/*- * Copyright (C) 2001 Julian Elischer . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * thread related storage. */ static uma_zone_t thread_zone; SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); int max_threads_per_proc = 1500; SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, &max_threads_per_proc, 0, "Limit on threads per proc"); int max_threads_hits; SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, &max_threads_hits, 0, ""); #ifdef KSE int virtual_cpu; #endif TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); static struct mtx zombie_lock; MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); static void thread_zombie(struct thread *); #ifdef KSE static int sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) { int error, new_val; int def_val; def_val = mp_ncpus; if (virtual_cpu == 0) new_val = def_val; else new_val = virtual_cpu; error = sysctl_handle_int(oidp, &new_val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (new_val < 0) return (EINVAL); virtual_cpu = new_val; return (0); } /* DEBUG ONLY */ SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", "debug virtual cpus"); #endif struct mtx tid_lock; static struct unrhdr *tid_unrhdr; /* * Prepare a thread for use. */ static int thread_ctor(void *mem, int size, void *arg, int flags) { struct thread *td; td = (struct thread *)mem; td->td_state = TDS_INACTIVE; td->td_oncpu = NOCPU; td->td_tid = alloc_unr(tid_unrhdr); td->td_syscalls = 0; td->td_incruntime = 0; /* * Note that td_critnest begins life as 1 because the thread is not * running and is thereby implicitly waiting to be on the receiving * end of a context switch. */ td->td_critnest = 1; EVENTHANDLER_INVOKE(thread_ctor, td); #ifdef AUDIT audit_thread_alloc(td); #endif umtx_thread_alloc(td); return (0); } /* * Reclaim a thread after use. */ static void thread_dtor(void *mem, int size, void *arg) { struct thread *td; td = (struct thread *)mem; #ifdef INVARIANTS /* Verify that this thread is in a safe state to free. */ switch (td->td_state) { case TDS_INHIBITED: case TDS_RUNNING: case TDS_CAN_RUN: case TDS_RUNQ: /* * We must never unlink a thread that is in one of * these states, because it is currently active. */ panic("bad state for thread unlinking"); /* NOTREACHED */ case TDS_INACTIVE: break; default: panic("bad thread state"); /* NOTREACHED */ } #endif #ifdef AUDIT audit_thread_free(td); #endif EVENTHANDLER_INVOKE(thread_dtor, td); free_unr(tid_unrhdr, td->td_tid); sched_newthread(td); } /* * Initialize type-stable parts of a thread (when newly created). */ static int thread_init(void *mem, int size, int flags) { struct thread *td; td = (struct thread *)mem; td->td_sleepqueue = sleepq_alloc(); td->td_turnstile = turnstile_alloc(); EVENTHANDLER_INVOKE(thread_init, td); td->td_sched = (struct td_sched *)&td[1]; sched_newthread(td); umtx_thread_init(td); td->td_kstack = 0; td->td_fpop = NULL; return (0); } /* * Tear down type-stable parts of a thread (just before being discarded). */ static void thread_fini(void *mem, int size) { struct thread *td; td = (struct thread *)mem; EVENTHANDLER_INVOKE(thread_fini, td); turnstile_free(td->td_turnstile); sleepq_free(td->td_sleepqueue); umtx_thread_fini(td); } /* * For a newly created process, * link up all the structures and its initial threads etc. * called from: * {arch}/{arch}/machdep.c ia64_init(), init386() etc. * proc_dtor() (should go away) * proc_init() */ void proc_linkup0(struct proc *p, struct thread *td) { TAILQ_INIT(&p->p_threads); /* all threads in proc */ proc_linkup(p, td); } void proc_linkup(struct proc *p, struct thread *td) { #ifdef KSE TAILQ_INIT(&p->p_upcalls); /* upcall list */ #endif sigqueue_init(&p->p_sigqueue, p); p->p_ksi = ksiginfo_alloc(1); if (p->p_ksi != NULL) { /* XXX p_ksi may be null if ksiginfo zone is not ready */ p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; } LIST_INIT(&p->p_mqnotifier); p->p_numthreads = 0; thread_link(td, p); } /* * Initialize global thread allocation resources. */ void threadinit(void) { mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock); thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), thread_ctor, thread_dtor, thread_init, thread_fini, 16 - 1, 0); #ifdef KSE kseinit(); /* set up kse specific stuff e.g. upcall zone*/ #endif } /* * Place an unused thread on the zombie list. * Use the slpq as that must be unused by now. */ void thread_zombie(struct thread *td) { mtx_lock_spin(&zombie_lock); TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); mtx_unlock_spin(&zombie_lock); } /* * Release a thread that has exited after cpu_throw(). */ void thread_stash(struct thread *td) { atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); thread_zombie(td); } /* * Reap zombie kse resource. */ void thread_reap(void) { struct thread *td_first, *td_next; /* * Don't even bother to lock if none at this instant, * we really don't care about the next instant.. */ if (!TAILQ_EMPTY(&zombie_threads)) { mtx_lock_spin(&zombie_lock); td_first = TAILQ_FIRST(&zombie_threads); if (td_first) TAILQ_INIT(&zombie_threads); mtx_unlock_spin(&zombie_lock); while (td_first) { td_next = TAILQ_NEXT(td_first, td_slpq); if (td_first->td_ucred) crfree(td_first->td_ucred); thread_free(td_first); td_first = td_next; } } #ifdef KSE upcall_reap(); #endif } /* * Allocate a thread. */ struct thread * thread_alloc(void) { struct thread *td; thread_reap(); /* check if any zombies to get */ td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); if (!vm_thread_new(td, 0)) { uma_zfree(thread_zone, td); return (NULL); } cpu_thread_alloc(td); return (td); } /* * Deallocate a thread. */ void thread_free(struct thread *td) { if (td->td_cpuset) cpuset_rel(td->td_cpuset); td->td_cpuset = NULL; cpu_thread_free(td); if (td->td_altkstack != 0) vm_thread_dispose_altkstack(td); if (td->td_kstack != 0) vm_thread_dispose(td); uma_zfree(thread_zone, td); } /* * Discard the current thread and exit from its context. * Always called with scheduler locked. * * Because we can't free a thread while we're operating under its context, * push the current thread into our CPU's deadthread holder. This means * we needn't worry about someone else grabbing our context before we * do a cpu_throw(). This may not be needed now as we are under schedlock. * Maybe we can just do a thread_stash() as thr_exit1 does. */ /* XXX * libthr expects its thread exit to return for the last * thread, meaning that the program is back to non-threaded * mode I guess. Because we do this (cpu_throw) unconditionally * here, they have their own version of it. (thr_exit1()) * that doesn't do it all if this was the last thread. * It is also called from thread_suspend_check(). * Of course in the end, they end up coming here through exit1 * anyhow.. After fixing 'thr' to play by the rules we should be able * to merge these two functions together. * * called from: * exit1() * kse_exit() * thr_exit() * ifdef KSE * thread_user_enter() * thread_userret() * endif * thread_suspend_check() */ void thread_exit(void) { uint64_t new_switchtime; struct thread *td; struct thread *td2; struct proc *p; int wakeup_swapper; td = curthread; p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(p != NULL, ("thread exiting without a process")); CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, (long)p->p_pid, p->p_comm); KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); #ifdef AUDIT AUDIT_SYSCALL_EXIT(0, td); #endif #ifdef KSE if (td->td_standin != NULL) { /* * Note that we don't need to free the cred here as it * is done in thread_reap(). */ thread_zombie(td->td_standin); td->td_standin = NULL; } #endif umtx_thread_exit(td); /* * drop FPU & debug register state storage, or any other * architecture specific resources that * would not be on a new untouched process. */ cpu_thread_exit(td); /* XXXSMP */ /* Do the same timestamp bookkeeping that mi_switch() would do. */ new_switchtime = cpu_ticks(); p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime)); PCPU_SET(switchtime, new_switchtime); PCPU_SET(switchticks, ticks); PCPU_INC(cnt.v_swtch); /* Save our resource usage in our process. */ td->td_ru.ru_nvcsw++; rucollect(&p->p_ru, &td->td_ru); /* * The last thread is left attached to the process * So that the whole bundle gets recycled. Skip * all this stuff if we never had threads. * EXIT clears all sign of other threads when * it goes to single threading, so the last thread always * takes the short path. */ if (p->p_flag & P_HADTHREADS) { if (p->p_numthreads > 1) { thread_lock(td); #ifdef KSE kse_unlink(td); #else thread_unlink(td); #endif thread_unlock(td); td2 = FIRST_THREAD_IN_PROC(p); sched_exit_thread(td2, td); /* * The test below is NOT true if we are the * sole exiting thread. P_STOPPED_SNGL is unset * in exit1() after it is the only survivor. */ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one( p->p_singlethread); thread_unlock(p->p_singlethread); if (wakeup_swapper) kick_proc0(); } } atomic_add_int(&td->td_proc->p_exitthreads, 1); PCPU_SET(deadthread, td); } else { /* * The last thread is exiting.. but not through exit() * what should we do? * Theoretically this can't happen * exit1() - clears threading flags before coming here * kse_exit() - treats last thread specially * thr_exit() - treats last thread specially * ifdef KSE * thread_user_enter() - only if more exist * thread_userret() - only if more exist * endif * thread_suspend_check() - only if more exist */ panic ("thread_exit: Last thread exiting on its own"); } } PROC_UNLOCK(p); thread_lock(td); /* Save our tick information with both the thread and proc locked */ ruxagg(&p->p_rux, td); PROC_SUNLOCK(p); td->td_state = TDS_INACTIVE; CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); sched_throw(td); panic("I'm a teapot!"); /* NOTREACHED */ } /* * Do any thread specific cleanups that may be needed in wait() * called with Giant, proc and schedlock not held. */ void thread_wait(struct proc *p) { struct thread *td; mtx_assert(&Giant, MA_NOTOWNED); KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); td = FIRST_THREAD_IN_PROC(p); #ifdef KSE if (td->td_standin != NULL) { if (td->td_standin->td_ucred != NULL) { crfree(td->td_standin->td_ucred); td->td_standin->td_ucred = NULL; } thread_free(td->td_standin); td->td_standin = NULL; } #endif /* Lock the last thread so we spin until it exits cpu_throw(). */ thread_lock(td); thread_unlock(td); /* Wait for any remaining threads to exit cpu_throw(). */ while (p->p_exitthreads) sched_relinquish(curthread); cpuset_rel(td->td_cpuset); td->td_cpuset = NULL; cpu_thread_clean(td); crfree(td->td_ucred); thread_reap(); /* check for zombie threads etc. */ } /* * Link a thread to a process. * set up anything that needs to be initialized for it to * be used by the process. * * Note that we do not link to the proc's ucred here. * The thread is linked as if running but no KSE assigned. * Called from: * proc_linkup() * thread_schedule_upcall() * thr_create() */ void thread_link(struct thread *td, struct proc *p) { /* * XXX This can't be enabled because it's called for proc0 before * it's spinlock has been created. * PROC_SLOCK_ASSERT(p, MA_OWNED); */ td->td_state = TDS_INACTIVE; td->td_proc = p; td->td_flags = TDF_INMEM; LIST_INIT(&td->td_contested); sigqueue_init(&td->td_sigqueue, p); callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); p->p_numthreads++; } /* * Convert a process with one thread to an unthreaded process. * Called from: * thread_single(exit) (called from execve and exit) * kse_exit() XXX may need cleaning up wrt KSE stuff */ void thread_unthread(struct thread *td) { struct proc *p = td->td_proc; KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); #ifdef KSE thread_lock(td); upcall_remove(td); thread_unlock(td); p->p_flag &= ~(P_SA|P_HADTHREADS); td->td_mailbox = NULL; td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND); if (td->td_standin != NULL) { thread_zombie(td->td_standin); td->td_standin = NULL; } #else p->p_flag &= ~P_HADTHREADS; #endif } /* * Called from: * thread_exit() */ void thread_unlink(struct thread *td) { struct proc *p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); TAILQ_REMOVE(&p->p_threads, td, td_plist); p->p_numthreads--; /* could clear a few other things here */ /* Must NOT clear links to proc! */ } /* * Enforce single-threading. * * Returns 1 if the caller must abort (another thread is waiting to * exit the process or similar). Process is locked! * Returns 0 when you are successfully the only thread running. * A process has successfully single threaded in the suspend mode when * There are no threads in user mode. Threads in the kernel must be * allowed to continue until they get to the user boundary. They may even * copy out their return values and data before suspending. They may however be * accelerated in reaching the user boundary as we will wake up * any sleeping threads that are interruptable. (PCATCH). */ int thread_single(int mode) { struct thread *td; struct thread *td2; struct proc *p; int remaining, wakeup_swapper; td = curthread; p = td->td_proc; mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT((td != NULL), ("curthread is NULL")); if ((p->p_flag & P_HADTHREADS) == 0) return (0); /* Is someone already single threading? */ if (p->p_singlethread != NULL && p->p_singlethread != td) return (1); if (mode == SINGLE_EXIT) { p->p_flag |= P_SINGLE_EXIT; p->p_flag &= ~P_SINGLE_BOUNDARY; } else { p->p_flag &= ~P_SINGLE_EXIT; if (mode == SINGLE_BOUNDARY) p->p_flag |= P_SINGLE_BOUNDARY; else p->p_flag &= ~P_SINGLE_BOUNDARY; } p->p_flag |= P_STOPPED_SINGLE; PROC_SLOCK(p); p->p_singlethread = td; if (mode == SINGLE_EXIT) remaining = p->p_numthreads; else if (mode == SINGLE_BOUNDARY) remaining = p->p_numthreads - p->p_boundary_count; else remaining = p->p_numthreads - p->p_suspcount; while (remaining != 1) { if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) goto stopme; wakeup_swapper = 0; FOREACH_THREAD_IN_PROC(p, td2) { if (td2 == td) continue; thread_lock(td2); td2->td_flags |= TDF_ASTPENDING; if (TD_IS_INHIBITED(td2)) { switch (mode) { case SINGLE_EXIT: if (td->td_flags & TDF_DBSUSPEND) td->td_flags &= ~TDF_DBSUSPEND; if (TD_IS_SUSPENDED(td2)) wakeup_swapper |= thread_unsuspend_one(td2); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) wakeup_swapper |= sleepq_abort(td2, EINTR); break; case SINGLE_BOUNDARY: if (TD_IS_SUSPENDED(td2) && !(td2->td_flags & TDF_BOUNDARY)) wakeup_swapper |= thread_unsuspend_one(td2); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) wakeup_swapper |= sleepq_abort(td2, ERESTART); break; default: if (TD_IS_SUSPENDED(td2)) { thread_unlock(td2); continue; } /* * maybe other inhibited states too? */ if ((td2->td_flags & TDF_SINTR) && (td2->td_inhibitors & (TDI_SLEEPING | TDI_SWAPPED))) thread_suspend_one(td2); break; } } #ifdef SMP else if (TD_IS_RUNNING(td2) && td != td2) { forward_signal(td2); } #endif thread_unlock(td2); } if (wakeup_swapper) kick_proc0(); if (mode == SINGLE_EXIT) remaining = p->p_numthreads; else if (mode == SINGLE_BOUNDARY) remaining = p->p_numthreads - p->p_boundary_count; else remaining = p->p_numthreads - p->p_suspcount; /* * Maybe we suspended some threads.. was it enough? */ if (remaining == 1) break; stopme: /* * Wake us up when everyone else has suspended. * In the mean time we suspend as well. */ thread_suspend_switch(td); if (mode == SINGLE_EXIT) remaining = p->p_numthreads; else if (mode == SINGLE_BOUNDARY) remaining = p->p_numthreads - p->p_boundary_count; else remaining = p->p_numthreads - p->p_suspcount; } if (mode == SINGLE_EXIT) { /* * We have gotten rid of all the other threads and we * are about to either exit or exec. In either case, * we try our utmost to revert to being a non-threaded * process. */ p->p_singlethread = NULL; p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); thread_unthread(td); } PROC_SUNLOCK(p); return (0); } /* * Called in from locations that can safely check to see * whether we have to suspend or at least throttle for a * single-thread event (e.g. fork). * * Such locations include userret(). * If the "return_instead" argument is non zero, the thread must be able to * accept 0 (caller may continue), or 1 (caller must abort) as a result. * * The 'return_instead' argument tells the function if it may do a * thread_exit() or suspend, or whether the caller must abort and back * out instead. * * If the thread that set the single_threading request has set the * P_SINGLE_EXIT bit in the process flags then this call will never return * if 'return_instead' is false, but will exit. * * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 *---------------+--------------------+--------------------- * 0 | returns 0 | returns 0 or 1 * | when ST ends | immediatly *---------------+--------------------+--------------------- * 1 | thread exits | returns 1 * | | immediatly * 0 = thread_exit() or suspension ok, * other = return error instead of stopping the thread. * * While a full suspension is under effect, even a single threading * thread would be suspended if it made this call (but it shouldn't). * This call should only be made from places where * thread_exit() would be safe as that may be the outcome unless * return_instead is set. */ int thread_suspend_check(int return_instead) { struct thread *td; struct proc *p; int wakeup_swapper; td = curthread; p = td->td_proc; mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); while (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) { if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { KASSERT(p->p_singlethread != NULL, ("singlethread not set")); /* * The only suspension in action is a * single-threading. Single threader need not stop. * XXX Should be safe to access unlocked * as it can only be set to be true by us. */ if (p->p_singlethread == td) return (0); /* Exempt from stopping. */ } if ((p->p_flag & P_SINGLE_EXIT) && return_instead) return (EINTR); /* Should we goto user boundary if we didn't come from there? */ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) return (ERESTART); /* If thread will exit, flush its pending signals */ if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) sigqueue_flush(&td->td_sigqueue); PROC_SLOCK(p); thread_stopped(p); /* * If the process is waiting for us to exit, * this thread should just suicide. * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. */ if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) thread_exit(); if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount + 1) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one(p->p_singlethread); thread_unlock(p->p_singlethread); if (wakeup_swapper) kick_proc0(); } } PROC_UNLOCK(p); thread_lock(td); /* * When a thread suspends, it just * gets taken off all queues. */ thread_suspend_one(td); if (return_instead == 0) { p->p_boundary_count++; td->td_flags |= TDF_BOUNDARY; } PROC_SUNLOCK(p); mi_switch(SW_INVOL, NULL); if (return_instead == 0) td->td_flags &= ~TDF_BOUNDARY; thread_unlock(td); PROC_LOCK(p); if (return_instead == 0) p->p_boundary_count--; } return (0); } void thread_suspend_switch(struct thread *td) { struct proc *p; p = td->td_proc; KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); /* * We implement thread_suspend_one in stages here to avoid * dropping the proc lock while the thread lock is owned. */ thread_stopped(p); p->p_suspcount++; PROC_UNLOCK(p); thread_lock(td); sched_sleep(td); TD_SET_SUSPENDED(td); PROC_SUNLOCK(p); DROP_GIANT(); mi_switch(SW_VOL, NULL); thread_unlock(td); PICKUP_GIANT(); PROC_LOCK(p); PROC_SLOCK(p); } void thread_suspend_one(struct thread *td) { struct proc *p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); p->p_suspcount++; sched_sleep(td); TD_SET_SUSPENDED(td); } int thread_unsuspend_one(struct thread *td) { struct proc *p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); TD_CLR_SUSPENDED(td); p->p_suspcount--; return (setrunnable(td)); } /* * Allow all threads blocked by single threading to continue running. */ void thread_unsuspend(struct proc *p) { struct thread *td; int wakeup_swapper; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); wakeup_swapper = 0; if (!P_SHOULDSTOP(p)) { FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (TD_IS_SUSPENDED(td)) { wakeup_swapper |= thread_unsuspend_one(td); } thread_unlock(td); } } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && (p->p_numthreads == p->p_suspcount)) { /* * Stopping everything also did the job for the single * threading request. Now we've downgraded to single-threaded, * let it continue. */ thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one(p->p_singlethread); thread_unlock(p->p_singlethread); } if (wakeup_swapper) kick_proc0(); } /* * End the single threading mode.. */ void thread_single_end(void) { struct thread *td; struct proc *p; int wakeup_swapper; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); PROC_SLOCK(p); p->p_singlethread = NULL; wakeup_swapper = 0; /* * If there are other threads they may now run, * unless of course there is a blanket 'stop order' * on the process. The single threader must be allowed * to continue however as this is a bad place to stop. */ if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (TD_IS_SUSPENDED(td)) { wakeup_swapper |= thread_unsuspend_one(td); } thread_unlock(td); } } PROC_SUNLOCK(p); if (wakeup_swapper) kick_proc0(); } struct thread * thread_find(struct proc *p, lwpid_t tid) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK(p); FOREACH_THREAD_IN_PROC(p, td) { if (td->td_tid == tid) break; } PROC_SUNLOCK(p); return (td); }