/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2020 Jan Kokemüller * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include ATF_TC_WITHOUT_HEAD(fifo_kqueue__writes); ATF_TC_BODY(fifo_kqueue__writes, tc) { int p[2] = { -1, -1 }; ATF_REQUIRE(mkfifo("testfifo", 0600) == 0); ATF_REQUIRE((p[0] = open("testfifo", O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); ATF_REQUIRE((p[1] = open("testfifo", O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); int kq = kqueue(); ATF_REQUIRE(kq >= 0); struct kevent kev[32]; EV_SET(&kev[0], p[1], EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, 0); EV_SET(&kev[1], p[1], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0); ATF_REQUIRE(kevent(kq, kev, 2, NULL, 0, NULL) == 0); /* A new writer should immediately get a EVFILT_WRITE event. */ ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]); ATF_REQUIRE(kev[0].filter == EVFILT_WRITE); ATF_REQUIRE(kev[0].flags == EV_CLEAR); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == 16384); ATF_REQUIRE(kev[0].udata == 0); /* Filling up the pipe should make the EVFILT_WRITE disappear. */ char c = 0; ssize_t r; while ((r = write(p[1], &c, 1)) == 1) { } ATF_REQUIRE(r < 0); ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); /* Reading (PIPE_BUF - 1) bytes will not trigger a EVFILT_WRITE yet. */ for (int i = 0; i < PIPE_BUF - 1; ++i) { ATF_REQUIRE(read(p[0], &c, 1) == 1); } ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); /* Reading one additional byte triggers the EVFILT_WRITE. */ ATF_REQUIRE(read(p[0], &c, 1) == 1); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]); ATF_REQUIRE(kev[0].filter == EVFILT_WRITE); ATF_REQUIRE(kev[0].flags == EV_CLEAR); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == PIPE_BUF); ATF_REQUIRE(kev[0].udata == 0); /* * Reading another byte triggers the EVFILT_WRITE again with a changed * 'data' field. */ ATF_REQUIRE(read(p[0], &c, 1) == 1); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]); ATF_REQUIRE(kev[0].filter == EVFILT_WRITE); ATF_REQUIRE(kev[0].flags == EV_CLEAR); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == PIPE_BUF + 1); ATF_REQUIRE(kev[0].udata == 0); /* * Closing the read end should make a EV_EOF appear but leave the 'data' * field unchanged. */ ATF_REQUIRE(close(p[0]) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), NULL) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]); ATF_REQUIRE(kev[0].filter == EVFILT_WRITE); ATF_REQUIRE(kev[0].flags == (EV_CLEAR | EV_EOF)); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == PIPE_BUF + 1); ATF_REQUIRE(kev[0].udata == 0); ATF_REQUIRE(close(kq) == 0); ATF_REQUIRE(close(p[1]) == 0); } ATF_TC_WITHOUT_HEAD(fifo_kqueue__connecting_reader); ATF_TC_BODY(fifo_kqueue__connecting_reader, tc) { int p[2] = { -1, -1 }; ATF_REQUIRE(mkfifo("testfifo", 0600) == 0); ATF_REQUIRE((p[0] = open("testfifo", O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); ATF_REQUIRE((p[1] = open("testfifo", O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); int kq = kqueue(); ATF_REQUIRE(kq >= 0); struct kevent kev[32]; EV_SET(&kev[0], p[1], EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, 0); EV_SET(&kev[1], p[1], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0); ATF_REQUIRE(kevent(kq, kev, 2, NULL, 0, NULL) == 0); /* A new writer should immediately get a EVFILT_WRITE event. */ ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]); ATF_REQUIRE(kev[0].filter == EVFILT_WRITE); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); /* * Filling the pipe, reading (PIPE_BUF + 1) bytes, then closing the * read end leads to a EVFILT_WRITE with EV_EOF set. */ char c = 0; ssize_t r; while ((r = write(p[1], &c, 1)) == 1) { } ATF_REQUIRE(r < 0); ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK); for (int i = 0; i < PIPE_BUF + 1; ++i) { ATF_REQUIRE(read(p[0], &c, 1) == 1); } ATF_REQUIRE(close(p[0]) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), NULL) == 1); ATF_REQUIRE(kev[0].filter == EVFILT_WRITE); ATF_REQUIRE((kev[0].flags & EV_EOF) != 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); /* Opening the reader again must trigger the EVFILT_WRITE. */ ATF_REQUIRE((p[0] = open("testfifo", O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); r = kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 1, 0 }); ATF_REQUIRE(r == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]); ATF_REQUIRE(kev[0].filter == EVFILT_WRITE); ATF_REQUIRE(kev[0].flags == EV_CLEAR); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == PIPE_BUF + 1); ATF_REQUIRE(kev[0].udata == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); ATF_REQUIRE(close(kq) == 0); ATF_REQUIRE(close(p[0]) == 0); ATF_REQUIRE(close(p[1]) == 0); } /* Check that EVFILT_READ behaves sensibly on a FIFO reader. */ ATF_TC_WITHOUT_HEAD(fifo_kqueue__reads); ATF_TC_BODY(fifo_kqueue__reads, tc) { struct kevent kev[32]; ssize_t bytes, i, n; int kq, p[2]; char c; ATF_REQUIRE(mkfifo("testfifo", 0600) == 0); ATF_REQUIRE((p[0] = open("testfifo", O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); ATF_REQUIRE((p[1] = open("testfifo", O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); bytes = 0; c = 0; while ((n = write(p[1], &c, 1)) == 1) bytes++; ATF_REQUIRE(n < 0); ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK); ATF_REQUIRE(bytes > 1); for (i = 0; i < bytes / 2; i++) ATF_REQUIRE(read(p[0], &c, 1) == 1); bytes -= i; kq = kqueue(); ATF_REQUIRE(kq >= 0); EV_SET(&kev[0], p[0], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0); ATF_REQUIRE(kevent(kq, kev, 1, NULL, 0, NULL) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec){ 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]); ATF_REQUIRE(kev[0].filter == EVFILT_READ); ATF_REQUIRE(kev[0].flags == EV_CLEAR); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == bytes); ATF_REQUIRE(kev[0].udata == 0); while (bytes-- > 0) ATF_REQUIRE(read(p[0], &c, 1) == 1); n = read(p[0], &c, 1); ATF_REQUIRE(n < 0); ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); ATF_REQUIRE(close(kq) == 0); ATF_REQUIRE(close(p[0]) == 0); ATF_REQUIRE(close(p[1]) == 0); } ATF_TC_WITHOUT_HEAD(fifo_kqueue__read_eof_wakeups); ATF_TC_BODY(fifo_kqueue__read_eof_wakeups, tc) { int p[2] = { -1, -1 }; ATF_REQUIRE(mkfifo("testfifo", 0600) == 0); ATF_REQUIRE((p[0] = open("testfifo", O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); ATF_REQUIRE((p[1] = open("testfifo", O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); int kq = kqueue(); ATF_REQUIRE(kq >= 0); struct kevent kev[32]; EV_SET(&kev[0], p[0], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0); ATF_REQUIRE(kevent(kq, kev, 1, NULL, 0, NULL) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); /* * Closing the writer must trigger a EVFILT_READ edge with EV_EOF set. */ ATF_REQUIRE(close(p[1]) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]); ATF_REQUIRE(kev[0].filter == EVFILT_READ); ATF_REQUIRE(kev[0].flags == (EV_EOF | EV_CLEAR)); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == 0); ATF_REQUIRE(kev[0].udata == 0); /* * Trying to read from a closed pipe should not trigger EVFILT_READ * edges. */ char c; ATF_REQUIRE(read(p[0], &c, 1) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); ATF_REQUIRE(close(kq) == 0); ATF_REQUIRE(close(p[0]) == 0); } ATF_TC_WITHOUT_HEAD(fifo_kqueue__read_eof_state_when_reconnecting); ATF_TC_BODY(fifo_kqueue__read_eof_state_when_reconnecting, tc) { int p[2] = { -1, -1 }; ATF_REQUIRE(mkfifo("testfifo", 0600) == 0); ATF_REQUIRE((p[0] = open("testfifo", O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); ATF_REQUIRE((p[1] = open("testfifo", O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); int kq = kqueue(); ATF_REQUIRE(kq >= 0); struct kevent kev[32]; EV_SET(&kev[0], p[0], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0); ATF_REQUIRE(kevent(kq, kev, 1, NULL, 0, NULL) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); /* * Closing the writer must trigger a EVFILT_READ edge with EV_EOF set. */ ATF_REQUIRE(close(p[1]) == 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]); ATF_REQUIRE(kev[0].filter == EVFILT_READ); ATF_REQUIRE(kev[0].flags == (EV_EOF | EV_CLEAR)); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == 0); ATF_REQUIRE(kev[0].udata == 0); /* A new reader shouldn't see the EOF flag. */ { int new_reader; ATF_REQUIRE((new_reader = open("testfifo", O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); int new_kq = kqueue(); ATF_REQUIRE(new_kq >= 0); struct kevent new_kev[32]; EV_SET(&new_kev[0], new_reader, EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0); ATF_REQUIRE(kevent(new_kq, new_kev, 1, NULL, 0, NULL) == 0); ATF_REQUIRE(kevent(new_kq, NULL, 0, new_kev, nitems(new_kev), &(struct timespec) { 0, 0 }) == 0); ATF_REQUIRE(close(new_kq) == 0); ATF_REQUIRE(close(new_reader) == 0); } /* * Simply reopening the writer does not trigger the EVFILT_READ again -- * EV_EOF should be cleared, but there is no data yet so the filter * does not trigger. */ ATF_REQUIRE((p[1] = open("testfifo", O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 0); /* Writing a byte should trigger a EVFILT_READ. */ char c = 0; ATF_REQUIRE(write(p[1], &c, 1) == 1); ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 0, 0 }) == 1); ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]); ATF_REQUIRE(kev[0].filter == EVFILT_READ); ATF_REQUIRE(kev[0].flags == EV_CLEAR); ATF_REQUIRE(kev[0].fflags == 0); ATF_REQUIRE(kev[0].data == 1); ATF_REQUIRE(kev[0].udata == 0); ATF_REQUIRE(close(kq) == 0); ATF_REQUIRE(close(p[0]) == 0); ATF_REQUIRE(close(p[1]) == 0); } ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, fifo_kqueue__writes); ATF_TP_ADD_TC(tp, fifo_kqueue__connecting_reader); ATF_TP_ADD_TC(tp, fifo_kqueue__reads); ATF_TP_ADD_TC(tp, fifo_kqueue__read_eof_wakeups); ATF_TP_ADD_TC(tp, fifo_kqueue__read_eof_state_when_reconnecting); return atf_no_error(); }