/*- * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2014 Mellanox Technologies, Ltd. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _LINUX_MATH64_H #define _LINUX_MATH64_H #include #include #if BITS_PER_LONG == 64 # define do_div(n, base) ({ \ uint32_t __base = (base); \ uint32_t __rem; \ __rem = ((uint64_t)(n)) % __base; \ (n) = ((uint64_t)(n)) / __base; \ __rem; \ }) /** * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder * * This is commonly provided by 32bit archs to provide an optimized 64bit * divide. */ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } #elif BITS_PER_LONG == 32 static uint32_t __div64_32(uint64_t *n, uint32_t base) { uint64_t rem = *n; uint64_t b = base; uint64_t res, d = 1; uint32_t high = rem >> 32; /* Reduce the thing a bit first */ res = 0; if (high >= base) { high /= base; res = (uint64_t) high << 32; rem -= (uint64_t) (high*base) << 32; } while ((int64_t)b > 0 && b < rem) { b = b+b; d = d+d; } do { if (rem >= b) { rem -= b; res += d; } b >>= 1; d >>= 1; } while (d); *n = res; return rem; } # define do_div(n, base) ({ \ uint32_t __base = (base); \ uint32_t __rem; \ (void)(((typeof((n)) *)0) == ((uint64_t *)0)); \ if (likely(((n) >> 32) == 0)) { \ __rem = (uint32_t)(n) % __base; \ (n) = (uint32_t)(n) / __base; \ } else \ __rem = __div64_32(&(n), __base); \ __rem; \ }) #ifndef div_u64_rem static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) { *remainder = do_div(dividend, divisor); return dividend; } #endif #endif /* BITS_PER_LONG */ /** ** div_u64 - unsigned 64bit divide with 32bit divisor ** ** This is the most common 64bit divide and should be used if possible, ** as many 32bit archs can optimize this variant better than a full 64bit ** divide. * */ #ifndef div_u64 static inline u64 div_u64(u64 dividend, u32 divisor) { u32 remainder; return div_u64_rem(dividend, divisor, &remainder); } #endif #endif /* _LINUX_MATH64_H */