/*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of Allegro Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ */ /*- * Copyright (C) 2001 Benno Rice. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * In addition to hardware address maps, this module is called upon to * provide software-use-only maps which may or may not be stored in the * same form as hardware maps. These pseudo-maps are used to store * intermediate results from copy operations to and from address spaces. * * Since the information managed by this module is also stored by the * logical address mapping module, this module may throw away valid virtual * to physical mappings at almost any time. However, invalidations of * mappings must be done as requested. * * In order to cope with hardware architectures which make virtual to * physical map invalidates expensive, this module may delay invalidate * reduced protection operations until such time as they are actually * necessary. This module is given full information as to which processors * are currently using which maps, and to when physical maps must be made * correct. */ #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_if.h" #define MOEA_DEBUG #define TODO panic("%s: not implemented", __func__); static __inline u_int32_t cntlzw(volatile u_int32_t a) { u_int32_t b; __asm ("cntlzw %0, %1" : "=r"(b) : "r"(a)); return b; } static __inline uint64_t va_to_vsid(pmap_t pm, vm_offset_t va) { return ((pm->pm_sr[(uintptr_t)va >> ADDR_SR_SHFT]) & SR_VSID_MASK); } #define TLBSYNC() __asm __volatile("tlbsync; ptesync"); #define SYNC() __asm __volatile("sync"); #define EIEIO() __asm __volatile("eieio"); /* * The tlbie instruction must be executed in 64-bit mode * so we have to twiddle MSR[SF] around every invocation. * Just to add to the fun, exceptions must be off as well * so that we can't trap in 64-bit mode. What a pain. */ static __inline void TLBIE(pmap_t pmap, vm_offset_t va) { register_t msr; register_t scratch; uint64_t vpn; register_t vpn_hi, vpn_lo; #if 1 /* * CPU documentation says that tlbie takes the VPN, not the * VA. I think the code below does this correctly. We will see. */ vpn = (uint64_t)(va & ADDR_PIDX); if (pmap != NULL) vpn |= (va_to_vsid(pmap,va) << 28); #else vpn = va; #endif vpn_hi = (uint32_t)(vpn >> 32); vpn_lo = (uint32_t)vpn; __asm __volatile("\ mfmsr %0; \ clrldi %1,%0,49; \ insrdi %1,1,1,0; \ mtmsrd %1; \ ptesync; \ \ sld %1,%2,%4; \ or %1,%1,%3; \ tlbie %1; \ \ mtmsrd %0; \ eieio; \ tlbsync; \ ptesync;" : "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32)); } #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync() #define ENABLE_TRANS(msr) mtmsr(msr); isync() #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) #define VSID_TO_SR(vsid) ((vsid) & 0xf) #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) #define PVO_PTEGIDX_MASK 0x007 /* which PTEG slot */ #define PVO_PTEGIDX_VALID 0x008 /* slot is valid */ #define PVO_WIRED 0x010 /* PVO entry is wired */ #define PVO_MANAGED 0x020 /* PVO entry is managed */ #define PVO_BOOTSTRAP 0x080 /* PVO entry allocated during bootstrap */ #define PVO_FAKE 0x100 /* fictitious phys page */ #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF) #define PVO_ISFAKE(pvo) ((pvo)->pvo_vaddr & PVO_FAKE) #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK) #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID) #define PVO_PTEGIDX_CLR(pvo) \ ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK))) #define PVO_PTEGIDX_SET(pvo, i) \ ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID)) #define MOEA_PVO_CHECK(pvo) #define LOCK_TABLE() mtx_lock(&moea64_table_mutex) #define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex); #define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED) struct ofw_map { vm_offset_t om_va; vm_size_t om_len; vm_offset_t om_pa_hi; vm_offset_t om_pa_lo; u_int om_mode; }; /* * Map of physical memory regions. */ static struct mem_region *regions; static struct mem_region *pregions; extern u_int phys_avail_count; extern int regions_sz, pregions_sz; extern int ofw_real_mode; static struct ofw_map translations[64]; extern struct pmap ofw_pmap; extern void bs_remap_earlyboot(void); /* * Lock for the pteg and pvo tables. */ struct mtx moea64_table_mutex; /* * PTEG data. */ static struct lpteg *moea64_pteg_table; u_int moea64_pteg_count; u_int moea64_pteg_mask; /* * PVO data. */ struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */ /* lists of unmanaged pages */ struct pvo_head moea64_pvo_kunmanaged = LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged); struct pvo_head moea64_pvo_unmanaged = LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged); uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */ uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */ vm_offset_t pvo_allocator_start; vm_offset_t pvo_allocator_end; #define BPVO_POOL_SIZE 327680 static struct pvo_entry *moea64_bpvo_pool; static int moea64_bpvo_pool_index = 0; #define VSID_NBPW (sizeof(u_int32_t) * 8) static u_int moea64_vsid_bitmap[NPMAPS / VSID_NBPW]; static boolean_t moea64_initialized = FALSE; /* * Statistics. */ u_int moea64_pte_valid = 0; u_int moea64_pte_overflow = 0; u_int moea64_pvo_entries = 0; u_int moea64_pvo_enter_calls = 0; u_int moea64_pvo_remove_calls = 0; SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, &moea64_pte_valid, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, &moea64_pte_overflow, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, &moea64_pvo_entries, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, &moea64_pvo_enter_calls, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, &moea64_pvo_remove_calls, 0, ""); vm_offset_t moea64_scratchpage_va[2]; struct pvo_entry *moea64_scratchpage_pvo[2]; struct lpte *moea64_scratchpage_pte[2]; struct mtx moea64_scratchpage_mtx; /* * Allocate physical memory for use in moea64_bootstrap. */ static vm_offset_t moea64_bootstrap_alloc(vm_size_t, u_int); /* * PTE calls. */ static int moea64_pte_insert(u_int, struct lpte *); /* * PVO calls. */ static int moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *, vm_offset_t, vm_offset_t, uint64_t, int, int); static void moea64_pvo_remove(struct pvo_entry *, int); static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t, int *); static struct lpte *moea64_pvo_to_pte(const struct pvo_entry *, int); /* * Utility routines. */ static void moea64_bridge_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend); static void moea64_bridge_cpu_bootstrap(mmu_t, int ap); static void moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); static boolean_t moea64_query_bit(vm_page_t, u_int64_t); static u_int moea64_clear_bit(vm_page_t, u_int64_t, u_int64_t *); static void moea64_kremove(mmu_t, vm_offset_t); static void moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa); static void tlbia(void); /* * Kernel MMU interface */ void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); void moea64_clear_modify(mmu_t, vm_page_t); void moea64_clear_reference(mmu_t, vm_page_t); void moea64_copy_page(mmu_t, vm_page_t, vm_page_t); void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t); vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); void moea64_init(mmu_t); boolean_t moea64_is_modified(mmu_t, vm_page_t); boolean_t moea64_ts_referenced(mmu_t, vm_page_t); vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int); boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t); int moea64_page_wired_mappings(mmu_t, vm_page_t); void moea64_pinit(mmu_t, pmap_t); void moea64_pinit0(mmu_t, pmap_t); void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int); void moea64_qremove(mmu_t, vm_offset_t, int); void moea64_release(mmu_t, pmap_t); void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); void moea64_remove_all(mmu_t, vm_page_t); void moea64_remove_write(mmu_t, vm_page_t); void moea64_zero_page(mmu_t, vm_page_t); void moea64_zero_page_area(mmu_t, vm_page_t, int, int); void moea64_zero_page_idle(mmu_t, vm_page_t); void moea64_activate(mmu_t, struct thread *); void moea64_deactivate(mmu_t, struct thread *); void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t); void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t); vm_offset_t moea64_kextract(mmu_t, vm_offset_t); void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t); boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t); boolean_t moea64_page_executable(mmu_t, vm_page_t); static mmu_method_t moea64_bridge_methods[] = { MMUMETHOD(mmu_change_wiring, moea64_change_wiring), MMUMETHOD(mmu_clear_modify, moea64_clear_modify), MMUMETHOD(mmu_clear_reference, moea64_clear_reference), MMUMETHOD(mmu_copy_page, moea64_copy_page), MMUMETHOD(mmu_enter, moea64_enter), MMUMETHOD(mmu_enter_object, moea64_enter_object), MMUMETHOD(mmu_enter_quick, moea64_enter_quick), MMUMETHOD(mmu_extract, moea64_extract), MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold), MMUMETHOD(mmu_init, moea64_init), MMUMETHOD(mmu_is_modified, moea64_is_modified), MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced), MMUMETHOD(mmu_map, moea64_map), MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick), MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings), MMUMETHOD(mmu_pinit, moea64_pinit), MMUMETHOD(mmu_pinit0, moea64_pinit0), MMUMETHOD(mmu_protect, moea64_protect), MMUMETHOD(mmu_qenter, moea64_qenter), MMUMETHOD(mmu_qremove, moea64_qremove), MMUMETHOD(mmu_release, moea64_release), MMUMETHOD(mmu_remove, moea64_remove), MMUMETHOD(mmu_remove_all, moea64_remove_all), MMUMETHOD(mmu_remove_write, moea64_remove_write), MMUMETHOD(mmu_zero_page, moea64_zero_page), MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area), MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle), MMUMETHOD(mmu_activate, moea64_activate), MMUMETHOD(mmu_deactivate, moea64_deactivate), /* Internal interfaces */ MMUMETHOD(mmu_bootstrap, moea64_bridge_bootstrap), MMUMETHOD(mmu_cpu_bootstrap, moea64_bridge_cpu_bootstrap), MMUMETHOD(mmu_mapdev, moea64_mapdev), MMUMETHOD(mmu_unmapdev, moea64_unmapdev), MMUMETHOD(mmu_kextract, moea64_kextract), MMUMETHOD(mmu_kenter, moea64_kenter), MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped), MMUMETHOD(mmu_page_executable, moea64_page_executable), { 0, 0 } }; static mmu_def_t oea64_bridge_mmu = { MMU_TYPE_G5, moea64_bridge_methods, 0 }; MMU_DEF(oea64_bridge_mmu); static __inline u_int va_to_pteg(uint64_t vsid, vm_offset_t addr) { u_int hash; hash = vsid ^ (((uint64_t)addr & ADDR_PIDX) >> ADDR_PIDX_SHFT); return (hash & moea64_pteg_mask); } static __inline struct pvo_head * pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p) { struct vm_page *pg; pg = PHYS_TO_VM_PAGE(pa); if (pg_p != NULL) *pg_p = pg; if (pg == NULL) return (&moea64_pvo_unmanaged); return (&pg->md.mdpg_pvoh); } static __inline struct pvo_head * vm_page_to_pvoh(vm_page_t m) { return (&m->md.mdpg_pvoh); } static __inline void moea64_attr_clear(vm_page_t m, u_int64_t ptebit) { mtx_assert(&vm_page_queue_mtx, MA_OWNED); m->md.mdpg_attrs &= ~ptebit; } static __inline u_int64_t moea64_attr_fetch(vm_page_t m) { return (m->md.mdpg_attrs); } static __inline void moea64_attr_save(vm_page_t m, u_int64_t ptebit) { mtx_assert(&vm_page_queue_mtx, MA_OWNED); m->md.mdpg_attrs |= ptebit; } static __inline int moea64_pte_compare(const struct lpte *pt, const struct lpte *pvo_pt) { if (pt->pte_hi == pvo_pt->pte_hi) return (1); return (0); } static __inline int moea64_pte_match(struct lpte *pt, uint64_t vsid, vm_offset_t va, int which) { return (pt->pte_hi & ~LPTE_VALID) == ((vsid << LPTE_VSID_SHIFT) | ((uint64_t)(va >> ADDR_API_SHFT64) & LPTE_API) | which); } static __inline void moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va, uint64_t pte_lo) { ASSERT_TABLE_LOCK(); /* * Construct a PTE. Default to IMB initially. Valid bit only gets * set when the real pte is set in memory. * * Note: Don't set the valid bit for correct operation of tlb update. */ pt->pte_hi = (vsid << LPTE_VSID_SHIFT) | (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API); pt->pte_lo = pte_lo; } static __inline void moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt) { ASSERT_TABLE_LOCK(); pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG); } static __inline void moea64_pte_clear(struct lpte *pt, pmap_t pmap, vm_offset_t va, u_int64_t ptebit) { ASSERT_TABLE_LOCK(); /* * As shown in Section 7.6.3.2.3 */ pt->pte_lo &= ~ptebit; TLBIE(pmap,va); } static __inline void moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt) { ASSERT_TABLE_LOCK(); pvo_pt->pte_hi |= LPTE_VALID; /* * Update the PTE as defined in section 7.6.3.1. * Note that the REF/CHG bits are from pvo_pt and thus should have * been saved so this routine can restore them (if desired). */ pt->pte_lo = pvo_pt->pte_lo; EIEIO(); pt->pte_hi = pvo_pt->pte_hi; SYNC(); moea64_pte_valid++; } static __inline void moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va) { ASSERT_TABLE_LOCK(); pvo_pt->pte_hi &= ~LPTE_VALID; /* * Force the reg & chg bits back into the PTEs. */ SYNC(); /* * Invalidate the pte. */ pt->pte_hi &= ~LPTE_VALID; TLBIE(pmap,va); /* * Save the reg & chg bits. */ moea64_pte_synch(pt, pvo_pt); moea64_pte_valid--; } static __inline void moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va) { /* * Invalidate the PTE */ moea64_pte_unset(pt, pvo_pt, pmap, va); moea64_pte_set(pt, pvo_pt); } static __inline uint64_t moea64_calc_wimg(vm_offset_t pa) { uint64_t pte_lo; int i; /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ pte_lo = LPTE_I | LPTE_G; for (i = 0; i < pregions_sz; i++) { if ((pa >= pregions[i].mr_start) && (pa < (pregions[i].mr_start + pregions[i].mr_size))) { pte_lo &= ~(LPTE_I | LPTE_G); pte_lo |= LPTE_M; break; } } return pte_lo; } /* * Quick sort callout for comparing memory regions. */ static int mr_cmp(const void *a, const void *b); static int om_cmp(const void *a, const void *b); static int mr_cmp(const void *a, const void *b) { const struct mem_region *regiona; const struct mem_region *regionb; regiona = a; regionb = b; if (regiona->mr_start < regionb->mr_start) return (-1); else if (regiona->mr_start > regionb->mr_start) return (1); else return (0); } static int om_cmp(const void *a, const void *b) { const struct ofw_map *mapa; const struct ofw_map *mapb; mapa = a; mapb = b; if (mapa->om_pa_hi < mapb->om_pa_hi) return (-1); else if (mapa->om_pa_hi > mapb->om_pa_hi) return (1); else if (mapa->om_pa_lo < mapb->om_pa_lo) return (-1); else if (mapa->om_pa_lo > mapb->om_pa_lo) return (1); else return (0); } static void moea64_bridge_cpu_bootstrap(mmu_t mmup, int ap) { int i = 0; /* * Initialize segment registers and MMU */ mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync(); for (i = 0; i < 16; i++) { mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]); } __asm __volatile ("sync; mtsdr1 %0; isync" :: "r"((u_int)moea64_pteg_table | (32 - cntlzw(moea64_pteg_mask >> 11)))); tlbia(); } static void moea64_bridge_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { ihandle_t mmui; phandle_t chosen; phandle_t mmu; int sz; int i, j; int ofw_mappings; vm_size_t size, physsz, hwphyssz; vm_offset_t pa, va, off; uint32_t msr; void *dpcpu; /* We don't have a direct map since there is no BAT */ hw_direct_map = 0; /* Make sure battable is zero, since we have no BAT */ for (i = 0; i < 16; i++) { battable[i].batu = 0; battable[i].batl = 0; } /* Get physical memory regions from firmware */ mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp); if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) panic("moea64_bootstrap: phys_avail too small"); qsort(regions, regions_sz, sizeof(*regions), mr_cmp); phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); for (i = 0, j = 0; i < regions_sz; i++, j += 2) { CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, regions[i].mr_start + regions[i].mr_size, regions[i].mr_size); if (hwphyssz != 0 && (physsz + regions[i].mr_size) >= hwphyssz) { if (physsz < hwphyssz) { phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; } break; } phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; phys_avail_count++; physsz += regions[i].mr_size; } physmem = btoc(physsz); /* * Allocate PTEG table. */ #ifdef PTEGCOUNT moea64_pteg_count = PTEGCOUNT; #else moea64_pteg_count = 0x1000; while (moea64_pteg_count < physmem) moea64_pteg_count <<= 1; #endif /* PTEGCOUNT */ size = moea64_pteg_count * sizeof(struct lpteg); CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes", moea64_pteg_count, size); /* * We now need to allocate memory. This memory, to be allocated, * has to reside in a page table. The page table we are about to * allocate. We don't have BAT. So drop to data real mode for a minute * as a measure of last resort. We do this a couple times. */ moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size); DISABLE_TRANS(msr); bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg)); ENABLE_TRANS(msr); moea64_pteg_mask = moea64_pteg_count - 1; CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table); /* * Allocate pv/overflow lists. */ size = sizeof(struct pvo_head) * moea64_pteg_count; moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size, PAGE_SIZE); CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table); DISABLE_TRANS(msr); for (i = 0; i < moea64_pteg_count; i++) LIST_INIT(&moea64_pvo_table[i]); ENABLE_TRANS(msr); /* * Initialize the lock that synchronizes access to the pteg and pvo * tables. */ mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF | MTX_RECURSE); /* * Initialise the unmanaged pvo pool. */ moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); moea64_bpvo_pool_index = 0; /* * Make sure kernel vsid is allocated as well as VSID 0. */ moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW] |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); moea64_vsid_bitmap[0] |= 1; /* * Initialize the kernel pmap (which is statically allocated). */ for (i = 0; i < 16; i++) kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; kernel_pmap->pmap_phys = kernel_pmap; kernel_pmap->pm_active = ~0; PMAP_LOCK_INIT(kernel_pmap); /* * Now map in all the other buffers we allocated earlier */ DISABLE_TRANS(msr); size = moea64_pteg_count * sizeof(struct lpteg); off = (vm_offset_t)(moea64_pteg_table); for (pa = off; pa < off + size; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); size = sizeof(struct pvo_head) * moea64_pteg_count; off = (vm_offset_t)(moea64_pvo_table); for (pa = off; pa < off + size; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); size = BPVO_POOL_SIZE*sizeof(struct pvo_entry); off = (vm_offset_t)(moea64_bpvo_pool); for (pa = off; pa < off + size; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); ENABLE_TRANS(msr); /* * Map certain important things, like ourselves and the exception * vectors */ DISABLE_TRANS(msr); for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); ENABLE_TRANS(msr); if (!ofw_real_mode) { /* * Set up the Open Firmware pmap and add its mappings. */ moea64_pinit(mmup, &ofw_pmap); ofw_pmap.pm_sr[KERNEL_SR] = kernel_pmap->pm_sr[KERNEL_SR]; ofw_pmap.pm_sr[KERNEL2_SR] = kernel_pmap->pm_sr[KERNEL2_SR]; if ((chosen = OF_finddevice("/chosen")) == -1) panic("moea64_bootstrap: can't find /chosen"); OF_getprop(chosen, "mmu", &mmui, 4); if ((mmu = OF_instance_to_package(mmui)) == -1) panic("moea64_bootstrap: can't get mmu package"); if ((sz = OF_getproplen(mmu, "translations")) == -1) panic("moea64_bootstrap: can't get ofw translation count"); bzero(translations, sz); if (OF_getprop(mmu, "translations", translations, sz) == -1) panic("moea64_bootstrap: can't get ofw translations"); CTR0(KTR_PMAP, "moea64_bootstrap: translations"); sz /= sizeof(*translations); qsort(translations, sz, sizeof (*translations), om_cmp); for (i = 0, ofw_mappings = 0; i < sz; i++) { CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", (uint32_t)(translations[i].om_pa_lo), translations[i].om_va, translations[i].om_len); if (translations[i].om_pa_lo % PAGE_SIZE) panic("OFW translation not page-aligned!"); if (translations[i].om_pa_hi) panic("OFW translations above 32-bit boundary!"); /* Now enter the pages for this mapping */ /* * Lock the ofw pmap. pmap_kenter(), which we use for the * pages the kernel also needs, does its own locking. */ PMAP_LOCK(&ofw_pmap); DISABLE_TRANS(msr); for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { struct vm_page m; /* Map low memory mappings into the kernel pmap, too. * These are typically mappings made by the loader, * so we need them if we want to keep executing. */ if (translations[i].om_va + off < SEGMENT_LENGTH) moea64_kenter(mmup, translations[i].om_va + off, translations[i].om_va + off); m.phys_addr = translations[i].om_pa_lo + off; moea64_enter_locked(&ofw_pmap, translations[i].om_va + off, &m, VM_PROT_ALL, 1); ofw_mappings++; } ENABLE_TRANS(msr); PMAP_UNLOCK(&ofw_pmap); } } #ifdef SMP TLBSYNC(); #endif /* * Calculate the last available physical address. */ for (i = 0; phys_avail[i + 2] != 0; i += 2) ; Maxmem = powerpc_btop(phys_avail[i + 1]); /* * Initialize MMU and remap early physical mappings */ moea64_bridge_cpu_bootstrap(mmup,0); mtmsr(mfmsr() | PSL_DR | PSL_IR); isync(); pmap_bootstrapped++; bs_remap_earlyboot(); /* * Set the start and end of kva. */ virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_KERNEL_ADDRESS; /* * Allocate some stupid buffer regions. */ pvo_allocator_start = virtual_avail; virtual_avail += SEGMENT_LENGTH/4; pvo_allocator_end = virtual_avail; /* * Allocate some things for page zeroing */ mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF); for (i = 0; i < 2; i++) { moea64_scratchpage_va[i] = virtual_avail; virtual_avail += PAGE_SIZE; moea64_kenter(mmup,moea64_scratchpage_va[i],kernelstart); LOCK_TABLE(); moea64_scratchpage_pvo[i] = moea64_pvo_find_va(kernel_pmap, moea64_scratchpage_va[i],&j); moea64_scratchpage_pte[i] = moea64_pvo_to_pte( moea64_scratchpage_pvo[i],j); UNLOCK_TABLE(); } /* * Allocate a kernel stack with a guard page for thread0 and map it * into the kernel page map. */ pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE); va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; virtual_avail = va + KSTACK_PAGES * PAGE_SIZE; CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va); thread0.td_kstack = va; thread0.td_kstack_pages = KSTACK_PAGES; for (i = 0; i < KSTACK_PAGES; i++) { moea64_kenter(mmup, va, pa);; pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the message buffer. */ pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE); msgbufp = (struct msgbuf *)virtual_avail; va = virtual_avail; virtual_avail += round_page(MSGBUF_SIZE); while (va < virtual_avail) { moea64_kenter(mmup, va, pa);; pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the dynamic percpu area. */ pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); dpcpu = (void *)virtual_avail; va = virtual_avail; virtual_avail += DPCPU_SIZE; while (va < virtual_avail) { moea64_kenter(mmup, va, pa);; pa += PAGE_SIZE; va += PAGE_SIZE; } dpcpu_init(dpcpu, 0); } /* * Activate a user pmap. The pmap must be activated before it's address * space can be accessed in any way. */ void moea64_activate(mmu_t mmu, struct thread *td) { pmap_t pm, pmr; /* * Load all the data we need up front to encourage the compiler to * not issue any loads while we have interrupts disabled below. */ pm = &td->td_proc->p_vmspace->vm_pmap; pmr = pm->pmap_phys; pm->pm_active |= PCPU_GET(cpumask); PCPU_SET(curpmap, pmr); } void moea64_deactivate(mmu_t mmu, struct thread *td) { pmap_t pm; pm = &td->td_proc->p_vmspace->vm_pmap; pm->pm_active &= ~(PCPU_GET(cpumask)); PCPU_SET(curpmap, NULL); } void moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired) { struct pvo_entry *pvo; PMAP_LOCK(pm); pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL); if (pvo != NULL) { if (wired) { if ((pvo->pvo_vaddr & PVO_WIRED) == 0) pm->pm_stats.wired_count++; pvo->pvo_vaddr |= PVO_WIRED; } else { if ((pvo->pvo_vaddr & PVO_WIRED) != 0) pm->pm_stats.wired_count--; pvo->pvo_vaddr &= ~PVO_WIRED; } } PMAP_UNLOCK(pm); } /* * Zero a page of physical memory by temporarily mapping it into the tlb. */ void moea64_zero_page(mmu_t mmu, vm_page_t m) { moea64_zero_page_area(mmu,m,0,PAGE_SIZE); } /* * This goes through and sets the physical address of our * special scratch PTE to the PA we want to zero or copy. Because * of locking issues (this can get called in pvo_enter() by * the UMA allocator), we can't use most other utility functions here */ static __inline void moea64_set_scratchpage_pa(int which, vm_offset_t pa) { moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &= (~LPTE_WIMG & ~LPTE_RPGN); moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |= moea64_calc_wimg(pa) | (uint64_t)pa; moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID; TLBIE(kernel_pmap, moea64_scratchpage_va[which]); moea64_scratchpage_pte[which]->pte_lo = moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo; EIEIO(); moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID; TLBIE(kernel_pmap, moea64_scratchpage_va[which]); } void moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) { vm_offset_t dst; vm_offset_t src; dst = VM_PAGE_TO_PHYS(mdst); src = VM_PAGE_TO_PHYS(msrc); mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(0,src); moea64_set_scratchpage_pa(1,dst); kcopy((void *)moea64_scratchpage_va[0], (void *)moea64_scratchpage_va[1], PAGE_SIZE); __syncicache((void *)moea64_scratchpage_va[1],PAGE_SIZE); mtx_unlock(&moea64_scratchpage_mtx); } void moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) { vm_offset_t pa = VM_PAGE_TO_PHYS(m); if (!moea64_initialized) panic("moea64_zero_page: can't zero pa %#x", pa); if (size + off > PAGE_SIZE) panic("moea64_zero_page: size + off > PAGE_SIZE"); mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(0,pa); bzero((caddr_t)moea64_scratchpage_va[0] + off, size); __syncicache((void *)moea64_scratchpage_va[0],PAGE_SIZE); mtx_unlock(&moea64_scratchpage_mtx); } void moea64_zero_page_idle(mmu_t mmu, vm_page_t m) { moea64_zero_page(mmu, m); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. */ void moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, boolean_t wired) { vm_page_lock_queues(); PMAP_LOCK(pmap); moea64_enter_locked(pmap, va, m, prot, wired); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. * * The page queues and pmap must be locked. */ static void moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, boolean_t wired) { struct pvo_head *pvo_head; uma_zone_t zone; vm_page_t pg; uint64_t pte_lo; u_int pvo_flags; int error; if (!moea64_initialized) { pvo_head = &moea64_pvo_kunmanaged; pg = NULL; zone = moea64_upvo_zone; pvo_flags = 0; } else { pvo_head = vm_page_to_pvoh(m); pg = m; zone = moea64_mpvo_zone; pvo_flags = PVO_MANAGED; } if (pmap_bootstrapped) mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* XXX change the pvo head for fake pages */ if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) { pvo_flags &= ~PVO_MANAGED; pvo_head = &moea64_pvo_kunmanaged; zone = moea64_upvo_zone; } pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m)); if (prot & VM_PROT_WRITE) { pte_lo |= LPTE_BW; if (pmap_bootstrapped) vm_page_flag_set(m, PG_WRITEABLE); } else pte_lo |= LPTE_BR; if (prot & VM_PROT_EXECUTE) pvo_flags |= VM_PROT_EXECUTE; if (wired) pvo_flags |= PVO_WIRED; if ((m->flags & PG_FICTITIOUS) != 0) pvo_flags |= PVO_FAKE; error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, 0); if (pmap == kernel_pmap) TLBIE(pmap, va); /* * Flush the page from the instruction cache if this page is * mapped executable and cacheable. */ if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m)); } } static void moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa) { /* * This is much trickier than on older systems because * we can't sync the icache on physical addresses directly * without a direct map. Instead we check a couple of cases * where the memory is already mapped in and, failing that, * use the same trick we use for page zeroing to create * a temporary mapping for this physical address. */ if (!pmap_bootstrapped) { /* * If PMAP is not bootstrapped, we are likely to be * in real mode. */ __syncicache((void *)pa,PAGE_SIZE); } else if (pmap == kernel_pmap) { __syncicache((void *)va,PAGE_SIZE); } else { /* Use the scratch page to set up a temp mapping */ mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(1,pa); __syncicache((void *)moea64_scratchpage_va[1],PAGE_SIZE); mtx_unlock(&moea64_scratchpage_mtx); } } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; psize = atop(end - start); m = m_start; PMAP_LOCK(pm); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { moea64_enter_locked(pm, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); m = TAILQ_NEXT(m, listq); } PMAP_UNLOCK(pm); } void moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot) { PMAP_LOCK(pm); moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); PMAP_UNLOCK(pm); } vm_paddr_t moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; PMAP_LOCK(pm); pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL); if (pvo == NULL) pa = 0; else pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF); PMAP_UNLOCK(pm); return (pa); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ vm_page_t moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) { struct pvo_entry *pvo; vm_page_t m; m = NULL; vm_page_lock_queues(); PMAP_LOCK(pmap); pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) && ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW || (prot & VM_PROT_WRITE) == 0)) { m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); vm_page_hold(m); } vm_page_unlock_queues(); PMAP_UNLOCK(pmap); return (m); } static void * moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) { /* * This entire routine is a horrible hack to avoid bothering kmem * for new KVA addresses. Because this can get called from inside * kmem allocation routines, calling kmem for a new address here * can lead to multiply locking non-recursive mutexes. */ static vm_pindex_t color; vm_offset_t va; vm_page_t m; int pflags, needed_lock; *flags = UMA_SLAB_PRIV; needed_lock = !PMAP_LOCKED(kernel_pmap); if (needed_lock) PMAP_LOCK(kernel_pmap); if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; else pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; if (wait & M_ZERO) pflags |= VM_ALLOC_ZERO; for (;;) { m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ); if (m == NULL) { if (wait & M_NOWAIT) return (NULL); VM_WAIT; } else break; } va = pvo_allocator_start; pvo_allocator_start += PAGE_SIZE; if (pvo_allocator_start >= pvo_allocator_end) panic("Ran out of PVO allocator buffer space!"); /* Now call pvo_enter in recursive mode */ moea64_pvo_enter(kernel_pmap, moea64_upvo_zone, &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP, 1); TLBIE(kernel_pmap, va); if (needed_lock) PMAP_UNLOCK(kernel_pmap); if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) bzero((void *)va, PAGE_SIZE); return (void *)va; } void moea64_init(mmu_t mmu) { CTR0(KTR_PMAP, "moea64_init"); moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); if (!hw_direct_map) { uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc); uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc); } moea64_initialized = TRUE; } boolean_t moea64_is_modified(mmu_t mmu, vm_page_t m) { if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) return (FALSE); return (moea64_query_bit(m, LPTE_CHG)); } void moea64_clear_reference(mmu_t mmu, vm_page_t m) { if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) return; moea64_clear_bit(m, LPTE_REF, NULL); } void moea64_clear_modify(mmu_t mmu, vm_page_t m) { if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) return; moea64_clear_bit(m, LPTE_CHG, NULL); } /* * Clear the write and modified bits in each of the given page's mappings. */ void moea64_remove_write(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo; struct lpte *pt; pmap_t pmap; uint64_t lo; mtx_assert(&vm_page_queue_mtx, MA_OWNED); if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 || (m->flags & PG_WRITEABLE) == 0) return; lo = moea64_attr_fetch(m); SYNC(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) { LOCK_TABLE(); pt = moea64_pvo_to_pte(pvo, -1); pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; if (pt != NULL) { moea64_pte_synch(pt, &pvo->pvo_pte.lpte); lo |= pvo->pvo_pte.lpte.pte_lo; pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG; moea64_pte_change(pt, &pvo->pvo_pte.lpte, pvo->pvo_pmap, pvo->pvo_vaddr); } UNLOCK_TABLE(); } PMAP_UNLOCK(pmap); } if ((lo & LPTE_CHG) != 0) { moea64_attr_clear(m, LPTE_CHG); vm_page_dirty(m); } vm_page_flag_clear(m, PG_WRITEABLE); } /* * moea64_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ boolean_t moea64_ts_referenced(mmu_t mmu, vm_page_t m) { int count; if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) return (0); count = moea64_clear_bit(m, LPTE_REF, NULL); return (count); } /* * Map a wired page into kernel virtual address space. */ void moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa) { uint64_t pte_lo; int error; if (!pmap_bootstrapped) { if (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS) panic("Trying to enter an address in KVA -- %#x!\n",pa); } pte_lo = moea64_calc_wimg(pa); PMAP_LOCK(kernel_pmap); error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone, &moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED | VM_PROT_EXECUTE, 0); TLBIE(kernel_pmap, va); if (error != 0 && error != ENOENT) panic("moea64_kenter: failed to enter va %#x pa %#x: %d", va, pa, error); /* * Flush the memory from the instruction cache. */ if ((pte_lo & (LPTE_I | LPTE_G)) == 0) { __syncicache((void *)va, PAGE_SIZE); } PMAP_UNLOCK(kernel_pmap); } /* * Extract the physical page address associated with the given kernel virtual * address. */ vm_offset_t moea64_kextract(mmu_t mmu, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; PMAP_LOCK(kernel_pmap); pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); KASSERT(pvo != NULL, ("moea64_kextract: no addr found")); pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF); PMAP_UNLOCK(kernel_pmap); return (pa); } /* * Remove a wired page from kernel virtual address space. */ void moea64_kremove(mmu_t mmu, vm_offset_t va) { moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); } /* * Map a range of physical addresses into kernel virtual address space. * * The value passed in *virt is a suggested virtual address for the mapping. * Architectures which can support a direct-mapped physical to virtual region * can return the appropriate address within that region, leaving '*virt' * unchanged. We cannot and therefore do not; *virt is updated with the * first usable address after the mapped region. */ vm_offset_t moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot) { vm_offset_t sva, va; sva = *virt; va = sva; for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) moea64_kenter(mmu, va, pa_start); *virt = va; return (sva); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) { int loops; struct pvo_entry *pvo; if (!moea64_initialized || (m->flags & PG_FICTITIOUS)) return FALSE; loops = 0; LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { if (pvo->pvo_pmap == pmap) return (TRUE); if (++loops >= 16) break; } return (FALSE); } /* * Return the number of managed mappings to the given physical page * that are wired. */ int moea64_page_wired_mappings(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo; int count; count = 0; if (!moea64_initialized || (m->flags & PG_FICTITIOUS) != 0) return (count); mtx_assert(&vm_page_queue_mtx, MA_OWNED); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) if ((pvo->pvo_vaddr & PVO_WIRED) != 0) count++; return (count); } static u_int moea64_vsidcontext; void moea64_pinit(mmu_t mmu, pmap_t pmap) { int i, mask; u_int entropy; PMAP_LOCK_INIT(pmap); entropy = 0; __asm __volatile("mftb %0" : "=r"(entropy)); if (pmap_bootstrapped) pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, (vm_offset_t)pmap); else pmap->pmap_phys = pmap; /* * Allocate some segment registers for this pmap. */ for (i = 0; i < NPMAPS; i += VSID_NBPW) { u_int hash, n; /* * Create a new value by mutiplying by a prime and adding in * entropy from the timebase register. This is to make the * VSID more random so that the PT hash function collides * less often. (Note that the prime casues gcc to do shifts * instead of a multiply.) */ moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; hash = moea64_vsidcontext & (NPMAPS - 1); if (hash == 0) /* 0 is special, avoid it */ continue; n = hash >> 5; mask = 1 << (hash & (VSID_NBPW - 1)); hash = (moea64_vsidcontext & 0xfffff); if (moea64_vsid_bitmap[n] & mask) { /* collision? */ /* anything free in this bucket? */ if (moea64_vsid_bitmap[n] == 0xffffffff) { entropy = (moea64_vsidcontext >> 20); continue; } i = ffs(~moea64_vsid_bitmap[i]) - 1; mask = 1 << i; hash &= 0xfffff & ~(VSID_NBPW - 1); hash |= i; } moea64_vsid_bitmap[n] |= mask; for (i = 0; i < 16; i++) { pmap->pm_sr[i] = VSID_MAKE(i, hash); } return; } panic("moea64_pinit: out of segments"); } /* * Initialize the pmap associated with process 0. */ void moea64_pinit0(mmu_t mmu, pmap_t pm) { moea64_pinit(mmu, pm); bzero(&pm->pm_stats, sizeof(pm->pm_stats)); } /* * Set the physical protection on the specified range of this map as requested. */ void moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { struct pvo_entry *pvo; struct lpte *pt; int pteidx; CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva, eva, prot); KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("moea64_protect: non current pmap")); if ((prot & VM_PROT_READ) == VM_PROT_NONE) { moea64_remove(mmu, pm, sva, eva); return; } vm_page_lock_queues(); PMAP_LOCK(pm); for (; sva < eva; sva += PAGE_SIZE) { pvo = moea64_pvo_find_va(pm, sva, &pteidx); if (pvo == NULL) continue; /* * Grab the PTE pointer before we diddle with the cached PTE * copy. */ LOCK_TABLE(); pt = moea64_pvo_to_pte(pvo, pteidx); /* * Change the protection of the page. */ pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC; if ((prot & VM_PROT_EXECUTE) == 0) pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC; /* * If the PVO is in the page table, update that pte as well. */ if (pt != NULL) { moea64_pte_change(pt, &pvo->pvo_pte.lpte, pvo->pvo_pmap, pvo->pvo_vaddr); if ((pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { moea64_syncicache(pm, sva, pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); } } UNLOCK_TABLE(); } vm_page_unlock_queues(); PMAP_UNLOCK(pm); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ void moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count) { while (count-- > 0) { moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by moea64_qenter. */ void moea64_qremove(mmu_t mmu, vm_offset_t va, int count) { while (count-- > 0) { moea64_kremove(mmu, va); va += PAGE_SIZE; } } void moea64_release(mmu_t mmu, pmap_t pmap) { int idx, mask; /* * Free segment register's VSID */ if (pmap->pm_sr[0] == 0) panic("moea64_release"); idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1); mask = 1 << (idx % VSID_NBPW); idx /= VSID_NBPW; moea64_vsid_bitmap[idx] &= ~mask; PMAP_LOCK_DESTROY(pmap); } /* * Remove the given range of addresses from the specified map. */ void moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry *pvo; int pteidx; vm_page_lock_queues(); PMAP_LOCK(pm); for (; sva < eva; sva += PAGE_SIZE) { pvo = moea64_pvo_find_va(pm, sva, &pteidx); if (pvo != NULL) { moea64_pvo_remove(pvo, pteidx); } } vm_page_unlock_queues(); PMAP_UNLOCK(pm); } /* * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() * will reflect changes in pte's back to the vm_page. */ void moea64_remove_all(mmu_t mmu, vm_page_t m) { struct pvo_head *pvo_head; struct pvo_entry *pvo, *next_pvo; pmap_t pmap; mtx_assert(&vm_page_queue_mtx, MA_OWNED); pvo_head = vm_page_to_pvoh(m); for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { next_pvo = LIST_NEXT(pvo, pvo_vlink); MOEA_PVO_CHECK(pvo); /* sanity check */ pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); moea64_pvo_remove(pvo, -1); PMAP_UNLOCK(pmap); } vm_page_flag_clear(m, PG_WRITEABLE); } /* * Allocate a physical page of memory directly from the phys_avail map. * Can only be called from moea64_bootstrap before avail start and end are * calculated. */ static vm_offset_t moea64_bootstrap_alloc(vm_size_t size, u_int align) { vm_offset_t s, e; int i, j; size = round_page(size); for (i = 0; phys_avail[i + 1] != 0; i += 2) { if (align != 0) s = (phys_avail[i] + align - 1) & ~(align - 1); else s = phys_avail[i]; e = s + size; if (s < phys_avail[i] || e > phys_avail[i + 1]) continue; if (s == phys_avail[i]) { phys_avail[i] += size; } else if (e == phys_avail[i + 1]) { phys_avail[i + 1] -= size; } else { for (j = phys_avail_count * 2; j > i; j -= 2) { phys_avail[j] = phys_avail[j - 2]; phys_avail[j + 1] = phys_avail[j - 1]; } phys_avail[i + 3] = phys_avail[i + 1]; phys_avail[i + 1] = s; phys_avail[i + 2] = e; phys_avail_count++; } return (s); } panic("moea64_bootstrap_alloc: could not allocate memory"); } static void tlbia(void) { vm_offset_t i; for (i = 0; i < 0xFF000; i += 0x00001000) TLBIE(NULL,i); } static int moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags, int recurse) { struct pvo_entry *pvo; uint64_t vsid; int first; u_int ptegidx; int i; int bootstrap; /* * One nasty thing that can happen here is that the UMA calls to * allocate new PVOs need to map more memory, which calls pvo_enter(), * which calls UMA... * * We break the loop by detecting recursion and allocating out of * the bootstrap pool. */ moea64_pvo_enter_calls++; first = 0; bootstrap = (flags & PVO_BOOTSTRAP); if (!moea64_initialized) bootstrap = 1; /* * Compute the PTE Group index. */ va &= ~ADDR_POFF; vsid = va_to_vsid(pm, va); ptegidx = va_to_pteg(vsid, va); /* * Remove any existing mapping for this page. Reuse the pvo entry if * there is a mapping. */ if (!recurse) LOCK_TABLE(); LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa && (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == (pte_lo & LPTE_PP)) { if (!recurse) UNLOCK_TABLE(); return (0); } moea64_pvo_remove(pvo, -1); break; } } /* * If we aren't overwriting a mapping, try to allocate. */ if (bootstrap) { if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) { panic("moea64_enter: bpvo pool exhausted, %d, %d, %d", moea64_bpvo_pool_index, BPVO_POOL_SIZE, BPVO_POOL_SIZE * sizeof(struct pvo_entry)); } pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index]; moea64_bpvo_pool_index++; bootstrap = 1; } else { pvo = uma_zalloc(zone, M_NOWAIT); } if (pvo == NULL) { if (!recurse) UNLOCK_TABLE(); return (ENOMEM); } moea64_pvo_entries++; pvo->pvo_vaddr = va; pvo->pvo_pmap = pm; LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink); pvo->pvo_vaddr &= ~ADDR_POFF; if (!(flags & VM_PROT_EXECUTE)) pte_lo |= LPTE_NOEXEC; if (flags & PVO_WIRED) pvo->pvo_vaddr |= PVO_WIRED; if (pvo_head != &moea64_pvo_kunmanaged) pvo->pvo_vaddr |= PVO_MANAGED; if (bootstrap) pvo->pvo_vaddr |= PVO_BOOTSTRAP; if (flags & PVO_FAKE) pvo->pvo_vaddr |= PVO_FAKE; moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va, (uint64_t)(pa) | pte_lo); /* * Remember if the list was empty and therefore will be the first * item. */ if (LIST_FIRST(pvo_head) == NULL) first = 1; LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); if (pvo->pvo_pte.lpte.pte_lo & PVO_WIRED) pm->pm_stats.wired_count++; pm->pm_stats.resident_count++; /* * We hope this succeeds but it isn't required. */ i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte); if (i >= 0) { PVO_PTEGIDX_SET(pvo, i); } else { panic("moea64_pvo_enter: overflow"); moea64_pte_overflow++; } if (!recurse) UNLOCK_TABLE(); return (first ? ENOENT : 0); } static void moea64_pvo_remove(struct pvo_entry *pvo, int pteidx) { struct lpte *pt; /* * If there is an active pte entry, we need to deactivate it (and * save the ref & cfg bits). */ LOCK_TABLE(); pt = moea64_pvo_to_pte(pvo, pteidx); if (pt != NULL) { moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_pmap, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); } else { moea64_pte_overflow--; } UNLOCK_TABLE(); /* * Update our statistics. */ pvo->pvo_pmap->pm_stats.resident_count--; if (pvo->pvo_pte.lpte.pte_lo & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count--; /* * Save the REF/CHG bits into their cache if the page is managed. */ if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) { struct vm_page *pg; pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); if (pg != NULL) { moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo & (LPTE_REF | LPTE_CHG)); } } /* * Remove this PVO from the PV list. */ LIST_REMOVE(pvo, pvo_vlink); /* * Remove this from the overflow list and return it to the pool * if we aren't going to reuse it. */ LIST_REMOVE(pvo, pvo_olink); if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea64_mpvo_zone : moea64_upvo_zone, pvo); moea64_pvo_entries--; moea64_pvo_remove_calls++; } static __inline int moea64_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) { int pteidx; /* * We can find the actual pte entry without searching by grabbing * the PTEG index from 3 unused bits in pte_lo[11:9] and by * noticing the HID bit. */ pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID) pteidx ^= moea64_pteg_mask * 8; return (pteidx); } static struct pvo_entry * moea64_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p) { struct pvo_entry *pvo; int ptegidx; uint64_t vsid; va &= ~ADDR_POFF; vsid = va_to_vsid(pm, va); ptegidx = va_to_pteg(vsid, va); LOCK_TABLE(); LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if (pteidx_p) *pteidx_p = moea64_pvo_pte_index(pvo, ptegidx); break; } } UNLOCK_TABLE(); return (pvo); } static struct lpte * moea64_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) { struct lpte *pt; /* * If we haven't been supplied the ptegidx, calculate it. */ if (pteidx == -1) { int ptegidx; uint64_t vsid; vsid = va_to_vsid(pvo->pvo_pmap, pvo->pvo_vaddr); ptegidx = va_to_pteg(vsid, pvo->pvo_vaddr); pteidx = moea64_pvo_pte_index(pvo, ptegidx); } pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7]; if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no " "valid pte index", pvo); } if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo " "pvo but no valid pte", pvo); } if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) == LPTE_VALID) { if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) { panic("moea64_pvo_to_pte: pvo %p has valid pte in " "moea64_pteg_table %p but invalid in pvo", pvo, pt); } if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) & ~(LPTE_CHG|LPTE_REF)) != 0) { panic("moea64_pvo_to_pte: pvo %p pte does not match " "pte %p in moea64_pteg_table difference is %#x", pvo, pt, (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo)); } ASSERT_TABLE_LOCK(); return (pt); } if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) { panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in " "moea64_pteg_table but valid in pvo", pvo, pt); } return (NULL); } static int moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt) { struct lpte *pt; int i; ASSERT_TABLE_LOCK(); /* * First try primary hash. */ for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & LPTE_VALID) == 0) { pvo_pt->pte_hi &= ~LPTE_HID; moea64_pte_set(pt, pvo_pt); return (i); } } /* * Now try secondary hash. */ ptegidx ^= moea64_pteg_mask; for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & LPTE_VALID) == 0) { pvo_pt->pte_hi |= LPTE_HID; moea64_pte_set(pt, pvo_pt); return (i); } } panic("moea64_pte_insert: overflow"); return (-1); } static boolean_t moea64_query_bit(vm_page_t m, u_int64_t ptebit) { struct pvo_entry *pvo; struct lpte *pt; #if 0 if (moea64_attr_fetch(m) & ptebit) return (TRUE); #endif LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { MOEA_PVO_CHECK(pvo); /* sanity check */ /* * See if we saved the bit off. If so, cache it and return * success. */ if (pvo->pvo_pte.lpte.pte_lo & ptebit) { moea64_attr_save(m, ptebit); MOEA_PVO_CHECK(pvo); /* sanity check */ return (TRUE); } } /* * No luck, now go through the hard part of looking at the PTEs * themselves. Sync so that any pending REF/CHG bits are flushed to * the PTEs. */ SYNC(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { MOEA_PVO_CHECK(pvo); /* sanity check */ /* * See if this pvo has a valid PTE. if so, fetch the * REF/CHG bits from the valid PTE. If the appropriate * ptebit is set, cache it and return success. */ LOCK_TABLE(); pt = moea64_pvo_to_pte(pvo, -1); if (pt != NULL) { moea64_pte_synch(pt, &pvo->pvo_pte.lpte); if (pvo->pvo_pte.lpte.pte_lo & ptebit) { UNLOCK_TABLE(); moea64_attr_save(m, ptebit); MOEA_PVO_CHECK(pvo); /* sanity check */ return (TRUE); } } UNLOCK_TABLE(); } return (FALSE); } static u_int moea64_clear_bit(vm_page_t m, u_int64_t ptebit, u_int64_t *origbit) { u_int count; struct pvo_entry *pvo; struct lpte *pt; uint64_t rv; /* * Clear the cached value. */ rv = moea64_attr_fetch(m); moea64_attr_clear(m, ptebit); /* * Sync so that any pending REF/CHG bits are flushed to the PTEs (so * we can reset the right ones). note that since the pvo entries and * list heads are accessed via BAT0 and are never placed in the page * table, we don't have to worry about further accesses setting the * REF/CHG bits. */ SYNC(); /* * For each pvo entry, clear the pvo's ptebit. If this pvo has a * valid pte clear the ptebit from the valid pte. */ count = 0; LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { MOEA_PVO_CHECK(pvo); /* sanity check */ LOCK_TABLE(); pt = moea64_pvo_to_pte(pvo, -1); if (pt != NULL) { moea64_pte_synch(pt, &pvo->pvo_pte.lpte); if (pvo->pvo_pte.lpte.pte_lo & ptebit) { count++; moea64_pte_clear(pt, pvo->pvo_pmap, PVO_VADDR(pvo), ptebit); } } UNLOCK_TABLE(); rv |= pvo->pvo_pte.lpte.pte_lo; pvo->pvo_pte.lpte.pte_lo &= ~ptebit; MOEA_PVO_CHECK(pvo); /* sanity check */ } if (origbit != NULL) { *origbit = rv; } return (count); } boolean_t moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size) { return (EFAULT); } boolean_t moea64_page_executable(mmu_t mmu, vm_page_t pg) { return (!moea64_query_bit(pg, LPTE_NOEXEC)); } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size) { vm_offset_t va, tmpva, ppa, offset; ppa = trunc_page(pa); offset = pa & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); va = kmem_alloc_nofault(kernel_map, size); if (!va) panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0;) { moea64_kenter(mmu, tmpva, ppa); size -= PAGE_SIZE; tmpva += PAGE_SIZE; ppa += PAGE_SIZE; } return ((void *)(va + offset)); } void moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) { vm_offset_t base, offset; base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); kmem_free(kernel_map, base, size); }