/*- * Copyright (c) 2001-2006, Cisco Systems, Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* $KAME: sctp_usrreq.c,v 1.48 2005/03/07 23:26:08 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_ipsec.h" #include "opt_inet6.h" #include "opt_inet.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #include #endif /* IPSEC */ #ifndef in6pcb #define in6pcb inpcb #endif #ifndef sotoin6pcb #define sotoin6pcb sotoinpcb #endif /* * sysctl tunable variables */ int sctp_sendspace = (128 * 1024); int sctp_recvspace = 128 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); int sctp_mbuf_threshold_count = SCTP_DEFAULT_MBUFS_IN_CHAIN; int sctp_auto_asconf = SCTP_DEFAULT_AUTO_ASCONF; int sctp_ecn_enable = 1; int sctp_ecn_nonce = 0; int sctp_strict_sacks = 0; int sctp_no_csum_on_loopback = 1; int sctp_strict_init = 1; int sctp_abort_if_one_2_one_hits_limit = 0; int sctp_strict_data_order = 0; int sctp_peer_chunk_oh = sizeof(struct mbuf); int sctp_max_burst_default = SCTP_DEF_MAX_BURST; int sctp_use_cwnd_based_maxburst = 1; int sctp_do_drain = 1; int sctp_warm_the_crc32_table = 0; unsigned int sctp_max_chunks_on_queue = SCTP_ASOC_MAX_CHUNKS_ON_QUEUE; unsigned int sctp_delayed_sack_time_default = SCTP_RECV_MSEC; unsigned int sctp_heartbeat_interval_default = SCTP_HB_DEFAULT_MSEC; unsigned int sctp_pmtu_raise_time_default = SCTP_DEF_PMTU_RAISE_SEC; unsigned int sctp_shutdown_guard_time_default = SCTP_DEF_MAX_SHUTDOWN_SEC; unsigned int sctp_secret_lifetime_default = SCTP_DEFAULT_SECRET_LIFE_SEC; unsigned int sctp_rto_max_default = SCTP_RTO_UPPER_BOUND; unsigned int sctp_rto_min_default = SCTP_RTO_LOWER_BOUND; unsigned int sctp_rto_initial_default = SCTP_RTO_INITIAL; unsigned int sctp_init_rto_max_default = SCTP_RTO_UPPER_BOUND; unsigned int sctp_valid_cookie_life_default = SCTP_DEFAULT_COOKIE_LIFE; unsigned int sctp_init_rtx_max_default = SCTP_DEF_MAX_INIT; unsigned int sctp_assoc_rtx_max_default = SCTP_DEF_MAX_SEND; unsigned int sctp_path_rtx_max_default = SCTP_DEF_MAX_PATH_RTX; unsigned int sctp_nr_outgoing_streams_default = SCTP_OSTREAM_INITIAL; unsigned int sctp_add_more_threshold = SCTP_DEFAULT_ADD_MORE; uint32_t sctp_asoc_free_resc_limit = SCTP_DEF_ASOC_RESC_LIMIT; uint32_t sctp_system_free_resc_limit = SCTP_DEF_SYSTEM_RESC_LIMIT; int sctp_min_split_point = SCTP_DEFAULT_SPLIT_POINT_MIN; int sctp_pcbtblsize = SCTP_PCBHASHSIZE; int sctp_hashtblsize = SCTP_TCBHASHSIZE; int sctp_chunkscale = SCTP_CHUNKQUEUE_SCALE; unsigned int sctp_cmt_on_off = 0; unsigned int sctp_cmt_sockopt_on_off = 0; unsigned int sctp_cmt_use_dac = 0; unsigned int sctp_cmt_sockopt_use_dac = 0; int sctp_L2_abc_variable = 1; unsigned int sctp_early_fr = 0; unsigned int sctp_early_fr_msec = SCTP_MINFR_MSEC_TIMER; unsigned int sctp_use_rttvar_cc = 0; int sctp_says_check_for_deadlock = 0; unsigned int sctp_asconf_auth_nochk = 0; unsigned int sctp_nat_friendly = 1; unsigned int sctp_auth_disable = 0; unsigned int sctp_auth_random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; unsigned int sctp_auth_hmac_id_default = SCTP_AUTH_HMAC_ID_SHA1; struct sctpstat sctpstat; #ifdef SCTP_DEBUG extern uint32_t sctp_debug_on; #endif /* SCTP_DEBUG */ void sctp_init(void) { /* Init the SCTP pcb in sctp_pcb.c */ u_long sb_max_adj; sctp_pcb_init(); if ((nmbclusters / 8) > SCTP_ASOC_MAX_CHUNKS_ON_QUEUE) sctp_max_chunks_on_queue = (nmbclusters / 8); /* * Allow a user to take no more than 1/2 the number of clusters or * the SB_MAX whichever is smaller for the send window. */ sb_max_adj = (u_long)((u_quad_t) (SB_MAX) * MCLBYTES / (MSIZE + MCLBYTES)); sctp_sendspace = min((min(SB_MAX, sb_max_adj)), ((nmbclusters / 2) * SCTP_DEFAULT_MAXSEGMENT)); /* * Now for the recv window, should we take the same amount? or * should I do 1/2 the SB_MAX instead in the SB_MAX min above. For * now I will just copy. */ sctp_recvspace = sctp_sendspace; } #ifdef INET6 void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip) { bzero(ip6, sizeof(*ip6)); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = ip->ip_len; ip6->ip6_nxt = ip->ip_p; ip6->ip6_hlim = ip->ip_ttl; ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; } #endif /* INET6 */ static void sctp_pathmtu_adustment(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, uint16_t nxtsz) { struct sctp_tmit_chunk *chk; /* Adjust that too */ stcb->asoc.smallest_mtu = nxtsz; /* now off to subtract IP_DF flag if needed */ TAILQ_FOREACH(chk, &stcb->asoc.send_queue, sctp_next) { if ((chk->send_size + IP_HDR_SIZE) > nxtsz) { chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; } } TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if ((chk->send_size + IP_HDR_SIZE) > nxtsz) { /* * For this guy we also mark for immediate resend * since we sent to big of chunk */ chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; if (chk->sent != SCTP_DATAGRAM_RESEND) { sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); } chk->sent = SCTP_DATAGRAM_RESEND; chk->rec.data.doing_fast_retransmit = 0; /* Clear any time so NO RTT is being done */ chk->do_rtt = 0; if (stcb->asoc.total_flight >= chk->book_size) stcb->asoc.total_flight -= chk->book_size; else stcb->asoc.total_flight = 0; if (stcb->asoc.total_flight_count > 0) stcb->asoc.total_flight_count--; if (net->flight_size >= chk->book_size) net->flight_size -= chk->book_size; else net->flight_size = 0; } } } static void sctp_notify_mbuf(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, struct ip *ip, struct sctphdr *sh) { struct icmp *icmph; int totsz, tmr_stopped = 0; uint16_t nxtsz; /* protection */ if ((inp == NULL) || (stcb == NULL) || (net == NULL) || (ip == NULL) || (sh == NULL)) { if (stcb != NULL) SCTP_TCB_UNLOCK(stcb); return; } /* First job is to verify the vtag matches what I would send */ if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } icmph = (struct icmp *)((caddr_t)ip - (sizeof(struct icmp) - sizeof(struct ip))); if (icmph->icmp_type != ICMP_UNREACH) { /* We only care about unreachable */ SCTP_TCB_UNLOCK(stcb); return; } if (icmph->icmp_code != ICMP_UNREACH_NEEDFRAG) { /* not a unreachable message due to frag. */ SCTP_TCB_UNLOCK(stcb); return; } totsz = ip->ip_len; nxtsz = ntohs(icmph->icmp_seq); if (nxtsz == 0) { /* * old type router that does not tell us what the next size * mtu is. Rats we will have to guess (in a educated fashion * of course) */ nxtsz = find_next_best_mtu(totsz); } /* Stop any PMTU timer */ if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { tmr_stopped = 1; sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_1); } /* Adjust destination size limit */ if (net->mtu > nxtsz) { net->mtu = nxtsz; } /* now what about the ep? */ if (stcb->asoc.smallest_mtu > nxtsz) { sctp_pathmtu_adustment(inp, stcb, net, nxtsz); } if (tmr_stopped) sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net); SCTP_TCB_UNLOCK(stcb); } void sctp_notify(struct sctp_inpcb *inp, int errno, struct sctphdr *sh, struct sockaddr *to, struct sctp_tcb *stcb, struct sctp_nets *net) { /* protection */ if ((inp == NULL) || (stcb == NULL) || (net == NULL) || (sh == NULL) || (to == NULL)) { return; } /* First job is to verify the vtag matches what I would send */ if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) { return; } /* FIX ME FIX ME PROTOPT i.e. no SCTP should ALWAYS be an ABORT */ if ((errno == EHOSTUNREACH) || /* Host is not reachable */ (errno == EHOSTDOWN) || /* Host is down */ (errno == ECONNREFUSED) || /* Host refused the connection, (not * an abort?) */ (errno == ENOPROTOOPT) /* SCTP is not present on host */ ) { /* * Hmm reachablity problems we must examine closely. If its * not reachable, we may have lost a network. Or if there is * NO protocol at the other end named SCTP. well we consider * it a OOTB abort. */ if ((errno == EHOSTUNREACH) || (errno == EHOSTDOWN)) { if (net->dest_state & SCTP_ADDR_REACHABLE) { /* Ok that destination is NOT reachable */ net->dest_state &= ~SCTP_ADDR_REACHABLE; net->dest_state |= SCTP_ADDR_NOT_REACHABLE; net->error_count = net->failure_threshold + 1; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, SCTP_FAILED_THRESHOLD, (void *)net); } if (stcb) SCTP_TCB_UNLOCK(stcb); } else { /* * Here the peer is either playing tricks on us, * including an address that belongs to someone who * does not support SCTP OR was a userland * implementation that shutdown and now is dead. In * either case treat it like a OOTB abort with no * TCB */ sctp_abort_notification(stcb, SCTP_PEER_FAULTY); sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_2); /* no need to unlock here, since the TCB is gone */ } } else { /* Send all others to the app */ if (stcb) SCTP_TCB_UNLOCK(stcb); if (inp->sctp_socket) { #ifdef SCTP_LOCK_LOGGING sctp_log_lock(inp, stcb, SCTP_LOG_LOCK_SOCK); #endif SOCK_LOCK(inp->sctp_socket); inp->sctp_socket->so_error = errno; sctp_sowwakeup(inp, inp->sctp_socket); SOCK_UNLOCK(inp->sctp_socket); } } } void sctp_ctlinput(cmd, sa, vip) int cmd; struct sockaddr *sa; void *vip; { struct ip *ip = vip; struct sctphdr *sh; int s; if (sa->sa_family != AF_INET || ((struct sockaddr_in *)sa)->sin_addr.s_addr == INADDR_ANY) { return; } if (PRC_IS_REDIRECT(cmd)) { ip = 0; } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) { return; } if (ip) { struct sctp_inpcb *inp = NULL; struct sctp_tcb *stcb = NULL; struct sctp_nets *net = NULL; struct sockaddr_in to, from; sh = (struct sctphdr *)((caddr_t)ip + (ip->ip_hl << 2)); bzero(&to, sizeof(to)); bzero(&from, sizeof(from)); from.sin_family = to.sin_family = AF_INET; from.sin_len = to.sin_len = sizeof(to); from.sin_port = sh->src_port; from.sin_addr = ip->ip_src; to.sin_port = sh->dest_port; to.sin_addr = ip->ip_dst; /* * 'to' holds the dest of the packet that failed to be sent. * 'from' holds our local endpoint address. Thus we reverse * the to and the from in the lookup. */ s = splnet(); stcb = sctp_findassociation_addr_sa((struct sockaddr *)&from, (struct sockaddr *)&to, &inp, &net, 1); if (stcb != NULL && inp && (inp->sctp_socket != NULL)) { if (cmd != PRC_MSGSIZE) { int cm; if (cmd == PRC_HOSTDEAD) { cm = EHOSTUNREACH; } else { cm = inetctlerrmap[cmd]; } sctp_notify(inp, cm, sh, (struct sockaddr *)&to, stcb, net); } else { /* handle possible ICMP size messages */ sctp_notify_mbuf(inp, stcb, net, ip, sh); } } else { if ((stcb == NULL) && (inp != NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } splx(s); } return; } static int sctp_getcred(SYSCTL_HANDLER_ARGS) { struct xucred xuc; struct sockaddr_in addrs[2]; struct sctp_inpcb *inp; struct sctp_nets *net; struct sctp_tcb *stcb; int error; /* * XXXRW: Other instances of getcred use SUSER_ALLOWJAIL, as socket * visibility is scoped using cr_canseesocket(), which it is not * here. */ error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED, 0); if (error) return (error); error = SYSCTL_IN(req, addrs, sizeof(addrs)); if (error) return (error); stcb = sctp_findassociation_addr_sa(sintosa(&addrs[0]), sintosa(&addrs[1]), &inp, &net, 1); if (stcb == NULL || inp == NULL || inp->sctp_socket == NULL) { if ((inp != NULL) && (stcb == NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); goto cred_can_cont; } error = ENOENT; goto out; } SCTP_TCB_UNLOCK(stcb); /* * We use the write lock here, only since in the error leg we need * it. If we used RLOCK, then we would have to * wlock/decr/unlock/rlock. Which in theory could create a hole. * Better to use higher wlock. */ SCTP_INP_WLOCK(inp); cred_can_cont: error = cr_canseesocket(req->td->td_ucred, inp->sctp_socket); if (error) { SCTP_INP_WUNLOCK(inp); goto out; } cru2x(inp->sctp_socket->so_cred, &xuc); SCTP_INP_WUNLOCK(inp); error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); out: return (error); } SYSCTL_PROC(_net_inet_sctp, OID_AUTO, getcred, CTLTYPE_OPAQUE | CTLFLAG_RW, 0, 0, sctp_getcred, "S,ucred", "Get the ucred of a SCTP connection"); static int sctp_assoclist(SYSCTL_HANDLER_ARGS) { unsigned int number_of_endpoints; unsigned int number_of_local_addresses; unsigned int number_of_associations; unsigned int number_of_remote_addresses; unsigned int n; int error; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctp_laddr *laddr; struct xsctp_inpcb xinpcb; struct xsctp_tcb xstcb; /* struct xsctp_laddr xladdr; */ struct xsctp_raddr xraddr; number_of_endpoints = 0; number_of_local_addresses = 0; number_of_associations = 0; number_of_remote_addresses = 0; SCTP_INP_INFO_RLOCK(); if (req->oldptr == USER_ADDR_NULL) { LIST_FOREACH(inp, &sctppcbinfo.listhead, sctp_list) { SCTP_INP_RLOCK(inp); number_of_endpoints++; /* FIXME MT */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { number_of_local_addresses++; } LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { number_of_associations++; /* FIXME MT */ LIST_FOREACH(laddr, &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) { number_of_local_addresses++; } TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { number_of_remote_addresses++; } } SCTP_INP_RUNLOCK(inp); } SCTP_INP_INFO_RUNLOCK(); n = (number_of_endpoints + 1) * sizeof(struct xsctp_inpcb) + number_of_local_addresses * sizeof(struct xsctp_laddr) + number_of_associations * sizeof(struct xsctp_tcb) + number_of_remote_addresses * sizeof(struct xsctp_raddr); #ifdef SCTP_DEBUG printf("inps = %u, stcbs = %u, laddrs = %u, raddrs = %u\n", number_of_endpoints, number_of_associations, number_of_local_addresses, number_of_remote_addresses); #endif /* request some more memory than needed */ req->oldidx = (n + n / 8); return 0; } if (req->newptr != USER_ADDR_NULL) { SCTP_INP_INFO_RUNLOCK(); return EPERM; } LIST_FOREACH(inp, &sctppcbinfo.listhead, sctp_list) { SCTP_INP_RLOCK(inp); number_of_local_addresses = 0; number_of_associations = 0; /* * LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) * { number_of_local_addresses++; } */ LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { number_of_associations++; } xinpcb.last = 0; xinpcb.local_port = ntohs(inp->sctp_lport); xinpcb.number_local_addresses = number_of_local_addresses; xinpcb.number_associations = number_of_associations; xinpcb.flags = inp->sctp_flags; xinpcb.features = inp->sctp_features; xinpcb.total_sends = inp->total_sends; xinpcb.total_recvs = inp->total_recvs; xinpcb.total_nospaces = inp->total_nospaces; SCTP_INP_INCR_REF(inp); SCTP_INP_RUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); error = SYSCTL_OUT(req, &xinpcb, sizeof(struct xsctp_inpcb)); if (error) { return error; } SCTP_INP_INFO_RLOCK(); SCTP_INP_RLOCK(inp); /* FIXME MT */ /* * LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) * { error = SYSCTL_OUT(req, &xladdr, sizeof(struct * xsctp_laddr)); if (error) { #if * defined(SCTP_APPLE_FINE_GRAINED_LOCKING) * socket_unlock(inp->ip_inp.inp.inp_socket, 1); * lck_rw_unlock_shared(sctppcbinfo.ipi_ep_mtx); #endif * SCTP_INP_RUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return * error; } } */ LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { SCTP_TCB_LOCK(stcb); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); number_of_local_addresses = 0; number_of_remote_addresses = 0; /* FIXME MT */ /* * LIST_FOREACH(laddr, * &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) * { number_of_local_addresses++; } */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { number_of_remote_addresses++; } xstcb.remote_port = ntohs(stcb->rport); xstcb.number_local_addresses = number_of_local_addresses; xstcb.number_remote_addresses = number_of_remote_addresses; xstcb.number_incomming_streams = 0; xstcb.number_outgoing_streams = 0; xstcb.state = stcb->asoc.state; xstcb.total_sends = stcb->total_sends; xstcb.total_recvs = stcb->total_recvs; xstcb.local_tag = stcb->asoc.my_vtag; xstcb.remote_tag = stcb->asoc.peer_vtag; xstcb.initial_tsn = stcb->asoc.init_seq_number; xstcb.highest_tsn = stcb->asoc.sending_seq - 1; xstcb.cumulative_tsn = stcb->asoc.last_acked_seq; xstcb.cumulative_tsn_ack = stcb->asoc.cumulative_tsn; SCTP_INP_RUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); error = SYSCTL_OUT(req, &xstcb, sizeof(struct xsctp_tcb)); if (error) { atomic_add_int(&stcb->asoc.refcnt, -1); return error; } /* FIXME MT */ /* * LIST_FOREACH(laddr, * &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) * { error = SYSCTL_OUT(req, &xladdr, sizeof(struct * xsctp_laddr)); if (error) { #if * defined(SCTP_APPLE_FINE_GRAINED_LOCKING) * socket_unlock(inp->ip_inp.inp.inp_socket, 1); * lck_rw_unlock_shared(sctppcbinfo.ipi_ep_mtx); * #endif SCTP_INP_RUNLOCK(inp); * SCTP_INP_INFO_RUNLOCK(); return error; } * */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { xraddr.state = net->dest_state; xraddr.address = net->ro._l_addr; error = SYSCTL_OUT(req, &xraddr, sizeof(struct xsctp_raddr)); if (error) { atomic_add_int(&stcb->asoc.refcnt, -1); return error; } } atomic_add_int(&stcb->asoc.refcnt, -1); SCTP_INP_INFO_RLOCK(); SCTP_INP_RLOCK(inp); } SCTP_INP_DECR_REF(inp); SCTP_INP_RUNLOCK(inp); } SCTP_INP_INFO_RUNLOCK(); xinpcb.last = 1; xinpcb.local_port = 0; xinpcb.number_local_addresses = 0; xinpcb.number_associations = 0; xinpcb.flags = 0; xinpcb.features = 0; error = SYSCTL_OUT(req, &xinpcb, sizeof(struct xsctp_inpcb)); return error; } /* * sysctl definitions */ SYSCTL_INT(_net_inet_sctp, OID_AUTO, sendspace, CTLFLAG_RW, &sctp_sendspace, 0, "Maximum outgoing SCTP buffer size"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, recvspace, CTLFLAG_RW, &sctp_recvspace, 0, "Maximum incoming SCTP buffer size"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, auto_asconf, CTLFLAG_RW, &sctp_auto_asconf, 0, "Enable SCTP Auto-ASCONF"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, ecn_enable, CTLFLAG_RW, &sctp_ecn_enable, 0, "Enable SCTP ECN"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, ecn_nonce, CTLFLAG_RW, &sctp_ecn_nonce, 0, "Enable SCTP ECN Nonce"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, strict_sacks, CTLFLAG_RW, &sctp_strict_sacks, 0, "Enable SCTP Strict SACK checking"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, loopback_nocsum, CTLFLAG_RW, &sctp_no_csum_on_loopback, 0, "Enable NO Csum on packets sent on loopback"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, strict_init, CTLFLAG_RW, &sctp_strict_init, 0, "Enable strict INIT/INIT-ACK singleton enforcement"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, peer_chkoh, CTLFLAG_RW, &sctp_peer_chunk_oh, 0, "Amount to debit peers rwnd per chunk sent"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, maxburst, CTLFLAG_RW, &sctp_max_burst_default, 0, "Default max burst for sctp endpoints"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, maxchunks, CTLFLAG_RW, &sctp_max_chunks_on_queue, 0, "Default max chunks on queue per asoc"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, tcbhashsize, CTLFLAG_RW, &sctp_hashtblsize, 0, "Tuneable for Hash table sizes"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, min_split_point, CTLFLAG_RW, &sctp_min_split_point, 0, "Minimum size when splitting a chunk"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, pcbhashsize, CTLFLAG_RW, &sctp_pcbtblsize, 0, "Tuneable for PCB Hash table sizes"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, sys_resource, CTLFLAG_RW, &sctp_system_free_resc_limit, 0, "Max number of cached resources in the system"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, asoc_resource, CTLFLAG_RW, &sctp_asoc_free_resc_limit, 0, "Max number of cached resources in an asoc"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, chunkscale, CTLFLAG_RW, &sctp_chunkscale, 0, "Tuneable for Scaling of number of chunks and messages"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, delayed_sack_time, CTLFLAG_RW, &sctp_delayed_sack_time_default, 0, "Default delayed SACK timer in msec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, heartbeat_interval, CTLFLAG_RW, &sctp_heartbeat_interval_default, 0, "Default heartbeat interval in msec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, pmtu_raise_time, CTLFLAG_RW, &sctp_pmtu_raise_time_default, 0, "Default PMTU raise timer in sec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, shutdown_guard_time, CTLFLAG_RW, &sctp_shutdown_guard_time_default, 0, "Default shutdown guard timer in sec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, secret_lifetime, CTLFLAG_RW, &sctp_secret_lifetime_default, 0, "Default secret lifetime in sec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, rto_max, CTLFLAG_RW, &sctp_rto_max_default, 0, "Default maximum retransmission timeout in msec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, rto_min, CTLFLAG_RW, &sctp_rto_min_default, 0, "Default minimum retransmission timeout in msec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, rto_initial, CTLFLAG_RW, &sctp_rto_initial_default, 0, "Default initial retransmission timeout in msec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, init_rto_max, CTLFLAG_RW, &sctp_init_rto_max_default, 0, "Default maximum retransmission timeout during association setup in msec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, valid_cookie_life, CTLFLAG_RW, &sctp_valid_cookie_life_default, 0, "Default cookie lifetime in sec"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, init_rtx_max, CTLFLAG_RW, &sctp_init_rtx_max_default, 0, "Default maximum number of retransmission for INIT chunks"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, assoc_rtx_max, CTLFLAG_RW, &sctp_assoc_rtx_max_default, 0, "Default maximum number of retransmissions per association"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, path_rtx_max, CTLFLAG_RW, &sctp_path_rtx_max_default, 0, "Default maximum of retransmissions per path"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, add_more_on_output, CTLFLAG_RW, &sctp_add_more_threshold, 0, "When space wise is it worthwhile to try to add more to a socket send buffer"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, nr_outgoing_streams, CTLFLAG_RW, &sctp_nr_outgoing_streams_default, 0, "Default number of outgoing streams"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, cmt_on_off, CTLFLAG_RW, &sctp_cmt_on_off, 0, "CMT ON/OFF flag"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, cwnd_maxburst, CTLFLAG_RW, &sctp_use_cwnd_based_maxburst, 0, "Use a CWND adjusting maxburst"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, early_fast_retran, CTLFLAG_RW, &sctp_early_fr, 0, "Early Fast Retransmit with Timer"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, use_rttvar_congctrl, CTLFLAG_RW, &sctp_use_rttvar_cc, 0, "Use congestion control via rtt variation"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, deadlock_detect, CTLFLAG_RW, &sctp_says_check_for_deadlock, 0, "SMP Deadlock detection on/off"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, early_fast_retran_msec, CTLFLAG_RW, &sctp_early_fr_msec, 0, "Early Fast Retransmit minimum timer value"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, asconf_auth_nochk, CTLFLAG_RW, &sctp_asconf_auth_nochk, 0, "Disable SCTP ASCONF AUTH requirement"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, auth_disable, CTLFLAG_RW, &sctp_auth_disable, 0, "Disable SCTP AUTH chunk requirement/function"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, auth_random_len, CTLFLAG_RW, &sctp_auth_random_len, 0, "Length of AUTH RANDOMs"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, auth_hmac_id, CTLFLAG_RW, &sctp_auth_hmac_id_default, 0, "Default HMAC Id for SCTP AUTHenthication"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, abc_l_var, CTLFLAG_RW, &sctp_L2_abc_variable, 0, "SCTP ABC max increase per SACK (L)"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, max_chained_mbufs, CTLFLAG_RW, &sctp_mbuf_threshold_count, 0, "Default max number of small mbufs on a chain"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, cmt_use_dac, CTLFLAG_RW, &sctp_cmt_use_dac, 0, "CMT DAC ON/OFF flag"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, do_sctp_drain, CTLFLAG_RW, &sctp_do_drain, 0, "Should SCTP respond to the drain calls"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, warm_crc_table, CTLFLAG_RW, &sctp_warm_the_crc32_table, 0, "Should the CRC32c tables be warmed before checksum?"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, abort_at_limit, CTLFLAG_RW, &sctp_abort_if_one_2_one_hits_limit, 0, "When one-2-one hits qlimit abort"); SYSCTL_INT(_net_inet_sctp, OID_AUTO, strict_data_order, CTLFLAG_RW, &sctp_strict_data_order, 0, "Enforce strict data ordering, abort if control inside data"); SYSCTL_STRUCT(_net_inet_sctp, OID_AUTO, stats, CTLFLAG_RW, &sctpstat, sctpstat, "SCTP statistics (struct sctps_stat, netinet/sctp.h"); SYSCTL_PROC(_net_inet_sctp, OID_AUTO, assoclist, CTLFLAG_RD, 0, 0, sctp_assoclist, "S,xassoc", "List of active SCTP associations"); SYSCTL_UINT(_net_inet_sctp, OID_AUTO, nat_friendly, CTLFLAG_RW, &sctp_nat_friendly, 0, "SCTP NAT friendly operation"); #ifdef SCTP_DEBUG SYSCTL_INT(_net_inet_sctp, OID_AUTO, debug, CTLFLAG_RW, &sctp_debug_on, 0, "Configure debug output"); #endif /* SCTP_DEBUG */ static void sctp_abort(struct socket *so) { struct sctp_inpcb *inp; int s; uint32_t flags; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return; s = splnet(); sctp_must_try_again: flags = inp->sctp_flags; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 17); #endif if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 16); #endif sctp_inpcb_free(inp, 1, 0); SOCK_LOCK(so); so->so_snd.sb_cc = 0; so->so_snd.sb_mb = NULL; so->so_snd.sb_mbcnt = 0; /* * same for the rcv ones, they are only here for the * accounting/select. */ so->so_rcv.sb_cc = 0; so->so_rcv.sb_mb = NULL; so->so_rcv.sb_mbcnt = 0; /* * Now null out the reference, we are completely detached. */ so->so_pcb = NULL; SOCK_UNLOCK(so); } else { flags = inp->sctp_flags; if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) { goto sctp_must_try_again; } } splx(s); return; } static int sctp_attach(struct socket *so, int proto, struct thread *p) { struct sctp_inpcb *inp; struct inpcb *ip_inp; int s, error; #ifdef IPSEC uint32_t flags; #endif s = splnet(); inp = (struct sctp_inpcb *)so->so_pcb; if (inp != 0) { splx(s); return EINVAL; } error = soreserve(so, sctp_sendspace, sctp_recvspace); if (error) { splx(s); return error; } error = sctp_inpcb_alloc(so); if (error) { splx(s); return error; } inp = (struct sctp_inpcb *)so->so_pcb; SCTP_INP_WLOCK(inp); inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUND_V6; /* I'm not v6! */ ip_inp = &inp->ip_inp.inp; ip_inp->inp_vflag |= INP_IPV4; ip_inp->inp_ip_ttl = ip_defttl; #ifdef IPSEC error = ipsec_init_pcbpolicy(so, &ip_inp->inp_sp); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 17); #endif if (error != 0) { flags = inp->sctp_flags; if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 15); #endif sctp_inpcb_free(inp, 1, 0); } return error; } #endif /* IPSEC */ SCTP_INP_WUNLOCK(inp); splx(s); return 0; } static int sctp_bind(struct socket *so, struct sockaddr *addr, struct thread *p) { struct sctp_inpcb *inp; int s, error; #ifdef INET6 if (addr && addr->sa_family != AF_INET) /* must be a v4 address! */ return EINVAL; #endif /* INET6 */ inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; s = splnet(); error = sctp_inpcb_bind(so, addr, p); splx(s); return error; } static void sctp_close(struct socket *so) { struct sctp_inpcb *inp; uint32_t flags; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return; /* * Inform all the lower layer assoc that we are done. */ sctp_must_try_again: flags = inp->sctp_flags; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 17); #endif if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) && (atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) { if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) || (so->so_rcv.sb_cc > 0)) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 13); #endif sctp_inpcb_free(inp, 1, 1); } else { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 14); #endif sctp_inpcb_free(inp, 0, 1); } /* * The socket is now detached, no matter what the state of * the SCTP association. */ SOCK_LOCK(so); so->so_snd.sb_cc = 0; so->so_snd.sb_mb = NULL; so->so_snd.sb_mbcnt = 0; /* * same for the rcv ones, they are only here for the * accounting/select. */ so->so_rcv.sb_cc = 0; so->so_rcv.sb_mb = NULL; so->so_rcv.sb_mbcnt = 0; /* * Now null out the reference, we are completely detached. */ so->so_pcb = NULL; SOCK_UNLOCK(so); } else { flags = inp->sctp_flags; if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) { goto sctp_must_try_again; } } return; } int sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *p); int sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *p) { struct sctp_inpcb *inp; int error; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { if (control) { sctp_m_freem(control); control = NULL; } sctp_m_freem(m); return EINVAL; } /* Got to have an to address if we are NOT a connected socket */ if ((addr == NULL) && ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) || (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)) ) { goto connected_type; } else if (addr == NULL) { error = EDESTADDRREQ; sctp_m_freem(m); if (control) { sctp_m_freem(control); control = NULL; } return (error); } #ifdef INET6 if (addr->sa_family != AF_INET) { /* must be a v4 address! */ sctp_m_freem(m); if (control) { sctp_m_freem(control); control = NULL; } error = EDESTADDRREQ; return EINVAL; } #endif /* INET6 */ connected_type: /* now what about control */ if (control) { if (inp->control) { printf("huh? control set?\n"); sctp_m_freem(inp->control); inp->control = NULL; } inp->control = control; } /* Place the data */ if (inp->pkt) { SCTP_BUF_NEXT(inp->pkt_last) = m; inp->pkt_last = m; } else { inp->pkt_last = inp->pkt = m; } if ( /* FreeBSD uses a flag passed */ ((flags & PRUS_MORETOCOME) == 0) ) { /* * note with the current version this code will only be used * by OpenBSD-- NetBSD, FreeBSD, and MacOS have methods for * re-defining sosend to use the sctp_sosend. One can * optionally switch back to this code (by changing back the * definitions) but this is not advisable. This code is used * by FreeBSD when sending a file with sendfile() though. */ int ret; ret = sctp_output(inp, inp->pkt, addr, inp->control, p, flags); inp->pkt = NULL; inp->control = NULL; return (ret); } else { return (0); } } static int sctp_disconnect(struct socket *so) { struct sctp_inpcb *inp; int s; s = splnet(); inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { splx(s); return (ENOTCONN); } SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { if (LIST_EMPTY(&inp->sctp_asoc_list)) { /* No connection */ splx(s); SCTP_INP_RUNLOCK(inp); return (0); } else { struct sctp_association *asoc; struct sctp_tcb *stcb; stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { splx(s); SCTP_INP_RUNLOCK(inp); return (EINVAL); } SCTP_TCB_LOCK(stcb); asoc = &stcb->asoc; if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* We are about to be freed, out of here */ SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); return (0); } if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) || (so->so_rcv.sb_cc > 0)) { if (SCTP_GET_STATE(asoc) != SCTP_STATE_COOKIE_WAIT) { /* Left with Data unread */ struct mbuf *err; err = sctp_get_mbuf_for_msg(sizeof(struct sctp_paramhdr), 0, M_DONTWAIT, 1, MT_DATA); if (err) { /* * Fill in the user * initiated abort */ struct sctp_paramhdr *ph; ph = mtod(err, struct sctp_paramhdr *); SCTP_BUF_LEN(err) = sizeof(struct sctp_paramhdr); ph->param_type = htons(SCTP_CAUSE_USER_INITIATED_ABT); ph->param_length = htons(SCTP_BUF_LEN(err)); } sctp_send_abort_tcb(stcb, err); SCTP_STAT_INCR_COUNTER32(sctps_aborted); } SCTP_INP_RUNLOCK(inp); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_3); /* No unlock tcb assoc is gone */ splx(s); return (0); } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->stream_queue_cnt == 0)) { /* there is nothing queued to send, so done */ if (asoc->locked_on_sending) { goto abort_anyway; } if ((SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) { /* only send SHUTDOWN 1st time thru */ sctp_stop_timers_for_shutdown(stcb); sctp_send_shutdown(stcb, stcb->asoc.primary_destination); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3); asoc->state = SCTP_STATE_SHUTDOWN_SENT; SCTP_STAT_DECR_GAUGE32(sctps_currestab); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, asoc->primary_destination); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } } else { /* * we still got (or just got) data to send, * so set SHUTDOWN_PENDING */ /* * XXX sockets draft says that SCTP_EOF * should be sent with no data. currently, * we will allow user data to be sent first * and move to SHUTDOWN-PENDING */ asoc->state |= SCTP_STATE_SHUTDOWN_PENDING; sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); if (asoc->locked_on_sending) { /* Locked to send out the data */ struct sctp_stream_queue_pending *sp; sp = TAILQ_LAST(&asoc->locked_on_sending->outqueue, sctp_streamhead); if (sp == NULL) { printf("Error, sp is NULL, locked on sending is non-null strm:%d\n", asoc->locked_on_sending->stream_no); } else { if ((sp->length == 0) && (sp->msg_is_complete == 0)) asoc->state |= SCTP_STATE_PARTIAL_MSG_LEFT; } } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; abort_anyway: op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)), 0, M_DONTWAIT, 1, MT_DATA); if (op_err) { /* * Fill in the user * initiated abort */ struct sctp_paramhdr *ph; uint32_t *ippp; SCTP_BUF_LEN(op_err) = (sizeof(struct sctp_paramhdr) + sizeof(uint32_t)); ph = mtod(op_err, struct sctp_paramhdr *); ph->param_type = htons( SCTP_CAUSE_USER_INITIATED_ABT); ph->param_length = htons(SCTP_BUF_LEN(op_err)); ippp = (uint32_t *) (ph + 1); *ippp = htonl(SCTP_FROM_SCTP_USRREQ + SCTP_LOC_4); } stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_USRREQ + SCTP_LOC_4; sctp_send_abort_tcb(stcb, op_err); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_INP_RUNLOCK(inp); sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_5); splx(s); return (0); } } SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); splx(s); return (0); } /* not reached */ } else { /* UDP model does not support this */ SCTP_INP_RUNLOCK(inp); splx(s); return EOPNOTSUPP; } } int sctp_shutdown(struct socket *so) { struct sctp_inpcb *inp; int s; s = splnet(); inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { splx(s); return EINVAL; } SCTP_INP_RLOCK(inp); /* For UDP model this is a invalid call */ if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { /* Restore the flags that the soshutdown took away. */ so->so_rcv.sb_state &= ~SBS_CANTRCVMORE; /* This proc will wakeup for read and do nothing (I hope) */ splx(s); SCTP_INP_RUNLOCK(inp); return (EOPNOTSUPP); } /* * Ok if we reach here its the TCP model and it is either a SHUT_WR * or SHUT_RDWR. This means we put the shutdown flag against it. */ { struct sctp_tcb *stcb; struct sctp_association *asoc; socantsendmore(so); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { /* * Ok we hit the case that the shutdown call was * made after an abort or something. Nothing to do * now. */ splx(s); return (0); } SCTP_TCB_LOCK(stcb); asoc = &stcb->asoc; if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->stream_queue_cnt == 0)) { if (asoc->locked_on_sending) { goto abort_anyway; } /* there is nothing queued to send, so I'm done... */ if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) { /* only send SHUTDOWN the first time through */ sctp_stop_timers_for_shutdown(stcb); sctp_send_shutdown(stcb, stcb->asoc.primary_destination); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3); asoc->state = SCTP_STATE_SHUTDOWN_SENT; SCTP_STAT_DECR_GAUGE32(sctps_currestab); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, asoc->primary_destination); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } } else { /* * we still got (or just got) data to send, so set * SHUTDOWN_PENDING */ asoc->state |= SCTP_STATE_SHUTDOWN_PENDING; sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); if (asoc->locked_on_sending) { /* Locked to send out the data */ struct sctp_stream_queue_pending *sp; sp = TAILQ_LAST(&asoc->locked_on_sending->outqueue, sctp_streamhead); if (sp == NULL) { printf("Error, sp is NULL, locked on sending is non-null strm:%d\n", asoc->locked_on_sending->stream_no); } else { if ((sp->length == 0) && (sp->msg_is_complete == 0)) { asoc->state |= SCTP_STATE_PARTIAL_MSG_LEFT; } } } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; abort_anyway: op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)), 0, M_DONTWAIT, 1, MT_DATA); if (op_err) { /* Fill in the user initiated abort */ struct sctp_paramhdr *ph; uint32_t *ippp; SCTP_BUF_LEN(op_err) = sizeof(struct sctp_paramhdr) + sizeof(uint32_t); ph = mtod(op_err, struct sctp_paramhdr *); ph->param_type = htons( SCTP_CAUSE_USER_INITIATED_ABT); ph->param_length = htons(SCTP_BUF_LEN(op_err)); ippp = (uint32_t *) (ph + 1); *ippp = htonl(SCTP_FROM_SCTP_USRREQ + SCTP_LOC_6); } stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_USRREQ + SCTP_LOC_6; sctp_abort_an_association(stcb->sctp_ep, stcb, SCTP_RESPONSE_TO_USER_REQ, op_err); goto skip_unlock; } } SCTP_TCB_UNLOCK(stcb); } skip_unlock: SCTP_INP_RUNLOCK(inp); splx(s); return 0; } /* * copies a "user" presentable address and removes embedded scope, etc. * returns 0 on success, 1 on error */ static uint32_t sctp_fill_user_address(struct sockaddr_storage *ss, struct sockaddr *sa) { struct sockaddr_in6 lsa6; sa = (struct sockaddr *)sctp_recover_scope((struct sockaddr_in6 *)sa, &lsa6); memcpy(ss, sa, sa->sa_len); return (0); } static int sctp_fill_up_addresses(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int limit, struct sockaddr_storage *sas) { struct ifnet *ifn; struct ifaddr *ifa; int loopback_scope, ipv4_local_scope, local_scope, site_scope, actual; int ipv4_addr_legal, ipv6_addr_legal; actual = 0; if (limit <= 0) return (actual); if (stcb) { /* Turn on all the appropriate scope */ loopback_scope = stcb->asoc.loopback_scope; ipv4_local_scope = stcb->asoc.ipv4_local_scope; local_scope = stcb->asoc.local_scope; site_scope = stcb->asoc.site_scope; } else { /* Turn on ALL scope, since we look at the EP */ loopback_scope = ipv4_local_scope = local_scope = site_scope = 1; } ipv4_addr_legal = ipv6_addr_legal = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ipv6_addr_legal = 1; if ( (((struct in6pcb *)inp)->inp_flags & IN6P_IPV6_V6ONLY) == 0) { ipv4_addr_legal = 1; } } else { ipv4_addr_legal = 1; } if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { TAILQ_FOREACH(ifn, &ifnet, if_list) { if ((loopback_scope == 0) && (ifn->if_type == IFT_LOOP)) { /* Skip loopback if loopback_scope not set */ continue; } TAILQ_FOREACH(ifa, &ifn->if_addrlist, ifa_list) { if (stcb) { /* * For the BOUND-ALL case, the list * associated with a TCB is Always * considered a reverse list.. i.e. * it lists addresses that are NOT * part of the association. If this * is one of those we must skip it. */ if (sctp_is_addr_restricted(stcb, ifa->ifa_addr)) { continue; } } if ((ifa->ifa_addr->sa_family == AF_INET) && (ipv4_addr_legal)) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)ifa->ifa_addr; if (sin->sin_addr.s_addr == 0) { /* * we skip unspecifed * addresses */ continue; } if ((ipv4_local_scope == 0) && (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { continue; } if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) { in6_sin_2_v4mapsin6(sin, (struct sockaddr_in6 *)sas); ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(struct sockaddr_in6)); actual += sizeof(sizeof(struct sockaddr_in6)); } else { memcpy(sas, sin, sizeof(*sin)); ((struct sockaddr_in *)sas)->sin_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(*sin)); actual += sizeof(*sin); } if (actual >= limit) { return (actual); } } else if ((ifa->ifa_addr->sa_family == AF_INET6) && (ipv6_addr_legal)) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * we skip unspecifed * addresses */ continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (local_scope == 0) continue; if (sin6->sin6_scope_id == 0) { if (sa6_recoverscope(sin6) != 0) /* * bad link * local * address */ continue; } } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } memcpy(sas, sin6, sizeof(*sin6)); ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(*sin6)); actual += sizeof(*sin6); if (actual >= limit) { return (actual); } } } } } else { struct sctp_laddr *laddr; /* * If we have a TCB and we do NOT support ASCONF (it's * turned off or otherwise) then the list is always the true * list of addresses (the else case below). Otherwise the * list on the association is a list of addresses that are * NOT part of the association. */ if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { /* The list is a NEGATIVE list */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (stcb) { if (sctp_is_addr_restricted(stcb, laddr->ifa->ifa_addr)) { continue; } } if (sctp_fill_user_address(sas, laddr->ifa->ifa_addr)) continue; ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + laddr->ifa->ifa_addr->sa_len); actual += laddr->ifa->ifa_addr->sa_len; if (actual >= limit) { return (actual); } } } else { /* The list is a positive list if present */ if (stcb) { /* Must use the specific association list */ LIST_FOREACH(laddr, &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) { if (sctp_fill_user_address(sas, laddr->ifa->ifa_addr)) continue; ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + laddr->ifa->ifa_addr->sa_len); actual += laddr->ifa->ifa_addr->sa_len; if (actual >= limit) { return (actual); } } } else { /* * No endpoint so use the endpoints * individual list */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (sctp_fill_user_address(sas, laddr->ifa->ifa_addr)) continue; ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((caddr_t)sas + laddr->ifa->ifa_addr->sa_len); actual += laddr->ifa->ifa_addr->sa_len; if (actual >= limit) { return (actual); } } } } } return (actual); } static int sctp_count_max_addresses(struct sctp_inpcb *inp) { int cnt = 0; /* * In both sub-set bound an bound_all cases we return the MAXIMUM * number of addresses that you COULD get. In reality the sub-set * bound may have an exclusion list for a given TCB OR in the * bound-all case a TCB may NOT include the loopback or other * addresses as well. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { struct ifnet *ifn; struct ifaddr *ifa; TAILQ_FOREACH(ifn, &ifnet, if_list) { TAILQ_FOREACH(ifa, &ifn->if_addrlist, ifa_list) { /* Count them if they are the right type */ if (ifa->ifa_addr->sa_family == AF_INET) { if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) cnt += sizeof(struct sockaddr_in6); else cnt += sizeof(struct sockaddr_in); } else if (ifa->ifa_addr->sa_family == AF_INET6) cnt += sizeof(struct sockaddr_in6); } } } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->ifa_addr->sa_family == AF_INET) { if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) cnt += sizeof(struct sockaddr_in6); else cnt += sizeof(struct sockaddr_in); } else if (laddr->ifa->ifa_addr->sa_family == AF_INET6) cnt += sizeof(struct sockaddr_in6); } } return (cnt); } static int sctp_do_connect_x(struct socket *so, struct sctp_inpcb *inp, struct mbuf *m, struct thread *p, int delay ) { int s = splnet(); int error = 0; int creat_lock_on = 0; struct sctp_tcb *stcb = NULL; struct sockaddr *sa; int num_v6 = 0, num_v4 = 0, *totaddrp, totaddr, i, incr, at; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_PCB1) { printf("Connectx called\n"); } #endif /* SCTP_DEBUG */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ splx(s); return (EADDRINUSE); } if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) { splx(s); return (EINVAL); } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); SCTP_INP_RUNLOCK(inp); } if (stcb) { splx(s); return (EALREADY); } SCTP_INP_INCR_REF(inp); SCTP_ASOC_CREATE_LOCK(inp); creat_lock_on = 1; if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { error = EFAULT; goto out_now; } totaddrp = mtod(m, int *); totaddr = *totaddrp; sa = (struct sockaddr *)(totaddrp + 1); at = incr = 0; /* account and validate addresses */ for (i = 0; i < totaddr; i++) { if (sa->sa_family == AF_INET) { num_v4++; incr = sizeof(struct sockaddr_in); } else if (sa->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* Must be non-mapped for connectx */ error = EINVAL; goto out_now; } num_v6++; incr = sizeof(struct sockaddr_in6); } else { totaddr = i; break; } stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL); if (stcb != NULL) { /* Already have or am bring up an association */ SCTP_ASOC_CREATE_UNLOCK(inp); creat_lock_on = 0; SCTP_TCB_UNLOCK(stcb); error = EALREADY; goto out_now; } if ((at + incr) > SCTP_BUF_LEN(m)) { totaddr = i; break; } sa = (struct sockaddr *)((caddr_t)sa + incr); } sa = (struct sockaddr *)(totaddrp + 1); #ifdef INET6 if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) && (num_v6 > 0)) { splx(s); error = EINVAL; goto out_now; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && (num_v4 > 0)) { struct in6pcb *inp6; inp6 = (struct in6pcb *)inp; if ( (inp6->inp_flags & IN6P_IPV6_V6ONLY) ) { /* * if IPV6_V6ONLY flag, ignore connections destined * to a v4 addr or v4-mapped addr */ error = EINVAL; goto out_now; } } #endif /* INET6 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == SCTP_PCB_FLAGS_UNBOUND) { /* Bind a ephemeral port */ SCTP_INP_WUNLOCK(inp); error = sctp_inpcb_bind(so, NULL, p); if (error) { goto out_now; } } else { SCTP_INP_WUNLOCK(inp); } /* We are GOOD to go */ stcb = sctp_aloc_assoc(inp, sa, 1, &error, 0); if (stcb == NULL) { /* Gak! no memory */ goto out_now; } /* move to second address */ if (sa->sa_family == AF_INET) sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in)); else sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6)); for (i = 1; i < totaddr; i++) { if (sa->sa_family == AF_INET) { incr = sizeof(struct sockaddr_in); if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) { /* assoc gone no un-lock */ sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_7); error = ENOBUFS; goto out_now; } } else if (sa->sa_family == AF_INET6) { incr = sizeof(struct sockaddr_in6); if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) { /* assoc gone no un-lock */ sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_8); error = ENOBUFS; goto out_now; } } sa = (struct sockaddr *)((caddr_t)sa + incr); } stcb->asoc.state = SCTP_STATE_COOKIE_WAIT; /* initialize authentication parameters for the assoc */ sctp_initialize_auth_params(inp, stcb); if (delay) { /* doing delayed connection */ stcb->asoc.delayed_connection = 1; sctp_timer_start(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination); } else { SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); sctp_send_initiate(inp, stcb); } SCTP_TCB_UNLOCK(stcb); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; /* Set the connected flag so we can queue data */ soisconnecting(so); } out_now: if (creat_lock_on) SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_DECR_REF(inp); splx(s); return error; } static int sctp_optsget(struct socket *so, int opt, struct mbuf **mp, struct thread *p ) { struct sctp_inpcb *inp; struct mbuf *m; int error, optval = 0; struct sctp_tcb *stcb = NULL; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; error = 0; if (mp == NULL) { return (EINVAL); } m = *mp; if (m == NULL) { /* Got to have a mbuf */ return (EINVAL); } switch (opt) { case SCTP_NODELAY: case SCTP_AUTOCLOSE: case SCTP_EXPLICIT_EOR: case SCTP_AUTO_ASCONF: case SCTP_DISABLE_FRAGMENTS: case SCTP_I_WANT_MAPPED_V4_ADDR: case SCTP_USE_EXT_RCVINFO: SCTP_INP_RLOCK(inp); switch (opt) { case SCTP_DISABLE_FRAGMENTS: optval = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NO_FRAGMENT); break; case SCTP_I_WANT_MAPPED_V4_ADDR: optval = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4); break; case SCTP_AUTO_ASCONF: optval = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); break; case SCTP_EXPLICIT_EOR: optval = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXPLICIT_EOR); break; case SCTP_NODELAY: optval = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NODELAY); break; case SCTP_USE_EXT_RCVINFO: optval = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO); break; case SCTP_AUTOCLOSE: if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE)) optval = TICKS_TO_SEC(inp->sctp_ep.auto_close_time); else optval = 0; break; default: error = ENOPROTOOPT; } /* end switch (sopt->sopt_name) */ if (opt != SCTP_AUTOCLOSE) { /* make it an "on/off" value */ optval = (optval != 0); } if ((size_t)SCTP_BUF_LEN(m) < sizeof(int)) { error = EINVAL; } SCTP_INP_RUNLOCK(inp); if (error == 0) { /* return the option value */ *mtod(m, int *)= optval; SCTP_BUF_LEN(m) = sizeof(optval); } break; case SCTP_PARTIAL_DELIVERY_POINT: { if ((size_t)SCTP_BUF_LEN(m) < sizeof(unsigned int)) { error = EINVAL; break; } *mtod(m, unsigned int *)= inp->partial_delivery_point; SCTP_BUF_LEN(m) = sizeof(unsigned int); } break; case SCTP_FRAGMENT_INTERLEAVE: { if ((size_t)SCTP_BUF_LEN(m) < sizeof(unsigned int)) { error = EINVAL; break; } *mtod(m, unsigned int *)= sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); SCTP_BUF_LEN(m) = sizeof(unsigned int); } break; case SCTP_CMT_ON_OFF: { if ((size_t)SCTP_BUF_LEN(m) < sizeof(unsigned int)) { error = EINVAL; break; } *mtod(m, unsigned int *)= sctp_cmt_sockopt_on_off; SCTP_BUF_LEN(m) = sizeof(unsigned int); } break; case SCTP_CMT_USE_DAC: { *mtod(m, unsigned int *)= sctp_cmt_sockopt_use_dac; SCTP_BUF_LEN(m) = sizeof(unsigned int); } break; case SCTP_GET_ADDR_LEN: { struct sctp_assoc_value *av; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assoc_value)) { error = EINVAL; break; } av = mtod(m, struct sctp_assoc_value *); error = EINVAL; #ifdef AF_INET if (av->assoc_value == AF_INET) { av->assoc_value = sizeof(struct sockaddr_in); error = 0; } #endif #ifdef AF_INET6 if (av->assoc_value == AF_INET6) { av->assoc_value = sizeof(struct sockaddr_in6); error = 0; } #endif } break; case SCTP_GET_ASOC_ID_LIST: { struct sctp_assoc_ids *ids; int cnt, at; uint16_t orig; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assoc_ids)) { error = EINVAL; break; } ids = mtod(m, struct sctp_assoc_ids *); cnt = 0; SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { none_out_now: ids->asls_numb_present = 0; ids->asls_more_to_get = 0; SCTP_INP_RUNLOCK(inp); break; } orig = ids->asls_assoc_start; stcb = LIST_FIRST(&inp->sctp_asoc_list); while (orig) { stcb = LIST_NEXT(stcb, sctp_tcblist); orig--; cnt--; if (stcb == NULL) goto none_out_now; } if (stcb == NULL) goto none_out_now; at = 0; ids->asls_numb_present = 0; ids->asls_more_to_get = 1; while (at < MAX_ASOC_IDS_RET) { ids->asls_assoc_id[at] = sctp_get_associd(stcb); at++; ids->asls_numb_present++; stcb = LIST_NEXT(stcb, sctp_tcblist); if (stcb == NULL) { ids->asls_more_to_get = 0; break; } } SCTP_INP_RUNLOCK(inp); } break; case SCTP_CONTEXT: { struct sctp_assoc_value *av; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assoc_value)) { error = EINVAL; break; } av = mtod(m, struct sctp_assoc_value *); if (av->assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, av->assoc_id, 1); if (stcb == NULL) { error = ENOTCONN; } else { av->assoc_value = stcb->asoc.context; SCTP_TCB_UNLOCK(stcb); } } else { av->assoc_value = inp->sctp_context; } } break; case SCTP_GET_NONCE_VALUES: { struct sctp_get_nonce_values *gnv; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_get_nonce_values)) { error = EINVAL; break; } gnv = mtod(m, struct sctp_get_nonce_values *); stcb = sctp_findassociation_ep_asocid(inp, gnv->gn_assoc_id, 1); if (stcb == NULL) { error = ENOTCONN; } else { gnv->gn_peers_tag = stcb->asoc.peer_vtag; gnv->gn_local_tag = stcb->asoc.my_vtag; SCTP_TCB_UNLOCK(stcb); } } break; case SCTP_DELAYED_ACK_TIME: { struct sctp_assoc_value *tm; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assoc_value)) { error = EINVAL; break; } tm = mtod(m, struct sctp_assoc_value *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); tm->assoc_value = stcb->asoc.delayed_ack; SCTP_TCB_UNLOCK(stcb); } else { tm->assoc_value = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]); } SCTP_INP_RUNLOCK(inp); } else { stcb = sctp_findassociation_ep_asocid(inp, tm->assoc_id, 1); if (stcb == NULL) { error = ENOTCONN; tm->assoc_value = 0; } else { stcb->asoc.delayed_ack = tm->assoc_value; SCTP_TCB_UNLOCK(stcb); } } } break; case SCTP_GET_SNDBUF_USE: if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_sockstat)) { error = EINVAL; } else { struct sctp_sockstat *ss; struct sctp_tcb *stcb; struct sctp_association *asoc; ss = mtod(m, struct sctp_sockstat *); stcb = sctp_findassociation_ep_asocid(inp, ss->ss_assoc_id, 1); if (stcb == NULL) { error = ENOTCONN; } else { asoc = &stcb->asoc; ss->ss_total_sndbuf = (uint32_t) asoc->total_output_queue_size; ss->ss_total_recv_buf = (uint32_t) (asoc->size_on_reasm_queue + asoc->size_on_all_streams); SCTP_TCB_UNLOCK(stcb); error = 0; SCTP_BUF_LEN(m) = sizeof(struct sctp_sockstat); } } break; case SCTP_MAXBURST: { uint8_t *burst; burst = mtod(m, uint8_t *); SCTP_INP_RLOCK(inp); *burst = inp->sctp_ep.max_burst; SCTP_INP_RUNLOCK(inp); SCTP_BUF_LEN(m) = sizeof(uint8_t); } break; case SCTP_MAXSEG: { uint32_t *segsize; sctp_assoc_t *assoc_id; int ovh; if ((size_t)SCTP_BUF_LEN(m) < sizeof(uint32_t)) { error = EINVAL; break; } if ((size_t)SCTP_BUF_LEN(m) < sizeof(sctp_assoc_t)) { error = EINVAL; break; } assoc_id = mtod(m, sctp_assoc_t *); segsize = mtod(m, uint32_t *); SCTP_BUF_LEN(m) = sizeof(uint32_t); if (((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { struct sctp_tcb *stcb; SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); *segsize = sctp_get_frag_point(stcb, &stcb->asoc); SCTP_TCB_UNLOCK(stcb); } else { SCTP_INP_RUNLOCK(inp); goto skipit; } } else { stcb = sctp_findassociation_ep_asocid(inp, *assoc_id, 1); if (stcb) { *segsize = sctp_get_frag_point(stcb, &stcb->asoc); SCTP_TCB_UNLOCK(stcb); break; } skipit: /* * default is to get the max, if I can't * calculate from an existing association. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ovh = SCTP_MED_OVERHEAD; } else { ovh = SCTP_MED_V4_OVERHEAD; } *segsize = inp->sctp_frag_point - ovh; } } break; case SCTP_SET_DEBUG_LEVEL: #ifdef SCTP_DEBUG { uint32_t *level; if ((size_t)SCTP_BUF_LEN(m) < sizeof(uint32_t)) { error = EINVAL; break; } level = mtod(m, uint32_t *); error = 0; *level = sctp_debug_on; SCTP_BUF_LEN(m) = sizeof(uint32_t); printf("Returning DEBUG LEVEL %x is set\n", (uint32_t) sctp_debug_on); } #else /* SCTP_DEBUG */ error = EOPNOTSUPP; #endif break; case SCTP_GET_STAT_LOG: #ifdef SCTP_STAT_LOGGING error = sctp_fill_stat_log(m); #else /* SCTP_DEBUG */ error = EOPNOTSUPP; #endif break; case SCTP_EVENTS: { struct sctp_event_subscribe *events; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_event_subscribe)) { error = EINVAL; break; } events = mtod(m, struct sctp_event_subscribe *); memset(events, 0, sizeof(*events)); SCTP_INP_RLOCK(inp); if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT)) events->sctp_data_io_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT)) events->sctp_association_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVPADDREVNT)) events->sctp_address_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT)) events->sctp_send_failure_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVPEERERR)) events->sctp_peer_error_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT)) events->sctp_shutdown_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PDAPIEVNT)) events->sctp_partial_delivery_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT)) events->sctp_adaptation_layer_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTHEVNT)) events->sctp_authentication_event = 1; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT)) events->sctp_stream_reset_events = 1; SCTP_INP_RUNLOCK(inp); SCTP_BUF_LEN(m) = sizeof(struct sctp_event_subscribe); } break; case SCTP_ADAPTATION_LAYER: if ((size_t)SCTP_BUF_LEN(m) < sizeof(int)) { error = EINVAL; break; } SCTP_INP_RLOCK(inp); *mtod(m, int *)= inp->sctp_ep.adaptation_layer_indicator; SCTP_INP_RUNLOCK(inp); SCTP_BUF_LEN(m) = sizeof(int); break; case SCTP_SET_INITIAL_DBG_SEQ: if ((size_t)SCTP_BUF_LEN(m) < sizeof(int)) { error = EINVAL; break; } SCTP_INP_RLOCK(inp); *mtod(m, int *)= inp->sctp_ep.initial_sequence_debug; SCTP_INP_RUNLOCK(inp); SCTP_BUF_LEN(m) = sizeof(int); break; case SCTP_GET_LOCAL_ADDR_SIZE: if ((size_t)SCTP_BUF_LEN(m) < sizeof(int)) { error = EINVAL; break; } SCTP_INP_RLOCK(inp); *mtod(m, int *)= sctp_count_max_addresses(inp); SCTP_INP_RUNLOCK(inp); SCTP_BUF_LEN(m) = sizeof(int); break; case SCTP_GET_REMOTE_ADDR_SIZE: { sctp_assoc_t *assoc_id; uint32_t *val, sz; struct sctp_nets *net; if ((size_t)SCTP_BUF_LEN(m) < sizeof(sctp_assoc_t)) { error = EINVAL; break; } stcb = NULL; val = mtod(m, uint32_t *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } if (stcb == NULL) { assoc_id = mtod(m, sctp_assoc_t *); stcb = sctp_findassociation_ep_asocid(inp, *assoc_id, 1); } if (stcb == NULL) { error = EINVAL; break; } *val = 0; sz = 0; /* Count the sizes */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) || (((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET6)) { sz += sizeof(struct sockaddr_in6); } else if (((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET) { sz += sizeof(struct sockaddr_in); } else { /* huh */ break; } } SCTP_TCB_UNLOCK(stcb); *val = sz; SCTP_BUF_LEN(m) = sizeof(uint32_t); } break; case SCTP_GET_PEER_ADDRESSES: /* * Get the address information, an array is passed in to * fill up we pack it. */ { int cpsz, left; struct sockaddr_storage *sas; struct sctp_nets *net; struct sctp_getaddresses *saddr; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } left = SCTP_BUF_LEN(m) - sizeof(struct sctp_getaddresses); saddr = mtod(m, struct sctp_getaddresses *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, saddr->sget_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } SCTP_BUF_LEN(m) = sizeof(struct sctp_getaddresses); sas = (struct sockaddr_storage *)&saddr->addr[0]; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) || (((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET6)) { cpsz = sizeof(struct sockaddr_in6); } else if (((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET) { cpsz = sizeof(struct sockaddr_in); } else { /* huh */ break; } if (left < cpsz) { /* not enough room. */ break; } if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) && (((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET)) { /* Must map the address */ in6_sin_2_v4mapsin6((struct sockaddr_in *)&net->ro._l_addr, (struct sockaddr_in6 *)sas); } else { memcpy(sas, &net->ro._l_addr, cpsz); } ((struct sockaddr_in *)sas)->sin_port = stcb->rport; sas = (struct sockaddr_storage *)((caddr_t)sas + cpsz); left -= cpsz; SCTP_BUF_LEN(m) += cpsz; } SCTP_TCB_UNLOCK(stcb); } break; case SCTP_GET_LOCAL_ADDRESSES: { int limit, actual; struct sockaddr_storage *sas; struct sctp_getaddresses *saddr; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } saddr = mtod(m, struct sctp_getaddresses *); if (saddr->sget_assoc_id) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, saddr->sget_assoc_id, 1); } else { stcb = NULL; } /* * assure that the TCP model does not need a assoc * id once connected. */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) && (stcb == NULL)) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } sas = (struct sockaddr_storage *)&saddr->addr[0]; limit = SCTP_BUF_LEN(m) - sizeof(sctp_assoc_t); actual = sctp_fill_up_addresses(inp, stcb, limit, sas); if (stcb) SCTP_TCB_UNLOCK(stcb); SCTP_BUF_LEN(m) = sizeof(struct sockaddr_storage) + actual; } break; case SCTP_PEER_ADDR_PARAMS: { struct sctp_paddrparams *paddrp; struct sctp_nets *net; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_paddrparams)) { error = EINVAL; break; } paddrp = mtod(m, struct sctp_paddrparams *); net = NULL; if (paddrp->spp_assoc_id) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RLOCK(inp); } else { stcb = sctp_findassociation_ep_asocid(inp, paddrp->spp_assoc_id, 1); } if (stcb == NULL) { error = ENOENT; break; } } if ((stcb == NULL) && ((((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET) || (((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET6))) { /* Lookup via address */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddrp->spp_address, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if (stcb == NULL) { error = ENOENT; break; } } if (stcb) { /* Applys to the specific association */ paddrp->spp_flags = 0; if (net) { paddrp->spp_pathmaxrxt = net->failure_threshold; paddrp->spp_pathmtu = net->mtu; /* get flags for HB */ if (net->dest_state & SCTP_ADDR_NOHB) paddrp->spp_flags |= SPP_HB_DISABLE; else paddrp->spp_flags |= SPP_HB_ENABLE; /* get flags for PMTU */ if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { paddrp->spp_flags |= SPP_PMTUD_ENABLE; } else { paddrp->spp_flags |= SPP_PMTUD_DISABLE; } #ifdef AF_INET if (net->ro._l_addr.sin.sin_family == AF_INET) { paddrp->spp_ipv4_tos = net->tos_flowlabel & 0x000000fc; paddrp->spp_flags |= SPP_IPV4_TOS; } #endif #ifdef AF_INET6 if (net->ro._l_addr.sin6.sin6_family == AF_INET6) { paddrp->spp_ipv6_flowlabel = net->tos_flowlabel; paddrp->spp_flags |= SPP_IPV6_FLOWLABEL; } #endif } else { /* * No destination so return default * value */ paddrp->spp_pathmaxrxt = stcb->asoc.def_net_failure; paddrp->spp_pathmtu = sctp_get_frag_point(stcb, &stcb->asoc); #ifdef AF_INET paddrp->spp_ipv4_tos = stcb->asoc.default_tos & 0x000000fc; paddrp->spp_flags |= SPP_IPV4_TOS; #endif #ifdef AF_INET6 paddrp->spp_ipv6_flowlabel = stcb->asoc.default_flowlabel; paddrp->spp_flags |= SPP_IPV6_FLOWLABEL; #endif /* default settings should be these */ if (sctp_is_hb_timer_running(stcb)) { paddrp->spp_flags |= SPP_HB_ENABLE; } } paddrp->spp_hbinterval = stcb->asoc.heart_beat_delay; paddrp->spp_sackdelay = stcb->asoc.delayed_ack; /* * Currently we don't support no sack delay * aka SPP_SACKDELAY_DISABLE. */ paddrp->spp_flags |= SPP_SACKDELAY_ENABLE; paddrp->spp_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); } else { /* Use endpoint defaults */ SCTP_INP_RLOCK(inp); paddrp->spp_pathmaxrxt = inp->sctp_ep.def_net_failure; paddrp->spp_hbinterval = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]); paddrp->spp_sackdelay = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]); paddrp->spp_assoc_id = (sctp_assoc_t) 0; /* get inp's default */ #ifdef AF_INET paddrp->spp_ipv4_tos = inp->ip_inp.inp.inp_ip_tos; paddrp->spp_flags |= SPP_IPV4_TOS; #endif #ifdef AF_INET6 if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { paddrp->spp_ipv6_flowlabel = ((struct in6pcb *)inp)->in6p_flowinfo; paddrp->spp_flags |= SPP_IPV6_FLOWLABEL; } #endif /* can't return this */ paddrp->spp_pathmaxrxt = 0; paddrp->spp_pathmtu = 0; /* default behavior, no stcb */ paddrp->spp_flags = SPP_HB_ENABLE | SPP_SACKDELAY_ENABLE | SPP_PMTUD_ENABLE; SCTP_INP_RUNLOCK(inp); } SCTP_BUF_LEN(m) = sizeof(struct sctp_paddrparams); } break; case SCTP_GET_PEER_ADDR_INFO: { struct sctp_paddrinfo *paddri; struct sctp_nets *net; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_paddrinfo)) { error = EINVAL; break; } paddri = mtod(m, struct sctp_paddrinfo *); net = NULL; if ((((struct sockaddr *)&paddri->spinfo_address)->sa_family == AF_INET) || (((struct sockaddr *)&paddri->spinfo_address)->sa_family == AF_INET6)) { /* Lookup via address */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddri->spinfo_address); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddri->spinfo_address, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } } else { stcb = NULL; } if ((stcb == NULL) || (net == NULL)) { if (stcb) { SCTP_TCB_UNLOCK(stcb); } error = ENOENT; break; } SCTP_BUF_LEN(m) = sizeof(struct sctp_paddrinfo); paddri->spinfo_state = net->dest_state & (SCTP_REACHABLE_MASK | SCTP_ADDR_NOHB); paddri->spinfo_cwnd = net->cwnd; paddri->spinfo_srtt = ((net->lastsa >> 2) + net->lastsv) >> 1; paddri->spinfo_rto = net->RTO; paddri->spinfo_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); } break; case SCTP_PCB_STATUS: { struct sctp_pcbinfo *spcb; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_pcbinfo)) { error = EINVAL; break; } spcb = mtod(m, struct sctp_pcbinfo *); sctp_fill_pcbinfo(spcb); SCTP_BUF_LEN(m) = sizeof(struct sctp_pcbinfo); } break; case SCTP_STATUS: { struct sctp_nets *net; struct sctp_status *sstat; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_status)) { error = EINVAL; break; } sstat = mtod(m, struct sctp_status *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, sstat->sstat_assoc_id, 1); if (stcb == NULL) { error = EINVAL; break; } /* * I think passing the state is fine since * sctp_constants.h will be available to the user * land. */ sstat->sstat_state = stcb->asoc.state; sstat->sstat_rwnd = stcb->asoc.peers_rwnd; sstat->sstat_unackdata = stcb->asoc.sent_queue_cnt; /* * We can't include chunks that have been passed to * the socket layer. Only things in queue. */ sstat->sstat_penddata = (stcb->asoc.cnt_on_reasm_queue + stcb->asoc.cnt_on_all_streams); sstat->sstat_instrms = stcb->asoc.streamincnt; sstat->sstat_outstrms = stcb->asoc.streamoutcnt; sstat->sstat_fragmentation_point = sctp_get_frag_point(stcb, &stcb->asoc); memcpy(&sstat->sstat_primary.spinfo_address, &stcb->asoc.primary_destination->ro._l_addr, ((struct sockaddr *)(&stcb->asoc.primary_destination->ro._l_addr))->sa_len); net = stcb->asoc.primary_destination; ((struct sockaddr_in *)&sstat->sstat_primary.spinfo_address)->sin_port = stcb->rport; /* * Again the user can get info from sctp_constants.h * for what the state of the network is. */ sstat->sstat_primary.spinfo_state = net->dest_state & SCTP_REACHABLE_MASK; sstat->sstat_primary.spinfo_cwnd = net->cwnd; sstat->sstat_primary.spinfo_srtt = net->lastsa; sstat->sstat_primary.spinfo_rto = net->RTO; sstat->sstat_primary.spinfo_mtu = net->mtu; sstat->sstat_primary.spinfo_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); SCTP_BUF_LEN(m) = sizeof(*sstat); } break; case SCTP_RTOINFO: { struct sctp_rtoinfo *srto; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_rtoinfo)) { error = EINVAL; break; } srto = mtod(m, struct sctp_rtoinfo *); if (srto->srto_assoc_id == 0) { /* Endpoint only please */ SCTP_INP_RLOCK(inp); srto->srto_initial = inp->sctp_ep.initial_rto; srto->srto_max = inp->sctp_ep.sctp_maxrto; srto->srto_min = inp->sctp_ep.sctp_minrto; SCTP_INP_RUNLOCK(inp); break; } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, srto->srto_assoc_id, 1); if (stcb == NULL) { error = EINVAL; break; } srto->srto_initial = stcb->asoc.initial_rto; srto->srto_max = stcb->asoc.maxrto; srto->srto_min = stcb->asoc.minrto; SCTP_TCB_UNLOCK(stcb); SCTP_BUF_LEN(m) = sizeof(*srto); } break; case SCTP_ASSOCINFO: { struct sctp_assocparams *sasoc; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assocparams)) { error = EINVAL; break; } sasoc = mtod(m, struct sctp_assocparams *); stcb = NULL; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else if (sasoc->sasoc_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, sasoc->sasoc_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } } else { stcb = NULL; } if (stcb) { sasoc->sasoc_asocmaxrxt = stcb->asoc.max_send_times; sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets; sasoc->sasoc_peer_rwnd = stcb->asoc.peers_rwnd; sasoc->sasoc_local_rwnd = stcb->asoc.my_rwnd; sasoc->sasoc_cookie_life = stcb->asoc.cookie_life; SCTP_TCB_UNLOCK(stcb); } else { SCTP_INP_RLOCK(inp); sasoc->sasoc_asocmaxrxt = inp->sctp_ep.max_send_times; sasoc->sasoc_number_peer_destinations = 0; sasoc->sasoc_peer_rwnd = 0; sasoc->sasoc_local_rwnd = sbspace(&inp->sctp_socket->so_rcv); sasoc->sasoc_cookie_life = inp->sctp_ep.def_cookie_life; SCTP_INP_RUNLOCK(inp); } SCTP_BUF_LEN(m) = sizeof(*sasoc); } break; case SCTP_DEFAULT_SEND_PARAM: { struct sctp_sndrcvinfo *s_info; if (SCTP_BUF_LEN(m) != sizeof(struct sctp_sndrcvinfo)) { error = EINVAL; break; } s_info = mtod(m, struct sctp_sndrcvinfo *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, s_info->sinfo_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } /* Copy it out */ *s_info = stcb->asoc.def_send; SCTP_TCB_UNLOCK(stcb); SCTP_BUF_LEN(m) = sizeof(*s_info); } break; case SCTP_INITMSG: { struct sctp_initmsg *sinit; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_initmsg)) { error = EINVAL; break; } sinit = mtod(m, struct sctp_initmsg *); SCTP_INP_RLOCK(inp); sinit->sinit_num_ostreams = inp->sctp_ep.pre_open_stream_count; sinit->sinit_max_instreams = inp->sctp_ep.max_open_streams_intome; sinit->sinit_max_attempts = inp->sctp_ep.max_init_times; sinit->sinit_max_init_timeo = inp->sctp_ep.initial_init_rto_max; SCTP_INP_RUNLOCK(inp); SCTP_BUF_LEN(m) = sizeof(*sinit); } break; case SCTP_PRIMARY_ADDR: /* we allow a "get" operation on this */ { struct sctp_setprim *ssp; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_setprim)) { error = EINVAL; break; } ssp = mtod(m, struct sctp_setprim *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else { stcb = sctp_findassociation_ep_asocid(inp, ssp->ssp_assoc_id, 1); if (stcb == NULL) { /* * one last shot, try it by the * address in */ struct sctp_nets *net; SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&ssp->ssp_addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if (stcb == NULL) { error = EINVAL; break; } } /* simply copy out the sockaddr_storage... */ memcpy(&ssp->ssp_addr, &stcb->asoc.primary_destination->ro._l_addr, ((struct sockaddr *)&stcb->asoc.primary_destination->ro._l_addr)->sa_len); SCTP_TCB_UNLOCK(stcb); SCTP_BUF_LEN(m) = sizeof(*ssp); } break; case SCTP_HMAC_IDENT: { struct sctp_hmacalgo *shmac; sctp_hmaclist_t *hmaclist; uint32_t size; int i; if ((size_t)(SCTP_BUF_LEN(m)) < sizeof(*shmac)) { error = EINVAL; break; } shmac = mtod(m, struct sctp_hmacalgo *); SCTP_INP_RLOCK(inp); hmaclist = inp->sctp_ep.local_hmacs; if (hmaclist == NULL) { /* no HMACs to return */ SCTP_BUF_LEN(m) = sizeof(*shmac); break; } /* is there room for all of the hmac ids? */ size = sizeof(*shmac) + (hmaclist->num_algo * sizeof(shmac->shmac_idents[0])); if ((size_t)(SCTP_BUF_LEN(m)) < size) { error = EINVAL; SCTP_INP_RUNLOCK(inp); break; } /* copy in the list */ for (i = 0; i < hmaclist->num_algo; i++) shmac->shmac_idents[i] = hmaclist->hmac[i]; SCTP_INP_RUNLOCK(inp); SCTP_BUF_LEN(m) = size; break; } case SCTP_AUTH_ACTIVE_KEY: { struct sctp_authkeyid *scact; if ((size_t)(SCTP_BUF_LEN(m)) < sizeof(*scact)) { error = EINVAL; break; } scact = mtod(m, struct sctp_authkeyid *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { /* * if one-to-one, get from the connected * assoc; else endpoint */ SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else if (scact->scact_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, scact->scact_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } } if (stcb != NULL) { /* get the active key on the assoc */ scact->scact_keynumber = stcb->asoc.authinfo.assoc_keyid; SCTP_TCB_UNLOCK(stcb); } else { /* get the endpoint active key */ SCTP_INP_RLOCK(inp); scact->scact_keynumber = inp->sctp_ep.default_keyid; SCTP_INP_RUNLOCK(inp); } SCTP_BUF_LEN(m) = sizeof(*scact); break; } case SCTP_LOCAL_AUTH_CHUNKS: { struct sctp_authchunks *sac; sctp_auth_chklist_t *chklist = NULL; int size = 0; if ((size_t)(SCTP_BUF_LEN(m)) < sizeof(*sac)) { error = EINVAL; break; } sac = mtod(m, struct sctp_authchunks *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { /* * if one-to-one, get from the connected * assoc; else endpoint */ SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb != NULL) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else if (sac->gauth_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, sac->gauth_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } } if (stcb != NULL) { /* get off the assoc */ chklist = stcb->asoc.local_auth_chunks; if (chklist == NULL) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } /* is there enough space? */ size = sctp_auth_get_chklist_size(chklist); if ((size_t)SCTP_BUF_LEN(m) < (sizeof(struct sctp_authchunks) + size)) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } /* copy in the chunks */ sctp_serialize_auth_chunks(chklist, sac->gauth_chunks); SCTP_TCB_UNLOCK(stcb); } else { /* get off the endpoint */ SCTP_INP_RLOCK(inp); chklist = inp->sctp_ep.local_auth_chunks; if (chklist == NULL) { error = EINVAL; SCTP_INP_RUNLOCK(inp); break; } /* is there enough space? */ size = sctp_auth_get_chklist_size(chklist); if ((size_t)SCTP_BUF_LEN(m) < (sizeof(struct sctp_authchunks) + size)) { error = EINVAL; SCTP_INP_RUNLOCK(inp); break; } /* copy in the chunks */ sctp_serialize_auth_chunks(chklist, sac->gauth_chunks); SCTP_INP_RUNLOCK(inp); } SCTP_BUF_LEN(m) = sizeof(struct sctp_authchunks) + size; break; } case SCTP_PEER_AUTH_CHUNKS: { struct sctp_authchunks *sac; sctp_auth_chklist_t *chklist = NULL; int size = 0; if ((size_t)(SCTP_BUF_LEN(m)) < sizeof(*sac)) { error = EINVAL; break; } sac = mtod(m, struct sctp_authchunks *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { /* * if one-to-one, get from the connected * assoc, else endpoint */ SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb != NULL) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else if (sac->gauth_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, sac->gauth_assoc_id, 1); } if (stcb == NULL) { error = ENOENT; break; } /* get off the assoc */ chklist = stcb->asoc.peer_auth_chunks; if (chklist == NULL) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } /* is there enough space? */ size = sctp_auth_get_chklist_size(chklist); if ((size_t)SCTP_BUF_LEN(m) < (sizeof(struct sctp_authchunks) + size)) { error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } /* copy in the chunks */ sctp_serialize_auth_chunks(chklist, sac->gauth_chunks); SCTP_TCB_UNLOCK(stcb); SCTP_BUF_LEN(m) = sizeof(struct sctp_authchunks) + size; break; } default: error = ENOPROTOOPT; SCTP_BUF_LEN(m) = 0; break; } /* end switch (sopt->sopt_name) */ return (error); } static int sctp_optsset(struct socket *so, int opt, struct mbuf **mp, struct thread *p ) { int error, *mopt, set_opt, s; struct mbuf *m; struct sctp_tcb *stcb = NULL; struct sctp_inpcb *inp; if (mp == NULL) { return (EINVAL); } m = *mp; if (m == NULL) return (EINVAL); inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; error = 0; switch (opt) { case SCTP_NODELAY: case SCTP_AUTOCLOSE: case SCTP_AUTO_ASCONF: case SCTP_EXPLICIT_EOR: case SCTP_DISABLE_FRAGMENTS: case SCTP_USE_EXT_RCVINFO: case SCTP_I_WANT_MAPPED_V4_ADDR: /* copy in the option value */ if ((size_t)SCTP_BUF_LEN(m) < sizeof(int)) { error = EINVAL; break; } mopt = mtod(m, int *); set_opt = 0; if (error) break; switch (opt) { case SCTP_DISABLE_FRAGMENTS: set_opt = SCTP_PCB_FLAGS_NO_FRAGMENT; break; case SCTP_AUTO_ASCONF: set_opt = SCTP_PCB_FLAGS_AUTO_ASCONF; break; case SCTP_EXPLICIT_EOR: set_opt = SCTP_PCB_FLAGS_EXPLICIT_EOR; break; case SCTP_USE_EXT_RCVINFO: set_opt = SCTP_PCB_FLAGS_EXT_RCVINFO; break; case SCTP_I_WANT_MAPPED_V4_ADDR: if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { set_opt = SCTP_PCB_FLAGS_NEEDS_MAPPED_V4; } else { return (EINVAL); } break; case SCTP_NODELAY: set_opt = SCTP_PCB_FLAGS_NODELAY; break; case SCTP_AUTOCLOSE: set_opt = SCTP_PCB_FLAGS_AUTOCLOSE; /* * The value is in ticks. Note this does not effect * old associations, only new ones. */ inp->sctp_ep.auto_close_time = SEC_TO_TICKS(*mopt); break; } SCTP_INP_WLOCK(inp); if (*mopt != 0) { sctp_feature_on(inp, set_opt); } else { sctp_feature_off(inp, set_opt); } SCTP_INP_WUNLOCK(inp); break; case SCTP_PARTIAL_DELIVERY_POINT: { if ((size_t)SCTP_BUF_LEN(m) < sizeof(unsigned int)) { error = EINVAL; break; } inp->partial_delivery_point = *mtod(m, unsigned int *); SCTP_BUF_LEN(m) = sizeof(unsigned int); } break; case SCTP_FRAGMENT_INTERLEAVE: /* not yet until we re-write sctp_recvmsg() */ { int on_off; if ((size_t)SCTP_BUF_LEN(m) < sizeof(int)) { error = EINVAL; break; } on_off = *(mtod(m, int *)); if (on_off) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); } } break; case SCTP_CMT_ON_OFF: { struct sctp_assoc_value *av; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assoc_value)) { error = EINVAL; break; } av = mtod(m, struct sctp_assoc_value *); stcb = sctp_findassociation_ep_asocid(inp, av->assoc_id, 1); if (stcb == NULL) { error = ENOTCONN; } else { if (sctp_cmt_on_off) { stcb->asoc.sctp_cmt_on_off = (uint8_t) av->assoc_value; } else { if ((stcb->asoc.sctp_cmt_on_off) && (av->assoc_value == 0)) { stcb->asoc.sctp_cmt_on_off = 0; } else { error = EACCES; } } SCTP_TCB_UNLOCK(stcb); } } break; case SCTP_CMT_USE_DAC: { if ((size_t)SCTP_BUF_LEN(m) < sizeof(unsigned int)) { error = EINVAL; break; } sctp_cmt_sockopt_use_dac = *mtod(m, unsigned int *); if (sctp_cmt_sockopt_use_dac != 0) sctp_cmt_sockopt_use_dac = 1; } break; case SCTP_CLR_STAT_LOG: #ifdef SCTP_STAT_LOGGING sctp_clr_stat_log(); #else error = EOPNOTSUPP; #endif break; case SCTP_CONTEXT: { struct sctp_assoc_value *av; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assoc_value)) { error = EINVAL; break; } av = mtod(m, struct sctp_assoc_value *); if (av->assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, av->assoc_id, 1); if (stcb == NULL) { error = ENOTCONN; } else { stcb->asoc.context = av->assoc_value; SCTP_TCB_UNLOCK(stcb); } } else { inp->sctp_context = av->assoc_value; } } break; case SCTP_DELAYED_ACK_TIME: { struct sctp_assoc_value *tm; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assoc_value)) { error = EINVAL; break; } tm = mtod(m, struct sctp_assoc_value *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_WLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); stcb->asoc.delayed_ack = tm->assoc_value; SCTP_TCB_UNLOCK(stcb); } else { inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(tm->assoc_value); } SCTP_INP_WUNLOCK(inp); } else { if (tm->assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, tm->assoc_id, 1); if (stcb == NULL) { error = ENOTCONN; } else { stcb->asoc.delayed_ack = tm->assoc_value; SCTP_TCB_UNLOCK(stcb); } } else { SCTP_INP_WLOCK(inp); inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(tm->assoc_value); SCTP_INP_WUNLOCK(inp); } } } break; case SCTP_AUTH_CHUNK: { struct sctp_authchunk *sauth; if ((size_t)SCTP_BUF_LEN(m) < sizeof(*sauth)) { error = EINVAL; break; } sauth = mtod(m, struct sctp_authchunk *); if (sctp_auth_add_chunk(sauth->sauth_chunk, inp->sctp_ep.local_auth_chunks)) error = EINVAL; break; } case SCTP_AUTH_KEY: { struct sctp_authkey *sca; struct sctp_keyhead *shared_keys; sctp_sharedkey_t *shared_key; sctp_key_t *key = NULL; int size; size = SCTP_BUF_LEN(m) - sizeof(*sca); if (size < 0) { error = EINVAL; break; } sca = mtod(m, struct sctp_authkey *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { /* * if one-to-one, set it on the connected * assoc; else endpoint */ SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else if (sca->sca_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, sca->sca_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } } if (stcb != NULL) { /* set it on the assoc */ shared_keys = &stcb->asoc.shared_keys; /* clear the cached keys for this key id */ sctp_clear_cachedkeys(stcb, sca->sca_keynumber); /* * create the new shared key and * insert/replace it */ if (size > 0) { key = sctp_set_key(sca->sca_key, (uint32_t) size); if (key == NULL) { error = ENOMEM; SCTP_TCB_UNLOCK(stcb); break; } } shared_key = sctp_alloc_sharedkey(); if (shared_key == NULL) { sctp_free_key(key); error = ENOMEM; SCTP_TCB_UNLOCK(stcb); break; } shared_key->key = key; shared_key->keyid = sca->sca_keynumber; sctp_insert_sharedkey(shared_keys, shared_key); SCTP_TCB_UNLOCK(stcb); } else { /* ste it on the endpoint */ SCTP_INP_WLOCK(inp); shared_keys = &inp->sctp_ep.shared_keys; /* * clear the cached keys on all assocs for * this key id */ sctp_clear_cachedkeys_ep(inp, sca->sca_keynumber); /* * create the new shared key and * insert/replace it */ if (size > 0) { key = sctp_set_key(sca->sca_key, (uint32_t) size); if (key == NULL) { error = ENOMEM; SCTP_INP_WUNLOCK(inp); break; } } shared_key = sctp_alloc_sharedkey(); if (shared_key == NULL) { sctp_free_key(key); error = ENOMEM; SCTP_INP_WUNLOCK(inp); break; } shared_key->key = key; shared_key->keyid = sca->sca_keynumber; sctp_insert_sharedkey(shared_keys, shared_key); SCTP_INP_WUNLOCK(inp); } break; } case SCTP_HMAC_IDENT: { struct sctp_hmacalgo *shmac; sctp_hmaclist_t *hmaclist; uint32_t hmacid; int size, i; size = SCTP_BUF_LEN(m) - sizeof(*shmac); if (size < 0) { error = EINVAL; break; } shmac = mtod(m, struct sctp_hmacalgo *); size = size / sizeof(shmac->shmac_idents[0]); hmaclist = sctp_alloc_hmaclist(size); if (hmaclist == NULL) { error = ENOMEM; break; } for (i = 0; i < size; i++) { hmacid = shmac->shmac_idents[i]; if (sctp_auth_add_hmacid(hmaclist, (uint16_t) hmacid)) { /* invalid HMACs were found */ ; error = EINVAL; sctp_free_hmaclist(hmaclist); goto sctp_set_hmac_done; } } /* set it on the endpoint */ SCTP_INP_WLOCK(inp); if (inp->sctp_ep.local_hmacs) sctp_free_hmaclist(inp->sctp_ep.local_hmacs); inp->sctp_ep.local_hmacs = hmaclist; SCTP_INP_WUNLOCK(inp); sctp_set_hmac_done: break; } case SCTP_AUTH_ACTIVE_KEY: { struct sctp_authkeyid *scact; if ((size_t)SCTP_BUF_LEN(m) < sizeof(*scact)) { error = EINVAL; break; } scact = mtod(m, struct sctp_authkeyid *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { /* * if one-to-one, set it on the connected * assoc; else endpoint */ SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else if (scact->scact_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, scact->scact_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } } /* set the active key on the right place */ if (stcb != NULL) { /* set the active key on the assoc */ if (sctp_auth_setactivekey(stcb, scact->scact_keynumber)) error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { /* set the active key on the endpoint */ SCTP_INP_WLOCK(inp); if (sctp_auth_setactivekey_ep(inp, scact->scact_keynumber)) error = EINVAL; SCTP_INP_WUNLOCK(inp); } break; } case SCTP_AUTH_DELETE_KEY: { struct sctp_authkeyid *scdel; if ((size_t)SCTP_BUF_LEN(m) < sizeof(*scdel)) { error = EINVAL; break; } scdel = mtod(m, struct sctp_authkeyid *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { /* * if one-to-one, delete from the connected * assoc; else endpoint */ SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else if (scdel->scact_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, scdel->scact_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } } /* delete the key from the right place */ if (stcb != NULL) { if (sctp_delete_sharedkey(stcb, scdel->scact_keynumber)) error = EINVAL; SCTP_TCB_UNLOCK(stcb); } else { SCTP_INP_WLOCK(inp); if (sctp_delete_sharedkey_ep(inp, scdel->scact_keynumber)) error = EINVAL; SCTP_INP_WUNLOCK(inp); } break; } case SCTP_RESET_STREAMS: { struct sctp_stream_reset *strrst; uint8_t send_in = 0, send_tsn = 0, send_out = 0; int i; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_stream_reset)) { error = EINVAL; break; } strrst = mtod(m, struct sctp_stream_reset *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, strrst->strrst_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } if (stcb->asoc.peer_supports_strreset == 0) { /* * Peer does not support it, we return * protocol not supported since this is true * for this feature and this peer, not the * socket request in general. */ error = EPROTONOSUPPORT; SCTP_TCB_UNLOCK(stcb); break; } if (stcb->asoc.stream_reset_outstanding) { error = EALREADY; SCTP_TCB_UNLOCK(stcb); break; } if (strrst->strrst_flags == SCTP_RESET_LOCAL_RECV) { send_in = 1; } else if (strrst->strrst_flags == SCTP_RESET_LOCAL_SEND) { send_out = 1; } else if (strrst->strrst_flags == SCTP_RESET_BOTH) { send_in = 1; send_out = 1; } else if (strrst->strrst_flags == SCTP_RESET_TSN) { send_tsn = 1; } else { error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } for (i = 0; i < strrst->strrst_num_streams; i++) { if ((send_in) && (strrst->strrst_list[i] > stcb->asoc.streamincnt)) { error = EINVAL; goto get_out; } if ((send_out) && (strrst->strrst_list[i] > stcb->asoc.streamoutcnt)) { error = EINVAL; goto get_out; } } if (error) { get_out: SCTP_TCB_UNLOCK(stcb); break; } error = sctp_send_str_reset_req(stcb, strrst->strrst_num_streams, strrst->strrst_list, send_out, (stcb->asoc.str_reset_seq_in - 3), send_in, send_tsn); s = splnet(); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_REQ); SCTP_TCB_UNLOCK(stcb); splx(s); } break; case SCTP_CONNECT_X: if ((size_t)SCTP_BUF_LEN(m) < (sizeof(int) + sizeof(struct sockaddr_in))) { error = EINVAL; break; } error = sctp_do_connect_x(so, inp, m, p, 0); break; case SCTP_CONNECT_X_DELAYED: if ((size_t)SCTP_BUF_LEN(m) < (sizeof(int) + sizeof(struct sockaddr_in))) { error = EINVAL; break; } error = sctp_do_connect_x(so, inp, m, p, 1); break; case SCTP_CONNECT_X_COMPLETE: { struct sockaddr *sa; struct sctp_nets *net; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sockaddr_in)) { error = EINVAL; break; } sa = mtod(m, struct sockaddr *); /* find tcb */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, sa); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, sa, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if (stcb == NULL) { error = ENOENT; break; } if (stcb->asoc.delayed_connection == 1) { stcb->asoc.delayed_connection = 0; SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_9); sctp_send_initiate(inp, stcb); } else { /* * already expired or did not use delayed * connectx */ error = EALREADY; } SCTP_TCB_UNLOCK(stcb); } break; case SCTP_MAXBURST: { uint8_t *burst; SCTP_INP_WLOCK(inp); burst = mtod(m, uint8_t *); if (*burst) { inp->sctp_ep.max_burst = *burst; } SCTP_INP_WUNLOCK(inp); } break; case SCTP_MAXSEG: { uint32_t *segsize; int ovh; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ovh = SCTP_MED_OVERHEAD; } else { ovh = SCTP_MED_V4_OVERHEAD; } segsize = mtod(m, uint32_t *); if (*segsize < 1) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); inp->sctp_frag_point = (*segsize + ovh); if (inp->sctp_frag_point < MHLEN) { inp->sctp_frag_point = MHLEN; } SCTP_INP_WUNLOCK(inp); } break; case SCTP_SET_DEBUG_LEVEL: #ifdef SCTP_DEBUG { uint32_t *level; if ((size_t)SCTP_BUF_LEN(m) < sizeof(uint32_t)) { error = EINVAL; break; } level = mtod(m, uint32_t *); error = 0; sctp_debug_on = (*level & (SCTP_DEBUG_ALL | SCTP_DEBUG_NOISY)); printf("SETTING DEBUG LEVEL to %x\n", (uint32_t) sctp_debug_on); } #else error = EOPNOTSUPP; #endif /* SCTP_DEBUG */ break; case SCTP_EVENTS: { struct sctp_event_subscribe *events; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_event_subscribe)) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); events = mtod(m, struct sctp_event_subscribe *); if (events->sctp_data_io_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT); } if (events->sctp_association_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT); } if (events->sctp_address_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVPADDREVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVPADDREVNT); } if (events->sctp_send_failure_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT); } if (events->sctp_peer_error_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVPEERERR); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVPEERERR); } if (events->sctp_shutdown_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT); } if (events->sctp_partial_delivery_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_PDAPIEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_PDAPIEVNT); } if (events->sctp_adaptation_layer_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT); } if (events->sctp_authentication_event) { sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTHEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTHEVNT); } if (events->sctp_stream_reset_events) { sctp_feature_on(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT); } else { sctp_feature_off(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT); } SCTP_INP_WUNLOCK(inp); } break; case SCTP_ADAPTATION_LAYER: { struct sctp_setadaptation *adap_bits; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_setadaptation)) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); adap_bits = mtod(m, struct sctp_setadaptation *); inp->sctp_ep.adaptation_layer_indicator = adap_bits->ssb_adaptation_ind; SCTP_INP_WUNLOCK(inp); } break; case SCTP_SET_INITIAL_DBG_SEQ: { uint32_t *vvv; if ((size_t)SCTP_BUF_LEN(m) < sizeof(uint32_t)) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); vvv = mtod(m, uint32_t *); inp->sctp_ep.initial_sequence_debug = *vvv; SCTP_INP_WUNLOCK(inp); } break; case SCTP_DEFAULT_SEND_PARAM: { struct sctp_sndrcvinfo *s_info; if (SCTP_BUF_LEN(m) != sizeof(struct sctp_sndrcvinfo)) { error = EINVAL; break; } s_info = mtod(m, struct sctp_sndrcvinfo *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else { if (s_info->sinfo_assoc_id) { stcb = sctp_findassociation_ep_asocid(inp, s_info->sinfo_assoc_id, 1); } else { stcb = NULL; } } if ((s_info->sinfo_assoc_id == 0) && (stcb == NULL)) { inp->def_send = *s_info; } else if (stcb == NULL) { error = ENOENT; break; } /* Validate things */ if (s_info->sinfo_stream > stcb->asoc.streamoutcnt) { SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } /* Copy it in */ stcb->asoc.def_send = *s_info; SCTP_TCB_UNLOCK(stcb); } break; case SCTP_PEER_ADDR_PARAMS: /* Applys to the specific association */ { struct sctp_paddrparams *paddrp; struct sctp_nets *net; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_paddrparams)) { error = EINVAL; break; } paddrp = mtod(m, struct sctp_paddrparams *); net = NULL; if (paddrp->spp_assoc_id) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RUNLOCK(inp); } else { stcb = sctp_findassociation_ep_asocid(inp, paddrp->spp_assoc_id, 1); } if (stcb == NULL) { error = ENOENT; break; } } if ((stcb == NULL) && ((((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET) || (((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET6))) { /* Lookup via address */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddrp->spp_address, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } } if (stcb) { /************************TCB SPECIFIC SET ******************/ /* sack delay first */ if (paddrp->spp_flags & SPP_SACKDELAY_ENABLE) { /* * we do NOT support turning it off * (yet). only setting the delay. */ if (paddrp->spp_sackdelay >= SCTP_CLOCK_GRANULARITY) stcb->asoc.delayed_ack = paddrp->spp_sackdelay; else stcb->asoc.delayed_ack = SCTP_CLOCK_GRANULARITY; } else if (paddrp->spp_flags & SPP_SACKDELAY_DISABLE) { stcb->asoc.delayed_ack = 0; } /* * do we change the timer for HB, we run * only one? */ if (paddrp->spp_hbinterval) stcb->asoc.heart_beat_delay = paddrp->spp_hbinterval; else if (paddrp->spp_flags & SPP_HB_TIME_IS_ZERO) stcb->asoc.heart_beat_delay = 0; /* network sets ? */ if (net) { /************************NET SPECIFIC SET ******************/ if (paddrp->spp_flags & SPP_HB_DEMAND) { /* on demand HB */ sctp_send_hb(stcb, 1, net); } if (paddrp->spp_flags & SPP_HB_DISABLE) { net->dest_state |= SCTP_ADDR_NOHB; } if (paddrp->spp_flags & SPP_HB_ENABLE) { net->dest_state &= ~SCTP_ADDR_NOHB; } if (paddrp->spp_flags & SPP_PMTUD_DISABLE) { if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_10); } if (paddrp->spp_pathmtu > SCTP_DEFAULT_MINSEGMENT) { net->mtu = paddrp->spp_pathmtu; if (net->mtu < stcb->asoc.smallest_mtu) sctp_pathmtu_adustment(inp, stcb, net, net->mtu); } } if (paddrp->spp_flags & SPP_PMTUD_ENABLE) { if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net); } } if (paddrp->spp_pathmaxrxt) net->failure_threshold = paddrp->spp_pathmaxrxt; #ifdef AF_INET if (paddrp->spp_flags & SPP_IPV4_TOS) { if (net->ro._l_addr.sin.sin_family == AF_INET) { net->tos_flowlabel = paddrp->spp_ipv4_tos & 0x000000fc; } } #endif #ifdef AF_INET6 if (paddrp->spp_flags & SPP_IPV6_FLOWLABEL) { if (net->ro._l_addr.sin6.sin6_family == AF_INET6) { net->tos_flowlabel = paddrp->spp_ipv6_flowlabel; } } #endif } else { /************************ASSOC ONLY -- NO NET SPECIFIC SET ******************/ if (paddrp->spp_pathmaxrxt) stcb->asoc.def_net_failure = paddrp->spp_pathmaxrxt; if (paddrp->spp_flags & SPP_HB_ENABLE) { /* Turn back on the timer */ stcb->asoc.hb_is_disabled = 0; sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); } if (paddrp->spp_flags & SPP_HB_DISABLE) { int cnt_of_unconf = 0; struct sctp_nets *lnet; stcb->asoc.hb_is_disabled = 1; TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { if (lnet->dest_state & SCTP_ADDR_UNCONFIRMED) { cnt_of_unconf++; } } /* * stop the timer ONLY if we * have no unconfirmed * addresses */ if (cnt_of_unconf == 0) { sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_11); } } if (paddrp->spp_flags & SPP_HB_ENABLE) { /* start up the timer. */ sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); } #ifdef AF_INET if (paddrp->spp_flags & SPP_IPV4_TOS) stcb->asoc.default_tos = paddrp->spp_ipv4_tos & 0x000000fc; #endif #ifdef AF_INET6 if (paddrp->spp_flags & SPP_IPV6_FLOWLABEL) stcb->asoc.default_flowlabel = paddrp->spp_ipv6_flowlabel; #endif } SCTP_TCB_UNLOCK(stcb); } else { /************************NO TCB, SET TO default stuff ******************/ SCTP_INP_WLOCK(inp); /* * For the TOS/FLOWLABEL stuff you set it * with the options on the socket */ if (paddrp->spp_pathmaxrxt) { inp->sctp_ep.def_net_failure = paddrp->spp_pathmaxrxt; } if (paddrp->spp_flags & SPP_HB_ENABLE) { inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = MSEC_TO_TICKS(paddrp->spp_hbinterval); sctp_feature_off(inp, SCTP_PCB_FLAGS_DONOT_HEARTBEAT); } else if (paddrp->spp_flags & SPP_HB_DISABLE) { sctp_feature_on(inp, SCTP_PCB_FLAGS_DONOT_HEARTBEAT); } if (paddrp->spp_flags & SPP_SACKDELAY_ENABLE) { if (paddrp->spp_sackdelay > SCTP_CLOCK_GRANULARITY) inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(paddrp->spp_sackdelay); else inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(SCTP_CLOCK_GRANULARITY); } else if (paddrp->spp_flags & SPP_SACKDELAY_DISABLE) { inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = 0; } SCTP_INP_WUNLOCK(inp); } } break; case SCTP_RTOINFO: { struct sctp_rtoinfo *srto; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_rtoinfo)) { error = EINVAL; break; } srto = mtod(m, struct sctp_rtoinfo *); if (srto->srto_assoc_id == 0) { SCTP_INP_WLOCK(inp); /* * If we have a null asoc, its default for * the endpoint */ if (srto->srto_initial > 10) inp->sctp_ep.initial_rto = srto->srto_initial; if (srto->srto_max > 10) inp->sctp_ep.sctp_maxrto = srto->srto_max; if (srto->srto_min > 10) inp->sctp_ep.sctp_minrto = srto->srto_min; SCTP_INP_WUNLOCK(inp); break; } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, srto->srto_assoc_id, 1); if (stcb == NULL) { error = EINVAL; break; } /* Set in ms we hope :-) */ if (srto->srto_initial > 10) stcb->asoc.initial_rto = srto->srto_initial; if (srto->srto_max > 10) stcb->asoc.maxrto = srto->srto_max; if (srto->srto_min > 10) stcb->asoc.minrto = srto->srto_min; SCTP_TCB_UNLOCK(stcb); } break; case SCTP_ASSOCINFO: { struct sctp_assocparams *sasoc; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_assocparams)) { error = EINVAL; break; } sasoc = mtod(m, struct sctp_assocparams *); if (sasoc->sasoc_assoc_id) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, sasoc->sasoc_assoc_id, 1); if (stcb == NULL) { error = ENOENT; break; } } else { stcb = NULL; } if (stcb) { if (sasoc->sasoc_asocmaxrxt) stcb->asoc.max_send_times = sasoc->sasoc_asocmaxrxt; sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets; sasoc->sasoc_peer_rwnd = 0; sasoc->sasoc_local_rwnd = 0; if (stcb->asoc.cookie_life) stcb->asoc.cookie_life = sasoc->sasoc_cookie_life; SCTP_TCB_UNLOCK(stcb); } else { SCTP_INP_WLOCK(inp); if (sasoc->sasoc_asocmaxrxt) inp->sctp_ep.max_send_times = sasoc->sasoc_asocmaxrxt; sasoc->sasoc_number_peer_destinations = 0; sasoc->sasoc_peer_rwnd = 0; sasoc->sasoc_local_rwnd = 0; if (sasoc->sasoc_cookie_life) inp->sctp_ep.def_cookie_life = sasoc->sasoc_cookie_life; SCTP_INP_WUNLOCK(inp); } } break; case SCTP_INITMSG: { struct sctp_initmsg *sinit; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_initmsg)) { error = EINVAL; break; } sinit = mtod(m, struct sctp_initmsg *); SCTP_INP_WLOCK(inp); if (sinit->sinit_num_ostreams) inp->sctp_ep.pre_open_stream_count = sinit->sinit_num_ostreams; if (sinit->sinit_max_instreams) inp->sctp_ep.max_open_streams_intome = sinit->sinit_max_instreams; if (sinit->sinit_max_attempts) inp->sctp_ep.max_init_times = sinit->sinit_max_attempts; if (sinit->sinit_max_init_timeo > 10) /* * We must be at least a 100ms (we set in * ticks) */ inp->sctp_ep.initial_init_rto_max = sinit->sinit_max_init_timeo; SCTP_INP_WUNLOCK(inp); } break; case SCTP_PRIMARY_ADDR: { struct sctp_setprim *spa; struct sctp_nets *net, *lnet; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_setprim)) { error = EINVAL; break; } spa = mtod(m, struct sctp_setprim *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } else { error = EINVAL; break; } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, spa->ssp_assoc_id, 1); if (stcb == NULL) { /* One last shot */ SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&spa->ssp_addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); error = EINVAL; break; } } else { /* * find the net, associd or connected lookup * type */ net = sctp_findnet(stcb, (struct sockaddr *)&spa->ssp_addr); if (net == NULL) { SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } if ((net != stcb->asoc.primary_destination) && (!(net->dest_state & SCTP_ADDR_UNCONFIRMED))) { /* Ok we need to set it */ lnet = stcb->asoc.primary_destination; if (sctp_set_primary_addr(stcb, (struct sockaddr *)NULL, net) == 0) { if (net->dest_state & SCTP_ADDR_SWITCH_PRIMARY) { net->dest_state |= SCTP_ADDR_DOUBLE_SWITCH; } net->dest_state |= SCTP_ADDR_SWITCH_PRIMARY; } } SCTP_TCB_UNLOCK(stcb); } break; case SCTP_SET_PEER_PRIMARY_ADDR: { struct sctp_setpeerprim *sspp; if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_setpeerprim)) { error = EINVAL; break; } sspp = mtod(m, struct sctp_setpeerprim *); if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, sspp->sspp_assoc_id, 1); if (stcb == NULL) { error = EINVAL; break; } if (sctp_set_primary_ip_address_sa(stcb, (struct sockaddr *)&sspp->sspp_addr) != 0) { error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } break; case SCTP_BINDX_ADD_ADDR: { struct sctp_getaddresses *addrs; struct sockaddr *addr_touse; struct sockaddr_in sin; /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { error = EINVAL; break; } if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } addrs = mtod(m, struct sctp_getaddresses *); addr_touse = addrs->addr; if (addrs->addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr_touse; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin, sin6); addr_touse = (struct sockaddr *)&sin; } } if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { if (p == NULL) { /* Can't get proc for Net/Open BSD */ error = EINVAL; break; } error = sctp_inpcb_bind(so, addr_touse, p); break; } /* * No locks required here since bind and mgmt_ep_sa * all do their own locking. If we do something for * the FIX: below we may need to lock in that case. */ if (addrs->sget_assoc_id == 0) { /* add the address */ struct sctp_inpcb *lep; ((struct sockaddr_in *)addr_touse)->sin_port = inp->sctp_lport; lep = sctp_pcb_findep(addr_touse, 1, 0); if (lep != NULL) { /* * We must decrement the refcount * since we have the ep already and * are binding. No remove going on * here. */ SCTP_INP_DECR_REF(inp); } if (lep == inp) { /* already bound to it.. ok */ break; } else if (lep == NULL) { ((struct sockaddr_in *)addr_touse)->sin_port = 0; error = sctp_addr_mgmt_ep_sa(inp, addr_touse, SCTP_ADD_IP_ADDRESS); } else { error = EADDRNOTAVAIL; } if (error) break; } else { /* * FIX: decide whether we allow assoc based * bindx */ } } break; case SCTP_BINDX_REM_ADDR: { struct sctp_getaddresses *addrs; struct sockaddr *addr_touse; struct sockaddr_in sin; /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { error = EINVAL; break; } if ((size_t)SCTP_BUF_LEN(m) < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } addrs = mtod(m, struct sctp_getaddresses *); addr_touse = addrs->addr; if (addrs->addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr_touse; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin, sin6); addr_touse = (struct sockaddr *)&sin; } } /* * No lock required mgmt_ep_sa does its own locking. * If the FIX: below is ever changed we may need to * lock before calling association level binding. */ if (addrs->sget_assoc_id == 0) { /* delete the address */ sctp_addr_mgmt_ep_sa(inp, addr_touse, SCTP_DEL_IP_ADDRESS); } else { /* * FIX: decide whether we allow assoc based * bindx */ } } break; default: error = ENOPROTOOPT; break; } /* end switch (opt) */ return (error); } extern int sctp_chatty_mbuf; int sctp_ctloutput(struct socket *so, struct sockopt *sopt) { struct mbuf *m = NULL; struct sctp_inpcb *inp; int s, error; inp = (struct sctp_inpcb *)so->so_pcb; s = splnet(); if (inp == 0) { splx(s); /* I made the same as TCP since we are not setup? */ return (ECONNRESET); } if (sopt->sopt_level != IPPROTO_SCTP) { /* wrong proto level... send back up to IP */ #ifdef INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) error = ip6_ctloutput(so, sopt); else #endif /* INET6 */ error = ip_ctloutput(so, sopt); splx(s); return (error); } if (sopt->sopt_valsize) { if (sopt->sopt_valsize < MLEN) { m = sctp_get_mbuf_for_msg(1, 0, M_WAIT, 1, MT_DATA); } else { m = sctp_get_mbuf_for_msg(sopt->sopt_valsize, 0, M_WAIT, 1, MT_DATA); } if (m == NULL) { sctp_m_freem(m); splx(s); return (ENOBUFS); } if (sopt->sopt_valsize > M_TRAILINGSPACE(m)) { /* Limit to actual size gotten */ sopt->sopt_valsize = M_TRAILINGSPACE(m); } error = sooptcopyin(sopt, mtod(m, caddr_t), sopt->sopt_valsize, sopt->sopt_valsize); if (error) { (void)sctp_m_free(m); goto out; } SCTP_BUF_LEN(m) = sopt->sopt_valsize; } if (sopt->sopt_dir == SOPT_SET) { error = sctp_optsset(so, sopt->sopt_name, &m, sopt->sopt_td); } else if (sopt->sopt_dir == SOPT_GET) { error = sctp_optsget(so, sopt->sopt_name, &m, sopt->sopt_td); } else { error = EINVAL; } if ((error == 0) && (m != NULL)) { error = sooptcopyout(sopt, mtod(m, caddr_t), SCTP_BUF_LEN(m)); sctp_m_freem(m); } else if (m != NULL) { sctp_m_freem(m); } out: splx(s); return (error); } static int sctp_connect(struct socket *so, struct sockaddr *addr, struct thread *p) { int s = splnet(); int error = 0; int create_lock_on = 0; struct sctp_inpcb *inp; struct sctp_tcb *stcb = NULL; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { splx(s); /* I made the same as TCP since we are not setup? */ return (ECONNRESET); } SCTP_ASOC_CREATE_LOCK(inp); create_lock_on = 1; SCTP_INP_INCR_REF(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { /* Should I really unlock ? */ error = EFAULT; goto out_now; } #ifdef INET6 if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) && (addr->sa_family == AF_INET6)) { error = EINVAL; goto out_now; } #endif /* INET6 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == SCTP_PCB_FLAGS_UNBOUND) { /* Bind a ephemeral port */ error = sctp_inpcb_bind(so, NULL, p); if (error) { goto out_now; } } /* Now do we connect? */ if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) { error = EINVAL; goto out_now; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ error = EADDRINUSE; goto out_now; } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); } else { /* * Raise the count a second time, since on sucess * f-a-ep_addr will decrement it. */ SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, addr, NULL, NULL, NULL); if (stcb == NULL) { SCTP_INP_DECR_REF(inp); } } if (stcb != NULL) { /* Already have or am bring up an association */ error = EALREADY; goto out_now; } /* We are GOOD to go */ stcb = sctp_aloc_assoc(inp, addr, 1, &error, 0); if (stcb == NULL) { /* Gak! no memory */ splx(s); return (error); } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; /* Set the connected flag so we can queue data */ soisconnecting(so); } stcb->asoc.state = SCTP_STATE_COOKIE_WAIT; SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); /* initialize authentication parameters for the assoc */ sctp_initialize_auth_params(inp, stcb); sctp_send_initiate(inp, stcb); out_now: if (create_lock_on) SCTP_ASOC_CREATE_UNLOCK(inp); if (stcb) SCTP_TCB_UNLOCK(stcb); SCTP_INP_DECR_REF(inp); splx(s); return error; } int sctp_listen(struct socket *so, int backlog, struct thread *p) { /* * Note this module depends on the protocol processing being called * AFTER any socket level flags and backlog are applied to the * socket. The traditional way that the socket flags are applied is * AFTER protocol processing. We have made a change to the * sys/kern/uipc_socket.c module to reverse this but this MUST be in * place if the socket API for SCTP is to work properly. */ int s = splnet(); int error = 0; struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { splx(s); /* I made the same as TCP since we are not setup? */ return (ECONNRESET); } SCTP_INP_RLOCK(inp); #ifdef SCTP_LOCK_LOGGING sctp_log_lock(inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_SOCK); #endif SOCK_LOCK(so); error = solisten_proto_check(so); if (error) { SOCK_UNLOCK(so); return (error); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ splx(s); SCTP_INP_RUNLOCK(inp); SOCK_UNLOCK(so); return (EADDRINUSE); } if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { /* We must do a bind. */ SCTP_INP_RUNLOCK(inp); if ((error = sctp_inpcb_bind(so, NULL, p))) { /* bind error, probably perm */ SOCK_UNLOCK(so); splx(s); return (error); } } else { SCTP_INP_RUNLOCK(inp); } /* It appears for 7.0 and on, we must always call this. */ solisten_proto(so, backlog); if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { /* remove the ACCEPTCONN flag for one-to-many sockets */ so->so_options &= ~SO_ACCEPTCONN; } if (backlog == 0) { /* turning off listen */ so->so_options &= ~SO_ACCEPTCONN; } SOCK_UNLOCK(so); splx(s); return (error); } static int sctp_defered_wakeup_cnt = 0; int sctp_accept(struct socket *so, struct sockaddr **addr) { int s = splnet(); struct sctp_tcb *stcb; struct sctp_inpcb *inp; union sctp_sockstore store; int error; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { splx(s); return (ECONNRESET); } SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { return (ENOTSUP); } if (so->so_state & SS_ISDISCONNECTED) { splx(s); SCTP_INP_RUNLOCK(inp); return (ECONNABORTED); } stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { splx(s); SCTP_INP_RUNLOCK(inp); return (ECONNRESET); } SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); store = stcb->asoc.primary_destination->ro._l_addr; SCTP_TCB_UNLOCK(stcb); if (store.sa.sa_family == AF_INET) { struct sockaddr_in *sin; SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = ((struct sockaddr_in *)&store)->sin_port; sin->sin_addr = ((struct sockaddr_in *)&store)->sin_addr; *addr = (struct sockaddr *)sin; } else { struct sockaddr_in6 *sin6; SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = ((struct sockaddr_in6 *)&store)->sin6_port; sin6->sin6_addr = ((struct sockaddr_in6 *)&store)->sin6_addr; if ((error = sa6_recoverscope(sin6)) != 0) { SCTP_FREE_SONAME(sin6); return (error); } *addr = (struct sockaddr *)sin6; } /* Wake any delayed sleep action */ if (inp->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_DONT_WAKE; if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT; SOCKBUF_LOCK(&inp->sctp_socket->so_snd); if (sowriteable(inp->sctp_socket)) { sowwakeup_locked(inp->sctp_socket); } else { SOCKBUF_UNLOCK(&inp->sctp_socket->so_snd); } } if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT; SOCKBUF_LOCK(&inp->sctp_socket->so_rcv); if (soreadable(inp->sctp_socket)) { sctp_defered_wakeup_cnt++; sorwakeup_locked(inp->sctp_socket); } else { SOCKBUF_UNLOCK(&inp->sctp_socket->so_rcv); } } } splx(s); return (0); } int sctp_ingetaddr(struct socket *so, struct sockaddr **addr) { struct sockaddr_in *sin; int s; struct sctp_inpcb *inp; /* * Do the malloc first in case it blocks. */ SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); s = splnet(); inp = (struct sctp_inpcb *)so->so_pcb; if (!inp) { splx(s); SCTP_FREE_SONAME(sin); return ECONNRESET; } SCTP_INP_RLOCK(inp); sin->sin_port = inp->sctp_lport; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { struct sctp_tcb *stcb; struct sockaddr_in *sin_a; struct sctp_nets *net; int fnd; stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { goto notConn; } fnd = 0; sin_a = NULL; SCTP_TCB_LOCK(stcb); TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a = (struct sockaddr_in *)&net->ro._l_addr; if (sin_a == NULL) /* this will make coverity happy */ continue; if (sin_a->sin_family == AF_INET) { fnd = 1; break; } } if ((!fnd) || (sin_a == NULL)) { /* punt */ SCTP_TCB_UNLOCK(stcb); goto notConn; } sin->sin_addr = sctp_ipv4_source_address_selection(inp, stcb, (struct route *)&net->ro, net, 0); SCTP_TCB_UNLOCK(stcb); } else { /* For the bound all case you get back 0 */ notConn: sin->sin_addr.s_addr = 0; } } else { /* Take the first IPv4 address in the list */ struct sctp_laddr *laddr; int fnd = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *sin_a; sin_a = (struct sockaddr_in *)laddr->ifa->ifa_addr; sin->sin_addr = sin_a->sin_addr; fnd = 1; break; } } if (!fnd) { splx(s); SCTP_FREE_SONAME(sin); SCTP_INP_RUNLOCK(inp); return ENOENT; } } SCTP_INP_RUNLOCK(inp); splx(s); (*addr) = (struct sockaddr *)sin; return (0); } int sctp_peeraddr(struct socket *so, struct sockaddr **addr) { struct sockaddr_in *sin = (struct sockaddr_in *)*addr; int s, fnd; struct sockaddr_in *sin_a; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; /* Do the malloc first in case it blocks. */ inp = (struct sctp_inpcb *)so->so_pcb; if ((inp == NULL) || ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { /* UDP type and listeners will drop out here */ return (ENOTCONN); } s = splnet(); SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); /* We must recapture incase we blocked */ inp = (struct sctp_inpcb *)so->so_pcb; if (!inp) { splx(s); SCTP_FREE_SONAME(sin); return ECONNRESET; } SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); if (stcb == NULL) { splx(s); SCTP_FREE_SONAME(sin); return ECONNRESET; } fnd = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a = (struct sockaddr_in *)&net->ro._l_addr; if (sin_a->sin_family == AF_INET) { fnd = 1; sin->sin_port = stcb->rport; sin->sin_addr = sin_a->sin_addr; break; } } SCTP_TCB_UNLOCK(stcb); if (!fnd) { /* No IPv4 address */ splx(s); SCTP_FREE_SONAME(sin); return ENOENT; } splx(s); (*addr) = (struct sockaddr *)sin; return (0); } struct pr_usrreqs sctp_usrreqs = { .pru_abort = sctp_abort, .pru_accept = sctp_accept, .pru_attach = sctp_attach, .pru_bind = sctp_bind, .pru_connect = sctp_connect, .pru_control = in_control, .pru_close = sctp_close, .pru_detach = sctp_close, .pru_sopoll = sopoll_generic, .pru_disconnect = sctp_disconnect, .pru_listen = sctp_listen, .pru_peeraddr = sctp_peeraddr, .pru_send = sctp_sendm, .pru_shutdown = sctp_shutdown, .pru_sockaddr = sctp_ingetaddr, .pru_sosend = sctp_sosend, .pru_soreceive = sctp_soreceive };