/*- * Copyright (c) 2015 The FreeBSD Foundation * Copyright (c) 2016 Ruslan Bukin * All rights reserved. * * Portions of this software were developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Portions of this software were developed by SRI International and the * University of Cambridge Computer Laboratory under DARPA/AFRL contract * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme. * * Portions of this software were developed by the University of Cambridge * Computer Laboratory as part of the CTSRD Project, with support from the * UK Higher Education Innovation Fund (HEIF). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_kstack_pages.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #endif #define MP_BOOTSTACK_SIZE (kstack_pages * PAGE_SIZE) uint32_t __riscv_boot_ap[MAXCPU]; static enum { CPUS_UNKNOWN, #ifdef FDT CPUS_FDT, #endif } cpu_enum_method; static void ipi_ast(void *); static void ipi_hardclock(void *); static void ipi_preempt(void *); static void ipi_rendezvous(void *); static void ipi_stop(void *); extern uint32_t boot_hart; extern cpuset_t all_harts; #ifdef INVARIANTS static uint32_t cpu_reg[MAXCPU][2]; #endif void mpentry(u_long hartid); void init_secondary(uint64_t); static struct mtx ap_boot_mtx; /* Stacks for AP initialization, discarded once idle threads are started. */ void *bootstack; static void *bootstacks[MAXCPU]; /* Count of started APs, used to synchronize access to bootstack. */ static volatile int aps_started; /* Set to 1 once we're ready to let the APs out of the pen. */ static volatile int aps_ready; /* Temporary variables for init_secondary() */ void *dpcpu[MAXCPU - 1]; static void release_aps(void *dummy __unused) { cpuset_t mask; int i; if (mp_ncpus == 1) return; /* Setup the IPI handlers */ intr_ipi_setup(IPI_AST, "ast", ipi_ast, NULL); intr_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL); intr_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL); intr_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL); intr_ipi_setup(IPI_STOP_HARD, "stop hard", ipi_stop, NULL); intr_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL); atomic_store_rel_int(&aps_ready, 1); /* Wake up the other CPUs */ mask = all_harts; CPU_CLR(boot_hart, &mask); printf("Release APs\n"); sbi_send_ipi(mask.__bits); for (i = 0; i < 2000; i++) { if (atomic_load_acq_int(&smp_started)) return; DELAY(1000); } printf("APs not started\n"); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); void init_secondary(uint64_t hart) { struct pcpu *pcpup; u_int cpuid; /* Renumber this cpu */ cpuid = hart; if (cpuid < boot_hart) cpuid += mp_maxid + 1; cpuid -= boot_hart; /* Setup the pcpu pointer */ pcpup = &__pcpu[cpuid]; __asm __volatile("mv tp, %0" :: "r"(pcpup)); /* Workaround: make sure wfi doesn't halt the hart */ csr_set(sie, SIE_SSIE); csr_set(sip, SIE_SSIE); /* Signal the BSP and spin until it has released all APs. */ atomic_add_int(&aps_started, 1); while (!atomic_load_int(&aps_ready)) __asm __volatile("wfi"); /* Initialize curthread */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); pcpup->pc_curthread = pcpup->pc_idlethread; schedinit_ap(); /* Setup and enable interrupts */ intr_pic_init_secondary(); #ifndef EARLY_AP_STARTUP /* Start per-CPU event timers. */ cpu_initclocks_ap(); #endif /* Activate this hart in the kernel pmap. */ CPU_SET_ATOMIC(hart, &kernel_pmap->pm_active); /* Activate process 0's pmap. */ pmap_activate_boot(vmspace_pmap(proc0.p_vmspace)); mtx_lock_spin(&ap_boot_mtx); atomic_add_rel_32(&smp_cpus, 1); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } mtx_unlock_spin(&ap_boot_mtx); if (bootverbose) printf("Secondary CPU %u fully online\n", cpuid); /* Enter the scheduler */ sched_ap_entry(); panic("scheduler returned us to init_secondary"); /* NOTREACHED */ } static void smp_after_idle_runnable(void *arg __unused) { int cpu; if (mp_ncpus == 1) return; KASSERT(smp_started != 0, ("%s: SMP not started yet", __func__)); /* * Wait for all APs to handle an interrupt. After that, we know that * the APs have entered the scheduler at least once, so the boot stacks * are safe to free. */ smp_rendezvous(smp_no_rendezvous_barrier, NULL, smp_no_rendezvous_barrier, NULL); for (cpu = 1; cpu <= mp_maxid; cpu++) { if (bootstacks[cpu] != NULL) kmem_free(bootstacks[cpu], MP_BOOTSTACK_SIZE); } } SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY, smp_after_idle_runnable, NULL); static void ipi_ast(void *dummy __unused) { CTR0(KTR_SMP, "IPI_AST"); } static void ipi_preempt(void *dummy __unused) { CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__); sched_preempt(curthread); } static void ipi_rendezvous(void *dummy __unused) { CTR0(KTR_SMP, "IPI_RENDEZVOUS"); smp_rendezvous_action(); } static void ipi_stop(void *dummy __unused) { u_int cpu; CTR0(KTR_SMP, "IPI_STOP"); cpu = PCPU_GET(cpuid); savectx(&stoppcbs[cpu]); /* Indicate we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) cpu_spinwait(); CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); CTR0(KTR_SMP, "IPI_STOP (restart)"); /* * The kernel debugger might have set a breakpoint, * so flush the instruction cache. */ fence_i(); } static void ipi_hardclock(void *dummy __unused) { CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__); hardclockintr(); } struct cpu_group * cpu_topo(void) { return (smp_topo_none()); } /* Determine if we running MP machine */ int cpu_mp_probe(void) { return (mp_ncpus > 1); } #ifdef FDT static bool cpu_check_mmu(u_int id __unused, phandle_t node, u_int addr_size __unused, pcell_t *reg __unused) { char type[32]; /* Check if this hart supports MMU. */ if (OF_getprop(node, "mmu-type", (void *)type, sizeof(type)) == -1 || strncmp(type, "riscv,none", 10) == 0) return (false); return (true); } static bool cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg) { struct pcpu *pcpup; vm_paddr_t start_addr; uint64_t hart; u_int cpuid; int naps; int error; if (!cpu_check_mmu(id, node, addr_size, reg)) return (false); KASSERT(id < MAXCPU, ("Too many CPUs")); KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size")); #ifdef INVARIANTS cpu_reg[id][0] = reg[0]; if (addr_size == 2) cpu_reg[id][1] = reg[1]; #endif hart = reg[0]; if (addr_size == 2) { hart <<= 32; hart |= reg[1]; } KASSERT(hart < MAXCPU, ("Too many harts.")); /* We are already running on this cpu */ if (hart == boot_hart) return (true); /* * Rotate the CPU IDs to put the boot CPU as CPU 0. * We keep the other CPUs ordered. */ cpuid = hart; if (cpuid < boot_hart) cpuid += mp_maxid + 1; cpuid -= boot_hart; /* Check if we are able to start this cpu */ if (cpuid > mp_maxid) return (false); /* * Depending on the SBI implementation, APs are waiting either in * locore.S or to be activated explicitly, via SBI call. */ if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0) { start_addr = pmap_kextract((vm_offset_t)mpentry); error = sbi_hsm_hart_start(hart, start_addr, 0); if (error != 0) { mp_ncpus--; /* Send a warning to the user and continue. */ printf("AP %u (hart %lu) failed to start, error %d\n", cpuid, hart, error); return (false); } } pcpup = &__pcpu[cpuid]; pcpu_init(pcpup, cpuid, sizeof(struct pcpu)); pcpup->pc_hart = hart; dpcpu[cpuid - 1] = kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO); dpcpu_init(dpcpu[cpuid - 1], cpuid); bootstacks[cpuid] = kmem_malloc(MP_BOOTSTACK_SIZE, M_WAITOK | M_ZERO); naps = atomic_load_int(&aps_started); bootstack = (char *)bootstacks[cpuid] + MP_BOOTSTACK_SIZE; if (bootverbose) printf("Starting CPU %u (hart %lx)\n", cpuid, hart); atomic_store_32(&__riscv_boot_ap[hart], 1); /* Wait for the AP to switch to its boot stack. */ while (atomic_load_int(&aps_started) < naps + 1) cpu_spinwait(); CPU_SET(cpuid, &all_cpus); CPU_SET(hart, &all_harts); return (true); } #endif /* Initialize and fire up non-boot processors */ void cpu_mp_start(void) { u_int cpu; mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN); CPU_SET(0, &all_cpus); CPU_SET(boot_hart, &all_harts); switch(cpu_enum_method) { #ifdef FDT case CPUS_FDT: ofw_cpu_early_foreach(cpu_init_fdt, true); break; #endif case CPUS_UNKNOWN: break; } CPU_FOREACH(cpu) { /* Already identified. */ if (cpu == 0) continue; identify_cpu(cpu); } } /* Introduce rest of cores to the world */ void cpu_mp_announce(void) { u_int cpu; CPU_FOREACH(cpu) { /* Already announced. */ if (cpu == 0) continue; printcpuinfo(cpu); } } void cpu_mp_setmaxid(void) { int cores; #ifdef FDT cores = ofw_cpu_early_foreach(cpu_check_mmu, true); if (cores > 0) { cores = MIN(cores, MAXCPU); if (bootverbose) printf("Found %d CPUs in the device tree\n", cores); mp_ncpus = cores; mp_maxid = cores - 1; cpu_enum_method = CPUS_FDT; } else #endif { if (bootverbose) printf("No CPU data, limiting to 1 core\n"); mp_ncpus = 1; mp_maxid = 0; } if (TUNABLE_INT_FETCH("hw.ncpu", &cores)) { if (cores > 0 && cores < mp_ncpus) { mp_ncpus = cores; mp_maxid = cores - 1; } } } void ipi_all_but_self(u_int ipi) { cpuset_t other_cpus; other_cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &other_cpus); CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi); intr_ipi_send(other_cpus, ipi); } void ipi_cpu(int cpu, u_int ipi) { cpuset_t cpus; CPU_ZERO(&cpus); CPU_SET(cpu, &cpus); CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi); intr_ipi_send(cpus, ipi); } void ipi_selected(cpuset_t cpus, u_int ipi) { CTR1(KTR_SMP, "ipi_selected: ipi: %x", ipi); intr_ipi_send(cpus, ipi); }