #ifdef SMP if (rw->rw_lock & RW_LOCK_WRITE_WAITERS && !turnstile_empty(ts, TS_EXCLUSIVE_QUEUE)) v |= RW_LOCK_WRITE_WAITERS; #else v |= (rw->rw_lock & RW_LOCK_WRITE_WAITERS); #endif } else queue = TS_EXCLUSIVE_QUEUE; #ifdef SMP /* * We have to make sure that we actually have waiters to * wakeup. If they are all spinning, then we just need to * disown the turnstile and return. */ if (turnstile_empty(ts, queue)) { if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR2(KTR_LOCK, "%s: %p no sleepers 2", __func__, rw); atomic_store_rel_ptr(&rw->rw_lock, v); turnstile_disown(ts); return; } #endif /* Wake up all waiters for the specific queue. */ if (LOCK_LOG_TEST(&rw->rw_object, 0)) CTR3(KTR_LOCK, "%s: %p waking up %s waiters", __func__, rw, queue == TS_SHARED_QUEUE ? "read" : "write"); turnstile_broadcast(ts, queue); atomic_store_rel_ptr(&rw->rw_lock, v); turnstile_unpend(ts, TS_EXCLUSIVE_LOCK); } /* * Attempt to do a non-blocking upgrade from a read lock to a write * lock. This will only succeed if this thread holds a single read * lock. Returns true if the upgrade succeeded and false otherwise. */ int _rw_try_upgrade(struct rwlock *rw, const char *file, int line) { uintptr_t v, tid; int success; _rw_assert(rw, RA_RLOCKED, file, line); /* * Attempt to switch from one reader to a writer. If there * are any write waiters, then we will have to lock the * turnstile first to prevent races with another writer * calling turnstile_wait() before we have claimed this * turnstile. So, do the simple case of no waiters first. */ tid = (uintptr_t)curthread; if (!(rw->rw_lock & RW_LOCK_WRITE_WAITERS)) { success = atomic_cmpset_acq_ptr(&rw->rw_lock, RW_READERS_LOCK(1), tid); goto out; } /* * Ok, we think we have write waiters, so lock the * turnstile. */ turnstile_lock(&rw->rw_object); /* * Try to switch from one reader to a writer again. This time * we honor the current state of the RW_LOCK_WRITE_WAITERS * flag. If we obtain the lock with the flag set, then claim * ownership of the turnstile. In the SMP case it is possible * for there to not be an associated turnstile even though there * are waiters if all of the waiters are spinning. */ v = rw->rw_lock & RW_LOCK_WRITE_WAITERS; success = atomic_cmpset_acq_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v, tid | v); #ifdef SMP if (success && v && turnstile_lookup(&rw->rw_object) != NULL) #else if (success && v) #endif turnstile_claim(&rw->rw_object); else turnstile_release(&rw->rw_object); out: LOCK_LOG_TRY("WUPGRADE", &rw->rw_object, 0, success, file, line); if (success) WITNESS_UPGRADE(&rw->rw_object, LOP_EXCLUSIVE | LOP_TRYLOCK, file, line); return (success); } /* * Downgrade a write lock into a single read lock. */ void _rw_downgrade(struct rwlock *rw, const char *file, int line) { struct turnstile *ts; uintptr_t tid, v; _rw_assert(rw, RA_WLOCKED, file, line); WITNESS_DOWNGRADE(&rw->rw_object, 0, file, line); /* * Convert from a writer to a single reader. First we handle * the easy case with no waiters. If there are any waiters, we * lock the turnstile, "disown" the lock, and awaken any read * waiters. */ tid = (uintptr_t)curthread; if (atomic_cmpset_rel_ptr(&rw->rw_lock, tid, RW_READERS_LOCK(1))) goto out; /* * Ok, we think we have waiters, so lock the turnstile so we can * read the waiter flags without any races. */ turnstile_lock(&rw->rw_object); v = rw->rw_lock; MPASS(v & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS)); /* * Downgrade from a write lock while preserving * RW_LOCK_WRITE_WAITERS and give up ownership of the * turnstile. If there are any read waiters, wake them up. * * For SMP, we have to allow for the fact that all of the * read waiters might be spinning. In that case, act as if * RW_LOCK_READ_WAITERS is not set. Also, only preserve * the RW_LOCK_WRITE_WAITERS flag if at least one writer is * blocked on the turnstile. */ ts = turnstile_lookup(&rw->rw_object); #ifdef SMP if (ts == NULL) v &= ~(RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS); else if (v & RW_LOCK_READ_WAITERS && turnstile_empty(ts, TS_SHARED_QUEUE)) v &= ~RW_LOCK_READ_WAITERS; else if (v & RW_LOCK_WRITE_WAITERS && turnstile_empty(ts, TS_EXCLUSIVE_QUEUE)) v &= ~RW_LOCK_WRITE_WAITERS; #else MPASS(ts != NULL); #endif if (v & RW_LOCK_READ_WAITERS) turnstile_broadcast(ts, TS_SHARED_QUEUE); atomic_store_rel_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | (v & RW_LOCK_WRITE_WAITERS)); if (v & RW_LOCK_READ_WAITERS) turnstile_unpend(ts, TS_EXCLUSIVE_LOCK); #ifdef SMP else if (ts == NULL) turnstile_release(&rw->rw_object); #endif else turnstile_disown(ts); out: LOCK_LOG_LOCK("WDOWNGRADE", &rw->rw_object, 0, 0, file, line); } #ifdef INVARIANT_SUPPORT #ifndef INVARIANTS #undef _rw_assert #endif /* * In the non-WITNESS case, rw_assert() can only detect that at least * *some* thread owns an rlock, but it cannot guarantee that *this* * thread owns an rlock. */ void _rw_assert(struct rwlock *rw, int what, const char *file, int line) { if (panicstr != NULL) return; switch (what) { case RA_LOCKED: case RA_RLOCKED: #ifdef WITNESS witness_assert(&rw->rw_object, what, file, line); #else /* * If some other thread has a write lock or we have one * and are asserting a read lock, fail. Also, if no one * has a lock at all, fail. */ if (rw->rw_lock == RW_UNLOCKED || (!(rw->rw_lock & RW_LOCK_READ) && (what == RA_RLOCKED || rw_wowner(rw) != curthread))) panic("Lock %s not %slocked @ %s:%d\n", rw->rw_object.lo_name, (what == RA_RLOCKED) ? "read " : "", file, line); #endif break; case RA_WLOCKED: if (rw_wowner(rw) != curthread) panic("Lock %s not exclusively locked @ %s:%d\n", rw->rw_object.lo_name, file, line); break; case RA_UNLOCKED: #ifdef WITNESS witness_assert(&rw->rw_object, what, file, line); #else /* * If we hold a write lock fail. We can't reliably check * to see if we hold a read lock or not. */ if (rw_wowner(rw) == curthread) panic("Lock %s exclusively locked @ %s:%d\n", rw->rw_object.lo_name, file, line); #endif break; default: panic("Unknown rw lock assertion: %d @ %s:%d", what, file, line); } } #endif /* INVARIANT_SUPPORT */ #ifdef DDB void db_show_rwlock(struct lock_object *lock) { struct rwlock *rw; struct thread *td; rw = (struct rwlock *)lock; db_printf(" state: "); if (rw->rw_lock == RW_UNLOCKED) db_printf("UNLOCKED\n"); else if (rw->rw_lock & RW_LOCK_READ) db_printf("RLOCK: %jd locks\n", (intmax_t)(RW_READERS(rw->rw_lock))); else { td = rw_wowner(rw); db_printf("WLOCK: %p (tid %d, pid %d, \"%s\")\n", td, td->td_tid, td->td_proc->p_pid, td->td_proc->p_comm); } db_printf(" waiters: "); switch (rw->rw_lock & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS)) { case RW_LOCK_READ_WAITERS: db_printf("readers\n"); break; case RW_LOCK_WRITE_WAITERS: db_printf("writers\n"); break; case RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS: db_printf("readers and waiters\n"); break; default: db_printf("none\n"); break; } } #endif