; This test contains extremely tricky call graph structures for the inliner to ; handle correctly. They form cycles where the inliner introduces code that is ; immediately or can eventually be transformed back into the original code. And ; each step changes the call graph and so will trigger iteration. This requires ; some out-of-band way to prevent infinitely re-inlining and re-transforming the ; code. ; ; RUN: opt < %s -passes='cgscc(inline,function(sroa,instcombine))' -inline-threshold=50 -S | FileCheck %s ; The `test1_*` collection of functions form a directly cycling pattern. define void @test1_a(i8** %ptr) { ; CHECK-LABEL: define void @test1_a( entry: call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 0) ; Inlining and simplifying this call will reliably produce the exact same call, ; over and over again. However, each inlining increments the count, and so we ; expect this test case to stop after one round of inlining with a final ; argument of '1'. ; CHECK-NOT: call ; CHECK: call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 1) ; CHECK-NOT: call ret void } define void @test1_b(i8* %arg, i1 %flag, i32 %inline_count) { ; CHECK-LABEL: define void @test1_b( entry: %a = alloca i8* store i8* %arg, i8** %a ; This alloca and store should remain through any optimization. ; CHECK: %[[A:.*]] = alloca ; CHECK: store i8* %arg, i8** %[[A]] br i1 %flag, label %bb1, label %bb2 bb1: call void @test1_a(i8** %a) noinline br label %bb2 bb2: %cast = bitcast i8** %a to void (i8*, i1, i32)** %p = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %cast %inline_count_inc = add i32 %inline_count, 1 call void %p(i8* %arg, i1 %flag, i32 %inline_count_inc) ; And we should continue to load and call indirectly through optimization. ; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i1, i32)** ; CHECK: %[[P:.*]] = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %[[CAST]] ; CHECK: call void %[[P]]( ret void } define void @test2_a(i8** %ptr) { ; CHECK-LABEL: define void @test2_a( entry: call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 0) ; Inlining and simplifying this call will reliably produce the exact same call, ; but only after doing two rounds if inlining, first from @test2_b then ; @test2_c. We check the exact number of inlining rounds before we cut off to ; break the cycle by inspecting the last paramater that gets incremented with ; each inlined function body. ; CHECK-NOT: call ; CHECK: call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 2) ; CHECK-NOT: call ret void } define void @test2_b(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { ; CHECK-LABEL: define void @test2_b( entry: %a = alloca i8* store i8* %arg2, i8** %a ; This alloca and store should remain through any optimization. ; CHECK: %[[A:.*]] = alloca ; CHECK: store i8* %arg2, i8** %[[A]] br i1 %flag, label %bb1, label %bb2 bb1: call void @test2_a(i8** %a) noinline br label %bb2 bb2: %p = load i8*, i8** %a %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* %inline_count_inc = add i32 %inline_count, 1 call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) ; And we should continue to load and call indirectly through optimization. ; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** ; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] ; CHECK: call void %[[P]]( ret void } define void @test2_c(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { ; CHECK-LABEL: define void @test2_c( entry: %a = alloca i8* store i8* %arg1, i8** %a ; This alloca and store should remain through any optimization. ; CHECK: %[[A:.*]] = alloca ; CHECK: store i8* %arg1, i8** %[[A]] br i1 %flag, label %bb1, label %bb2 bb1: call void @test2_a(i8** %a) noinline br label %bb2 bb2: %p = load i8*, i8** %a %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* %inline_count_inc = add i32 %inline_count, 1 call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) ; And we should continue to load and call indirectly through optimization. ; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** ; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] ; CHECK: call void %[[P]]( ret void } ; Another infinite inlining case. The initial callgraph is like following: ; ; test3_a <---> test3_b ; | ^ ; v | ; test3_c <---> test3_d ; ; For all the call edges in the call graph, only test3_c and test3_d can be ; inlined into test3_a, and no other call edge can be inlined. ; ; After test3_c is inlined into test3_a, the original call edge test3_a->test3_c ; will be removed, a new call edge will be added and the call graph becomes: ; ; test3_a <---> test3_b ; \ ^ ; v / ; test3_c <---> test3_d ; But test3_a, test3_b, test3_c and test3_d still belong to the same SCC. ; ; Then after test3_a->test3_d is inlined, when test3_a->test3_d is converted to ; a ref edge, the original SCC will be split into two: {test3_c, test3_d} and ; {test3_a, test3_b}, immediately after the newly added ref edge ; test3_a->test3_c will be converted to a call edge, and the two SCCs will be ; merged into the original one again. During this cycle, the original SCC will ; be added into UR.CWorklist again and this creates an infinite loop. @a = global i64 0 @b = global i64 0 define void @test3_c(i32 %i) { entry: %cmp = icmp eq i32 %i, 5 br i1 %cmp, label %if.end, label %if.then if.then: ; preds = %entry %call = tail call i64 @random() %t0 = load i64, i64* @a %add = add nsw i64 %t0, %call store i64 %add, i64* @a br label %if.end if.end: ; preds = %entry, %if.then tail call void @test3_d(i32 %i) %t6 = load i64, i64* @a %add85 = add nsw i64 %t6, 1 store i64 %add85, i64* @a ret void } declare i64 @random() define void @test3_d(i32 %i) { entry: %cmp = icmp eq i32 %i, 5 br i1 %cmp, label %if.end, label %if.then if.then: ; preds = %entry %call = tail call i64 @random() %t0 = load i64, i64* @a %add = add nsw i64 %t0, %call store i64 %add, i64* @a br label %if.end if.end: ; preds = %entry, %if.then tail call void @test3_c(i32 %i) tail call void @test3_b() %t6 = load i64, i64* @a %add79 = add nsw i64 %t6, 3 store i64 %add79, i64* @a ret void } ; Function Attrs: noinline define void @test3_b() #0 { entry: tail call void @test3_a() %t0 = load i64, i64* @a %add = add nsw i64 %t0, 2 store i64 %add, i64* @a ret void } ; Check test3_c is inlined into test3_a once and only once. ; CHECK-LABEL: @test3_a( ; CHECK: tail call void @test3_b() ; CHECK-NEXT: tail call void @test3_d(i32 5) ; CHECK-NEXT: %[[LD1:.*]] = load i64, i64* @a ; CHECK-NEXT: %[[ADD1:.*]] = add nsw i64 %[[LD1]], 1 ; CHECK-NEXT: store i64 %[[ADD1]], i64* @a ; CHECK-NEXT: %[[LD2:.*]] = load i64, i64* @b ; CHECK-NEXT: %[[ADD2:.*]] = add nsw i64 %[[LD2]], 5 ; CHECK-NEXT: store i64 %[[ADD2]], i64* @b ; CHECK-NEXT: ret void ; Function Attrs: noinline define void @test3_a() #0 { entry: tail call void @test3_b() tail call void @test3_c(i32 5) %t0 = load i64, i64* @b %add = add nsw i64 %t0, 5 store i64 %add, i64* @b ret void } attributes #0 = { noinline }