/*- * Copyright (c) 2016-2018 Ruslan Bukin * All rights reserved. * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 * ("CTSRD"), as part of the DARPA CRASH research programme. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Ingenic JZ4780 Audio Interface Controller (AIC). */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AIC_NCHANNELS 1 struct aic_softc { device_t dev; struct resource *res[1]; bus_space_tag_t bst; bus_space_handle_t bsh; struct mtx *lock; int pos; bus_dma_tag_t dma_tag; bus_dmamap_t dma_map; bus_addr_t buf_base_phys; uint32_t *buf_base; uintptr_t aic_fifo_paddr; int dma_size; clk_t clk_aic; clk_t clk_i2s; struct aic_rate *sr; void *ih; int internal_codec; /* xDMA */ struct xdma_channel *xchan; xdma_controller_t *xdma_tx; struct xdma_request req; }; /* Channel registers */ struct sc_chinfo { struct snd_dbuf *buffer; struct pcm_channel *channel; struct sc_pcminfo *parent; /* Channel information */ uint32_t dir; uint32_t format; /* Flags */ uint32_t run; }; /* PCM device private data */ struct sc_pcminfo { device_t dev; uint32_t chnum; struct sc_chinfo chan[AIC_NCHANNELS]; struct aic_softc *sc; }; static struct resource_spec aic_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { -1, 0 } }; static int aic_probe(device_t dev); static int aic_attach(device_t dev); static int aic_detach(device_t dev); static int setup_xdma(struct sc_pcminfo *scp); struct aic_rate { uint32_t speed; }; static struct aic_rate rate_map[] = { { 48000 }, /* TODO: add more frequences */ { 0 }, }; /* * Mixer interface. */ static int aicmixer_init(struct snd_mixer *m) { struct sc_pcminfo *scp; struct aic_softc *sc; int mask; scp = mix_getdevinfo(m); sc = scp->sc; if (sc == NULL) return -1; mask = SOUND_MASK_PCM; snd_mtxlock(sc->lock); pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL); mix_setdevs(m, mask); snd_mtxunlock(sc->lock); return (0); } static int aicmixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct sc_pcminfo *scp; scp = mix_getdevinfo(m); /* Here we can configure hardware volume on our DAC */ return (0); } static kobj_method_t aicmixer_methods[] = { KOBJMETHOD(mixer_init, aicmixer_init), KOBJMETHOD(mixer_set, aicmixer_set), KOBJMETHOD_END }; MIXER_DECLARE(aicmixer); /* * Channel interface. */ static void * aicchan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct aic_softc *sc; scp = (struct sc_pcminfo *)devinfo; sc = scp->sc; snd_mtxlock(sc->lock); ch = &scp->chan[0]; ch->dir = dir; ch->run = 0; ch->buffer = b; ch->channel = c; ch->parent = scp; snd_mtxunlock(sc->lock); if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) { device_printf(scp->dev, "Can't setup sndbuf.\n"); return NULL; } return (ch); } static int aicchan_free(kobj_t obj, void *data) { struct sc_chinfo *ch = data; struct sc_pcminfo *scp = ch->parent; struct aic_softc *sc = scp->sc; snd_mtxlock(sc->lock); /* TODO: free channel buffer */ snd_mtxunlock(sc->lock); return (0); } static int aicchan_setformat(kobj_t obj, void *data, uint32_t format) { struct sc_pcminfo *scp; struct sc_chinfo *ch; ch = data; scp = ch->parent; ch->format = format; return (0); } static uint32_t aicchan_setspeed(kobj_t obj, void *data, uint32_t speed) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct aic_rate *sr; struct aic_softc *sc; int threshold; int i; ch = data; scp = ch->parent; sc = scp->sc; sr = NULL; /* First look for equal frequency. */ for (i = 0; rate_map[i].speed != 0; i++) { if (rate_map[i].speed == speed) sr = &rate_map[i]; } /* If no match, just find nearest. */ if (sr == NULL) { for (i = 0; rate_map[i].speed != 0; i++) { sr = &rate_map[i]; threshold = sr->speed + ((rate_map[i + 1].speed != 0) ? ((rate_map[i + 1].speed - sr->speed) >> 1) : 0); if (speed < threshold) break; } } sc->sr = sr; /* Clocks can be reconfigured here. */ return (sr->speed); } static uint32_t aicchan_setblocksize(kobj_t obj, void *data, uint32_t blocksize) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct aic_softc *sc; ch = data; scp = ch->parent; sc = scp->sc; sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize); return (sndbuf_getblksz(ch->buffer)); } static int aic_intr(void *arg, xdma_transfer_status_t *status) { struct sc_pcminfo *scp; struct xdma_request *req; xdma_channel_t *xchan; struct sc_chinfo *ch; struct aic_softc *sc; int bufsize; scp = arg; sc = scp->sc; ch = &scp->chan[0]; req = &sc->req; xchan = sc->xchan; bufsize = sndbuf_getsize(ch->buffer); sc->pos += req->block_len; if (sc->pos >= bufsize) sc->pos -= bufsize; if (ch->run) chn_intr(ch->channel); return (0); } static int setup_xdma(struct sc_pcminfo *scp) { struct aic_softc *sc; struct sc_chinfo *ch; int fmt; int err; ch = &scp->chan[0]; sc = scp->sc; fmt = sndbuf_getfmt(ch->buffer); KASSERT(fmt & AFMT_16BIT, ("16-bit audio supported only.")); sc->req.operation = XDMA_CYCLIC; sc->req.req_type = XR_TYPE_PHYS; sc->req.direction = XDMA_MEM_TO_DEV; sc->req.src_addr = sc->buf_base_phys; sc->req.dst_addr = sc->aic_fifo_paddr; sc->req.src_width = 2; sc->req.dst_width = 2; sc->req.block_len = sndbuf_getblksz(ch->buffer); sc->req.block_num = sndbuf_getblkcnt(ch->buffer); err = xdma_request(sc->xchan, &sc->req); if (err != 0) { device_printf(sc->dev, "Can't configure virtual channel\n"); return (-1); } xdma_control(sc->xchan, XDMA_CMD_BEGIN); return (0); } static int aic_start(struct sc_pcminfo *scp) { struct aic_softc *sc; int reg; sc = scp->sc; /* Ensure clock enabled. */ reg = READ4(sc, I2SCR); reg |= (I2SCR_ESCLK); WRITE4(sc, I2SCR, reg); setup_xdma(scp); reg = (AICCR_OSS_16 | AICCR_ISS_16); reg |= (AICCR_CHANNEL_2); reg |= (AICCR_TDMS); reg |= (AICCR_ERPL); WRITE4(sc, AICCR, reg); return (0); } static int aic_stop(struct sc_pcminfo *scp) { struct aic_softc *sc; int reg; sc = scp->sc; reg = READ4(sc, AICCR); reg &= ~(AICCR_TDMS | AICCR_ERPL); WRITE4(sc, AICCR, reg); xdma_control(sc->xchan, XDMA_CMD_TERMINATE); return (0); } static int aicchan_trigger(kobj_t obj, void *data, int go) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct aic_softc *sc; ch = data; scp = ch->parent; sc = scp->sc; snd_mtxlock(sc->lock); switch (go) { case PCMTRIG_START: ch->run = 1; sc->pos = 0; aic_start(scp); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: ch->run = 0; aic_stop(scp); sc->pos = 0; bzero(sc->buf_base, sc->dma_size); break; } snd_mtxunlock(sc->lock); return (0); } static uint32_t aicchan_getptr(kobj_t obj, void *data) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct aic_softc *sc; ch = data; scp = ch->parent; sc = scp->sc; return (sc->pos); } static uint32_t aic_pfmt[] = { SND_FORMAT(AFMT_S16_LE, 2, 0), 0 }; static struct pcmchan_caps aic_pcaps = {48000, 48000, aic_pfmt, 0}; static struct pcmchan_caps * aicchan_getcaps(kobj_t obj, void *data) { return (&aic_pcaps); } static kobj_method_t aicchan_methods[] = { KOBJMETHOD(channel_init, aicchan_init), KOBJMETHOD(channel_free, aicchan_free), KOBJMETHOD(channel_setformat, aicchan_setformat), KOBJMETHOD(channel_setspeed, aicchan_setspeed), KOBJMETHOD(channel_setblocksize, aicchan_setblocksize), KOBJMETHOD(channel_trigger, aicchan_trigger), KOBJMETHOD(channel_getptr, aicchan_getptr), KOBJMETHOD(channel_getcaps, aicchan_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(aicchan); static void aic_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err) { bus_addr_t *addr; if (err) return; addr = (bus_addr_t*)arg; *addr = segs[0].ds_addr; } static int aic_dma_setup(struct aic_softc *sc) { device_t dev; int err; dev = sc->dev; /* DMA buffer size. */ sc->dma_size = 131072; /* * Must use dma_size boundary as modulo feature required. * Modulo feature allows setup circular buffer. */ err = bus_dma_tag_create( bus_get_dma_tag(sc->dev), 4, sc->dma_size, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sc->dma_size, 1, /* maxsize, nsegments */ sc->dma_size, 0, /* maxsegsize, flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->dma_tag); if (err) { device_printf(dev, "cannot create bus dma tag\n"); return (-1); } err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base, BUS_DMA_WAITOK | BUS_DMA_COHERENT, &sc->dma_map); if (err) { device_printf(dev, "cannot allocate memory\n"); return (-1); } err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base, sc->dma_size, aic_dmamap_cb, &sc->buf_base_phys, BUS_DMA_WAITOK); if (err) { device_printf(dev, "cannot load DMA map\n"); return (-1); } bzero(sc->buf_base, sc->dma_size); return (0); } static int aic_configure_clocks(struct aic_softc *sc) { uint64_t aic_freq; uint64_t i2s_freq; device_t dev; int err; dev = sc->dev; err = clk_get_by_ofw_name(sc->dev, 0, "aic", &sc->clk_aic); if (err != 0) { device_printf(dev, "Can't find aic clock.\n"); return (-1); } err = clk_enable(sc->clk_aic); if (err != 0) { device_printf(dev, "Can't enable aic clock.\n"); return (-1); } err = clk_get_by_ofw_name(sc->dev, 0, "i2s", &sc->clk_i2s); if (err != 0) { device_printf(dev, "Can't find i2s clock.\n"); return (-1); } err = clk_enable(sc->clk_i2s); if (err != 0) { device_printf(dev, "Can't enable i2s clock.\n"); return (-1); } err = clk_set_freq(sc->clk_i2s, 12000000, 0); if (err != 0) { device_printf(dev, "Can't set i2s frequency.\n"); return (-1); } clk_get_freq(sc->clk_aic, &aic_freq); clk_get_freq(sc->clk_i2s, &i2s_freq); device_printf(dev, "Frequency aic %d i2s %d\n", (uint32_t)aic_freq, (uint32_t)i2s_freq); return (0); } static int aic_configure(struct aic_softc *sc) { int reg; WRITE4(sc, AICFR, AICFR_RST); /* Configure AIC */ reg = 0; if (sc->internal_codec) { reg |= (AICFR_ICDC); } else { reg |= (AICFR_SYNCD | AICFR_BCKD); } reg |= (AICFR_AUSEL); /* I2S/MSB-justified format. */ reg |= (AICFR_TFTH(8)); /* Transmit FIFO threshold */ reg |= (AICFR_RFTH(7)); /* Receive FIFO threshold */ WRITE4(sc, AICFR, reg); reg = READ4(sc, AICFR); reg |= (AICFR_ENB); /* Enable the controller. */ WRITE4(sc, AICFR, reg); return (0); } static int sysctl_hw_pcm_internal_codec(SYSCTL_HANDLER_ARGS) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct aic_softc *sc; int error, val; if (arg1 == NULL) return (EINVAL); scp = arg1; sc = scp->sc; ch = &scp->chan[0]; snd_mtxlock(sc->lock); val = sc->internal_codec; error = sysctl_handle_int(oidp, &val, 0, req); if (error || req->newptr == NULL) { snd_mtxunlock(sc->lock); return (error); } if (val < 0 || val > 1) { snd_mtxunlock(sc->lock); return (EINVAL); } if (sc->internal_codec != val) { sc->internal_codec = val; if (ch->run) aic_stop(scp); aic_configure(sc); if (ch->run) aic_start(scp); } snd_mtxunlock(sc->lock); return (0); } static int aic_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "ingenic,jz4780-i2s")) return (ENXIO); device_set_desc(dev, "Audio Interface Controller"); return (BUS_PROBE_DEFAULT); } static int aic_attach(device_t dev) { char status[SND_STATUSLEN]; struct sc_pcminfo *scp; struct aic_softc *sc; int err; sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO); sc->dev = dev; sc->pos = 0; sc->internal_codec = 1; /* Get xDMA controller */ sc->xdma_tx = xdma_ofw_get(sc->dev, "tx"); if (sc->xdma_tx == NULL) { device_printf(dev, "Can't find DMA controller.\n"); return (ENXIO); } /* Alloc xDMA virtual channel. */ sc->xchan = xdma_channel_alloc(sc->xdma_tx, 0); if (sc->xchan == NULL) { device_printf(dev, "Can't alloc virtual DMA channel.\n"); return (ENXIO); } /* Setup sound subsystem */ sc->lock = snd_mtxcreate(device_get_nameunit(dev), "aic softc"); if (sc->lock == NULL) { device_printf(dev, "Can't create mtx.\n"); return (ENXIO); } if (bus_alloc_resources(dev, aic_spec, sc->res)) { device_printf(dev, "could not allocate resources for device\n"); return (ENXIO); } /* Memory interface */ sc->bst = rman_get_bustag(sc->res[0]); sc->bsh = rman_get_bushandle(sc->res[0]); sc->aic_fifo_paddr = rman_get_start(sc->res[0]) + AICDR; /* Setup PCM. */ scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_WAITOK | M_ZERO); scp->sc = sc; scp->dev = dev; /* Setup audio buffer. */ err = aic_dma_setup(sc); if (err != 0) { device_printf(dev, "Can't setup sound buffer.\n"); return (ENXIO); } /* Setup clocks. */ err = aic_configure_clocks(sc); if (err != 0) { device_printf(dev, "Can't configure clocks.\n"); return (ENXIO); } err = aic_configure(sc); if (err != 0) { device_printf(dev, "Can't configure AIC.\n"); return (ENXIO); } pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE); /* Setup interrupt handler. */ err = xdma_setup_intr(sc->xchan, 0, aic_intr, scp, &sc->ih); if (err) { device_printf(sc->dev, "Can't setup xDMA interrupt handler.\n"); return (ENXIO); } err = pcm_register(dev, scp, 1, 0); if (err) { device_printf(dev, "Can't register pcm.\n"); return (ENXIO); } scp->chnum = 0; pcm_addchan(dev, PCMDIR_PLAY, &aicchan_class, scp); scp->chnum++; snprintf(status, SND_STATUSLEN, "at %s", ofw_bus_get_name(dev)); pcm_setstatus(dev, status); mixer_init(dev, &aicmixer_class, scp); /* Create device sysctl node. */ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "internal_codec", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, scp, 0, sysctl_hw_pcm_internal_codec, "I", "use internal audio codec"); return (0); } static int aic_detach(device_t dev) { struct aic_softc *sc; sc = device_get_softc(dev); xdma_channel_free(sc->xchan); bus_release_resources(dev, aic_spec, sc->res); return (0); } static device_method_t aic_pcm_methods[] = { /* Device interface */ DEVMETHOD(device_probe, aic_probe), DEVMETHOD(device_attach, aic_attach), DEVMETHOD(device_detach, aic_detach), DEVMETHOD_END }; static driver_t aic_pcm_driver = { "pcm", aic_pcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(aic, simplebus, aic_pcm_driver, pcm_devclass, 0, 0); MODULE_DEPEND(aic, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(aic, 1);