// RUN: %clang_analyze_cc1 -std=c++11 -analyzer-checker=alpha.clone.CloneChecker -analyzer-config alpha.clone.CloneChecker:MinimumCloneComplexity=10 -verify %s // Tests that the complexity value of a macro expansion is about the same as // the complexity value of a normal function call and the the macro body doesn't // influence the complexity. See the CloneSignature class in CloneDetection.h // for more information about complexity values of clones. #define MACRO_FOO(a, b) a > b ? -a * a : -b * b; // First, manually apply MACRO_FOO and see if the code gets detected as a clone. // This confirms that with the current configuration the macro body would be // considered large enough to pass the MinimumCloneComplexity constraint. int manualMacro(int a, int b) { // expected-warning{{Duplicate code detected}} return a > b ? -a * a : -b * b; } int manualMacroClone(int a, int b) { // expected-note{{Similar code here}} return a > b ? -a * a : -b * b; } // Now we actually use the macro to generate the same AST as above. They // shouldn't be reported because the macros only slighly increase the complexity // value and the resulting code will never pass the MinimumCloneComplexity // constraint. int macro(int a, int b) { return MACRO_FOO(a, b); } int macroClone(int a, int b) { return MACRO_FOO(a, b); } // So far we only tested that macros increase the complexity by a lesser amount // than normal code. We also need to be sure this amount is not zero because // we otherwise macro code would be 'invisible' for the CloneDetector. // This tests that it is possible to increase the reach the minimum complexity // by only using macros. This is only possible if the complexity value is bigger // than zero. #define NEG(A) -(A) int nestedMacros() { // expected-warning{{Duplicate code detected}} return NEG(NEG(NEG(NEG(NEG(NEG(NEG(NEG(NEG(NEG(1)))))))))); } int nestedMacrosClone() { // expected-note{{Similar code here}} return NEG(NEG(NEG(NEG(NEG(NEG(NEG(NEG(NEG(NEG(1)))))))))); }