//===-- DNB.cpp -------------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Created by Greg Clayton on 3/23/07. // //===----------------------------------------------------------------------===// #include "DNB.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined (__APPLE__) #include #include #endif #define TRY_KQUEUE 1 #ifdef TRY_KQUEUE #include #include #ifdef NOTE_EXIT_DETAIL #define USE_KQUEUE #endif #endif #include "MacOSX/MachProcess.h" #include "MacOSX/MachTask.h" #include "MacOSX/Genealogy.h" #include "MacOSX/ThreadInfo.h" #include "CFString.h" #include "DNBLog.h" #include "DNBDataRef.h" #include "DNBThreadResumeActions.h" #include "DNBTimer.h" #include "CFBundle.h" typedef std::shared_ptr MachProcessSP; typedef std::map ProcessMap; typedef ProcessMap::iterator ProcessMapIter; typedef ProcessMap::const_iterator ProcessMapConstIter; size_t GetAllInfos (std::vector& proc_infos); static size_t GetAllInfosMatchingName (const char *process_name, std::vector& matching_proc_infos); //---------------------------------------------------------------------- // A Thread safe singleton to get a process map pointer. // // Returns a pointer to the existing process map, or a pointer to a // newly created process map if CAN_CREATE is non-zero. //---------------------------------------------------------------------- static ProcessMap* GetProcessMap(bool can_create) { static ProcessMap* g_process_map_ptr = NULL; if (can_create && g_process_map_ptr == NULL) { static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER; PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex); if (g_process_map_ptr == NULL) g_process_map_ptr = new ProcessMap; } return g_process_map_ptr; } //---------------------------------------------------------------------- // Add PID to the shared process pointer map. // // Return non-zero value if we succeed in adding the process to the map. // The only time this should fail is if we run out of memory and can't // allocate a ProcessMap. //---------------------------------------------------------------------- static nub_bool_t AddProcessToMap (nub_process_t pid, MachProcessSP& procSP) { ProcessMap* process_map = GetProcessMap(true); if (process_map) { process_map->insert(std::make_pair(pid, procSP)); return true; } return false; } //---------------------------------------------------------------------- // Remove the shared pointer for PID from the process map. // // Returns the number of items removed from the process map. //---------------------------------------------------------------------- //static size_t //RemoveProcessFromMap (nub_process_t pid) //{ // ProcessMap* process_map = GetProcessMap(false); // if (process_map) // { // return process_map->erase(pid); // } // return 0; //} //---------------------------------------------------------------------- // Get the shared pointer for PID from the existing process map. // // Returns true if we successfully find a shared pointer to a // MachProcess object. //---------------------------------------------------------------------- static nub_bool_t GetProcessSP (nub_process_t pid, MachProcessSP& procSP) { ProcessMap* process_map = GetProcessMap(false); if (process_map != NULL) { ProcessMapIter pos = process_map->find(pid); if (pos != process_map->end()) { procSP = pos->second; return true; } } procSP.reset(); return false; } #ifdef USE_KQUEUE void * kqueue_thread (void *arg) { int kq_id = (int) (intptr_t) arg; #if defined (__APPLE__) pthread_setname_np ("kqueue thread"); #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__) struct sched_param thread_param; int thread_sched_policy; if (pthread_getschedparam(pthread_self(), &thread_sched_policy, &thread_param) == 0) { thread_param.sched_priority = 47; pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param); } #endif #endif struct kevent death_event; while (1) { int n_events = kevent (kq_id, NULL, 0, &death_event, 1, NULL); if (n_events == -1) { if (errno == EINTR) continue; else { DNBLogError ("kqueue failed with error: (%d): %s", errno, strerror(errno)); return NULL; } } else if (death_event.flags & EV_ERROR) { int error_no = static_cast(death_event.data); const char *error_str = strerror(error_no); if (error_str == NULL) error_str = "Unknown error"; DNBLogError ("Failed to initialize kqueue event: (%d): %s", error_no, error_str ); return NULL; } else { int status; const pid_t pid = (pid_t)death_event.ident; const pid_t child_pid = waitpid (pid, &status, 0); bool exited = false; int signal = 0; int exit_status = 0; if (WIFSTOPPED(status)) { signal = WSTOPSIG(status); DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> STOPPED (signal = %i)", child_pid, signal); } else if (WIFEXITED(status)) { exit_status = WEXITSTATUS(status); exited = true; DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> EXITED (status = %i)", child_pid, exit_status); } else if (WIFSIGNALED(status)) { signal = WTERMSIG(status); if (child_pid == abs(pid)) { DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> SIGNALED and EXITED (signal = %i)", child_pid, signal); char exit_info[64]; ::snprintf (exit_info, sizeof(exit_info), "Terminated due to signal %i", signal); DNBProcessSetExitInfo (child_pid, exit_info); exited = true; exit_status = INT8_MAX; } else { DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> SIGNALED (signal = %i)", child_pid, signal); } } if (exited) { if (death_event.data & NOTE_EXIT_MEMORY) DNBProcessSetExitInfo (child_pid, "Terminated due to memory issue"); else if (death_event.data & NOTE_EXIT_DECRYPTFAIL) DNBProcessSetExitInfo (child_pid, "Terminated due to decrypt failure"); else if (death_event.data & NOTE_EXIT_CSERROR) DNBProcessSetExitInfo (child_pid, "Terminated due to code signing error"); DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, exit_status); DNBProcessSetExitStatus (child_pid, status); return NULL; } } } } static bool spawn_kqueue_thread (pid_t pid) { pthread_t thread; int kq_id; kq_id = kqueue(); if (kq_id == -1) { DNBLogError ("Could not get kqueue for pid = %i.", pid); return false; } struct kevent reg_event; EV_SET(®_event, pid, EVFILT_PROC, EV_ADD, NOTE_EXIT|NOTE_EXITSTATUS|NOTE_EXIT_DETAIL, 0, NULL); // Register the event: int result = kevent (kq_id, ®_event, 1, NULL, 0, NULL); if (result != 0) { DNBLogError ("Failed to register kqueue NOTE_EXIT event for pid %i, error: %d.", pid, result); return false; } int ret = ::pthread_create (&thread, NULL, kqueue_thread, (void *)(intptr_t)kq_id); // pthread_create returns 0 if successful if (ret == 0) { ::pthread_detach (thread); return true; } return false; } #endif // #if USE_KQUEUE static void * waitpid_thread (void *arg) { const pid_t pid = (pid_t)(intptr_t)arg; int status; #if defined (__APPLE__) pthread_setname_np ("waitpid thread"); #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__) struct sched_param thread_param; int thread_sched_policy; if (pthread_getschedparam(pthread_self(), &thread_sched_policy, &thread_param) == 0) { thread_param.sched_priority = 47; pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param); } #endif #endif while (1) { pid_t child_pid = waitpid(pid, &status, 0); DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno); if (child_pid < 0) { if (errno == EINTR) continue; break; } else { if (WIFSTOPPED(status)) { continue; } else// if (WIFEXITED(status) || WIFSIGNALED(status)) { DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): setting exit status for pid = %i to %i", child_pid, status); DNBProcessSetExitStatus (child_pid, status); return NULL; } } } // We should never exit as long as our child process is alive, so if we // do something else went wrong and we should exit... DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid); DNBProcessSetExitStatus (pid, -1); return NULL; } static bool spawn_waitpid_thread (pid_t pid) { #ifdef USE_KQUEUE bool success = spawn_kqueue_thread (pid); if (success) return true; #endif pthread_t thread; int ret = ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid); // pthread_create returns 0 if successful if (ret == 0) { ::pthread_detach (thread); return true; } return false; } nub_process_t DNBProcessLaunch (const char *path, char const *argv[], const char *envp[], const char *working_directory, // NULL => don't change, non-NULL => set working directory for inferior to this const char *stdin_path, const char *stdout_path, const char *stderr_path, bool no_stdio, nub_launch_flavor_t launch_flavor, int disable_aslr, const char *event_data, char *err_str, size_t err_len) { DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %llu) called...", __FUNCTION__, path, argv, envp, working_directory, stdin_path, stdout_path, stderr_path, no_stdio, launch_flavor, disable_aslr, err_str, (uint64_t)err_len); if (err_str && err_len > 0) err_str[0] = '\0'; struct stat path_stat; if (::stat(path, &path_stat) == -1) { char stat_error[256]; ::strerror_r (errno, stat_error, sizeof(stat_error)); snprintf(err_str, err_len, "%s (%s)", stat_error, path); return INVALID_NUB_PROCESS; } MachProcessSP processSP (new MachProcess); if (processSP.get()) { DNBError launch_err; pid_t pid = processSP->LaunchForDebug (path, argv, envp, working_directory, stdin_path, stdout_path, stderr_path, no_stdio, launch_flavor, disable_aslr, event_data, launch_err); if (err_str) { *err_str = '\0'; if (launch_err.Fail()) { const char *launch_err_str = launch_err.AsString(); if (launch_err_str) { strncpy(err_str, launch_err_str, err_len-1); err_str[err_len-1] = '\0'; // Make sure the error string is terminated } } } DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid); if (pid != INVALID_NUB_PROCESS) { // Spawn a thread to reap our child inferior process... spawn_waitpid_thread (pid); if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL) { // We failed to get the task for our process ID which is bad. // Kill our process otherwise it will be stopped at the entry // point and get reparented to someone else and never go away. DNBLog ("Could not get task port for process, sending SIGKILL and exiting."); kill (SIGKILL, pid); if (err_str && err_len > 0) { if (launch_err.AsString()) { ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString()); } else { ::snprintf (err_str, err_len, "failed to get the task for process %i", pid); } } } else { bool res = AddProcessToMap(pid, processSP); UNUSED_IF_ASSERT_DISABLED(res); assert(res && "Couldn't add process to map!"); return pid; } } } return INVALID_NUB_PROCESS; } // If there is one process with a given name, return the pid for that process. nub_process_t DNBProcessGetPIDByName (const char *name) { std::vector matching_proc_infos; size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos); if (num_matching_proc_infos == 1) { return matching_proc_infos[0].kp_proc.p_pid; } return INVALID_NUB_PROCESS; } nub_process_t DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len) { if (err_str && err_len > 0) err_str[0] = '\0'; std::vector matching_proc_infos; size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos); if (num_matching_proc_infos == 0) { DNBLogError ("error: no processes match '%s'\n", name); return INVALID_NUB_PROCESS; } else if (num_matching_proc_infos > 1) { DNBLogError ("error: %llu processes match '%s':\n", (uint64_t)num_matching_proc_infos, name); size_t i; for (i=0; i 0) err_str[0] = '\0'; pid_t pid = INVALID_NUB_PROCESS; MachProcessSP processSP(new MachProcess); if (processSP.get()) { DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid); pid = processSP->AttachForDebug (attach_pid, err_str, err_len); if (pid != INVALID_NUB_PROCESS) { bool res = AddProcessToMap(pid, processSP); UNUSED_IF_ASSERT_DISABLED(res); assert(res && "Couldn't add process to map!"); spawn_waitpid_thread(pid); } } while (pid != INVALID_NUB_PROCESS) { // Wait for process to start up and hit entry point DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...", __FUNCTION__, pid); nub_event_t set_events = DNBProcessWaitForEvents (pid, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, timeout); DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x", __FUNCTION__, pid, set_events); if (set_events == 0) { if (err_str && err_len > 0) snprintf(err_str, err_len, "operation timed out"); pid = INVALID_NUB_PROCESS; } else { if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged)) { nub_state_t pid_state = DNBProcessGetState (pid); DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s", __FUNCTION__, pid, DNBStateAsString(pid_state)); switch (pid_state) { default: case eStateInvalid: case eStateUnloaded: case eStateAttaching: case eStateLaunching: case eStateSuspended: break; // Ignore case eStateRunning: case eStateStepping: // Still waiting to stop at entry point... break; case eStateStopped: case eStateCrashed: return pid; case eStateDetached: case eStateExited: if (err_str && err_len > 0) snprintf(err_str, err_len, "process exited"); return INVALID_NUB_PROCESS; } } DNBProcessResetEvents(pid, set_events); } } return INVALID_NUB_PROCESS; } size_t GetAllInfos (std::vector& proc_infos) { size_t size = 0; int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL }; u_int namelen = sizeof(name)/sizeof(int); int err; // Try to find out how many processes are around so we can // size the buffer appropriately. sysctl's man page specifically suggests // this approach, and says it returns a bit larger size than needed to // handle any new processes created between then and now. err = ::sysctl (name, namelen, NULL, &size, NULL, 0); if ((err < 0) && (err != ENOMEM)) { proc_infos.clear(); perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)"); return 0; } // Increase the size of the buffer by a few processes in case more have // been spawned proc_infos.resize (size / sizeof(struct kinfo_proc)); size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize... err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0); if (err < 0) { proc_infos.clear(); return 0; } // Trim down our array to fit what we actually got back proc_infos.resize(size / sizeof(struct kinfo_proc)); return proc_infos.size(); } static size_t GetAllInfosMatchingName(const char *full_process_name, std::vector& matching_proc_infos) { matching_proc_infos.clear(); if (full_process_name && full_process_name[0]) { // We only get the process name, not the full path, from the proc_info. So just take the // base name of the process name... const char *process_name; process_name = strrchr (full_process_name, '/'); if (process_name == NULL) process_name = full_process_name; else process_name++; const size_t process_name_len = strlen(process_name); std::vector proc_infos; const size_t num_proc_infos = GetAllInfos(proc_infos); if (num_proc_infos > 0) { uint32_t i; for (i=0; i MAXCOMLEN) { // We found a matching process name whose first MAXCOMLEN // characters match, but there is more to the name than // this. We need to get the full process name. Use proc_pidpath, which will get // us the full path to the executed process. char proc_path_buf[PATH_MAX]; int return_val = proc_pidpath (proc_infos[i].kp_proc.p_pid, proc_path_buf, PATH_MAX); if (return_val > 0) { // Okay, now search backwards from that to see if there is a // slash in the name. Note, even though we got all the args we don't care // because the list data is just a bunch of concatenated null terminated strings // so strrchr will start from the end of argv0. const char *argv_basename = strrchr(proc_path_buf, '/'); if (argv_basename) { // Skip the '/' ++argv_basename; } else { // We didn't find a directory delimiter in the process argv[0], just use what was in there argv_basename = proc_path_buf; } if (argv_basename) { if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0) { matching_proc_infos.push_back(proc_infos[i]); } } } } else { // We found a matching process, add it to our list matching_proc_infos.push_back(proc_infos[i]); } } } } } // return the newly added matches. return matching_proc_infos.size(); } nub_process_t DNBProcessAttachWait (const char *waitfor_process_name, nub_launch_flavor_t launch_flavor, bool ignore_existing, struct timespec *timeout_abstime, useconds_t waitfor_interval, char *err_str, size_t err_len, DNBShouldCancelCallback should_cancel_callback, void *callback_data) { DNBError prepare_error; std::vector exclude_proc_infos; size_t num_exclude_proc_infos; // If the PrepareForAttach returns a valid token, use MachProcess to check // for the process, otherwise scan the process table. const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error); if (prepare_error.Fail()) { DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString()); return INVALID_NUB_PROCESS; } if (attach_token == NULL) { if (ignore_existing) num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos); else num_exclude_proc_infos = 0; } DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name); // Loop and try to find the process by name nub_process_t waitfor_pid = INVALID_NUB_PROCESS; while (waitfor_pid == INVALID_NUB_PROCESS) { if (attach_token != NULL) { nub_process_t pid; pid = MachProcess::CheckForProcess(attach_token, launch_flavor); if (pid != INVALID_NUB_PROCESS) { waitfor_pid = pid; break; } } else { // Get the current process list, and check for matches that // aren't in our original list. If anyone wants to attach // to an existing process by name, they should do it with // --attach=PROCNAME. Else we will wait for the first matching // process that wasn't in our exclusion list. std::vector proc_infos; const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos); for (size_t i=0; i 0) snprintf(err_str, err_len, "operation timed out"); DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name); return INVALID_NUB_PROCESS; } } // Call the should cancel callback as well... if (should_cancel_callback != NULL && should_cancel_callback (callback_data)) { DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback."); waitfor_pid = INVALID_NUB_PROCESS; break; } ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again } } if (waitfor_pid != INVALID_NUB_PROCESS) { DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid); waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len); } bool success = waitfor_pid != INVALID_NUB_PROCESS; MachProcess::CleanupAfterAttach (attach_token, launch_flavor, success, prepare_error); return waitfor_pid; } nub_bool_t DNBProcessDetach (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { const bool remove = true; DNBLogThreaded("Disabling breakpoints and watchpoints, and detaching from %d.", pid); procSP->DisableAllBreakpoints(remove); procSP->DisableAllWatchpoints (remove); return procSP->Detach(); } return false; } nub_bool_t DNBProcessKill (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->Kill (); } return false; } nub_bool_t DNBProcessSignal (nub_process_t pid, int signal) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->Signal (signal); } return false; } nub_bool_t DNBProcessInterrupt(nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Interrupt(); return false; } nub_bool_t DNBProcessSendEvent (nub_process_t pid, const char *event) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { // FIXME: Do something with the error... DNBError send_error; return procSP->SendEvent (event, send_error); } return false; } nub_bool_t DNBProcessIsAlive (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return MachTask::IsValid (procSP->Task().TaskPort()); } return eStateInvalid; } //---------------------------------------------------------------------- // Process and Thread state information //---------------------------------------------------------------------- nub_state_t DNBProcessGetState (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetState(); } return eStateInvalid; } //---------------------------------------------------------------------- // Process and Thread state information //---------------------------------------------------------------------- nub_bool_t DNBProcessGetExitStatus (nub_process_t pid, int* status) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetExitStatus(status); } return false; } nub_bool_t DNBProcessSetExitStatus (nub_process_t pid, int status) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetExitStatus(status); return true; } return false; } const char * DNBProcessGetExitInfo (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetExitInfo(); } return NULL; } nub_bool_t DNBProcessSetExitInfo (nub_process_t pid, const char *info) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetExitInfo(info); return true; } return false; } const char * DNBThreadGetName (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->ThreadGetName(tid); return NULL; } nub_bool_t DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info); return false; } nub_state_t DNBThreadGetState (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->ThreadGetState(tid); } return eStateInvalid; } const char * DNBStateAsString(nub_state_t state) { switch (state) { case eStateInvalid: return "Invalid"; case eStateUnloaded: return "Unloaded"; case eStateAttaching: return "Attaching"; case eStateLaunching: return "Launching"; case eStateStopped: return "Stopped"; case eStateRunning: return "Running"; case eStateStepping: return "Stepping"; case eStateCrashed: return "Crashed"; case eStateDetached: return "Detached"; case eStateExited: return "Exited"; case eStateSuspended: return "Suspended"; } return "nub_state_t ???"; } Genealogy::ThreadActivitySP DNBGetGenealogyInfoForThread (nub_process_t pid, nub_thread_t tid, bool &timed_out) { Genealogy::ThreadActivitySP thread_activity_sp; MachProcessSP procSP; if (GetProcessSP (pid, procSP)) thread_activity_sp = procSP->GetGenealogyInfoForThread (tid, timed_out); return thread_activity_sp; } Genealogy::ProcessExecutableInfoSP DNBGetGenealogyImageInfo (nub_process_t pid, size_t idx) { Genealogy::ProcessExecutableInfoSP image_info_sp; MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { image_info_sp = procSP->GetGenealogyImageInfo (idx); } return image_info_sp; } ThreadInfo::QoS DNBGetRequestedQoSForThread (nub_process_t pid, nub_thread_t tid, nub_addr_t tsd, uint64_t dti_qos_class_index) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetRequestedQoS (tid, tsd, dti_qos_class_index); } return ThreadInfo::QoS(); } nub_addr_t DNBGetPThreadT (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetPThreadT (tid); } return INVALID_NUB_ADDRESS; } nub_addr_t DNBGetDispatchQueueT (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetDispatchQueueT (tid); } return INVALID_NUB_ADDRESS; } nub_addr_t DNBGetTSDAddressForThread (nub_process_t pid, nub_thread_t tid, uint64_t plo_pthread_tsd_base_address_offset, uint64_t plo_pthread_tsd_base_offset, uint64_t plo_pthread_tsd_entry_size) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetTSDAddressForThread (tid, plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size); } return INVALID_NUB_ADDRESS; } JSONGenerator::ObjectSP DNBGetLoadedDynamicLibrariesInfos (nub_process_t pid, nub_addr_t image_list_address, nub_addr_t image_count) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetLoadedDynamicLibrariesInfos (pid, image_list_address, image_count); } return JSONGenerator::ObjectSP(); } const char * DNBProcessGetExecutablePath (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->Path(); } return NULL; } nub_size_t DNBProcessGetArgumentCount (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->ArgumentCount(); } return 0; } const char * DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->ArgumentAtIndex (idx); } return NULL; } //---------------------------------------------------------------------- // Execution control //---------------------------------------------------------------------- nub_bool_t DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions) { DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { DNBThreadResumeActions thread_actions (actions, num_actions); // Below we add a default thread plan just in case one wasn't // provided so all threads always know what they were supposed to do if (thread_actions.IsEmpty()) { // No thread plans were given, so the default it to run all threads thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0); } else { // Some thread plans were given which means anything that wasn't // specified should remain stopped. thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0); } return procSP->Resume (thread_actions); } return false; } nub_bool_t DNBProcessHalt (nub_process_t pid) { DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Signal (SIGSTOP); return false; } // //nub_bool_t //DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step) //{ // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step); // MachProcessSP procSP; // if (GetProcessSP (pid, procSP)) // { // return procSP->Resume(tid, step, 0); // } // return false; //} // //nub_bool_t //DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal) //{ // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal); // MachProcessSP procSP; // if (GetProcessSP (pid, procSP)) // { // return procSP->Resume(tid, step, signal); // } // return false; //} nub_event_t DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout) { nub_event_t result = 0; MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { if (wait_for_set) result = procSP->Events().WaitForSetEvents(event_mask, timeout); else result = procSP->Events().WaitForEventsToReset(event_mask, timeout); } return result; } void DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) procSP->Events().ResetEvents(event_mask); } // Breakpoints nub_bool_t DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->CreateBreakpoint(addr, size, hardware) != NULL; return false; } nub_bool_t DNBBreakpointClear (nub_process_t pid, nub_addr_t addr) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->DisableBreakpoint(addr, true); return false; // Failed } //---------------------------------------------------------------------- // Watchpoints //---------------------------------------------------------------------- nub_bool_t DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->CreateWatchpoint(addr, size, watch_flags, hardware) != NULL; return false; } nub_bool_t DNBWatchpointClear (nub_process_t pid, nub_addr_t addr) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->DisableWatchpoint(addr, true); return false; // Failed } //---------------------------------------------------------------------- // Return the number of supported hardware watchpoints. //---------------------------------------------------------------------- uint32_t DNBWatchpointGetNumSupportedHWP (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetNumSupportedHardwareWatchpoints(); return 0; } //---------------------------------------------------------------------- // Read memory in the address space of process PID. This call will take // care of setting and restoring permissions and breaking up the memory // read into multiple chunks as required. // // RETURNS: number of bytes actually read //---------------------------------------------------------------------- nub_size_t DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->ReadMemory(addr, size, buf); return 0; } uint64_t DNBProcessMemoryReadInteger (nub_process_t pid, nub_addr_t addr, nub_size_t integer_size, uint64_t fail_value) { union Integers { uint8_t u8; uint16_t u16; uint32_t u32; uint64_t u64; }; if (integer_size <= sizeof(uint64_t)) { Integers ints; if (DNBProcessMemoryRead(pid, addr, integer_size, &ints) == integer_size) { switch (integer_size) { case 1: return ints.u8; case 2: return ints.u16; case 3: return ints.u32 & 0xffffffu; case 4: return ints.u32; case 5: return ints.u32 & 0x000000ffffffffffull; case 6: return ints.u32 & 0x0000ffffffffffffull; case 7: return ints.u32 & 0x00ffffffffffffffull; case 8: return ints.u64; } } } return fail_value; } nub_addr_t DNBProcessMemoryReadPointer (nub_process_t pid, nub_addr_t addr) { cpu_type_t cputype = DNBProcessGetCPUType (pid); if (cputype) { const nub_size_t pointer_size = (cputype & CPU_ARCH_ABI64) ? 8 : 4; return DNBProcessMemoryReadInteger(pid, addr, pointer_size, 0); } return 0; } std::string DNBProcessMemoryReadCString (nub_process_t pid, nub_addr_t addr) { std::string cstr; char buffer[256]; const nub_size_t max_buffer_cstr_length = sizeof(buffer)-1; buffer[max_buffer_cstr_length] = '\0'; nub_size_t length = 0; nub_addr_t curr_addr = addr; do { nub_size_t bytes_read = DNBProcessMemoryRead(pid, curr_addr, max_buffer_cstr_length, buffer); if (bytes_read == 0) break; length = strlen(buffer); cstr.append(buffer, length); curr_addr += length; } while (length == max_buffer_cstr_length); return cstr; } std::string DNBProcessMemoryReadCStringFixed (nub_process_t pid, nub_addr_t addr, nub_size_t fixed_length) { std::string cstr; char buffer[fixed_length+1]; buffer[fixed_length] = '\0'; nub_size_t bytes_read = DNBProcessMemoryRead(pid, addr, fixed_length, buffer); if (bytes_read > 0) cstr.assign(buffer); return cstr; } //---------------------------------------------------------------------- // Write memory to the address space of process PID. This call will take // care of setting and restoring permissions and breaking up the memory // write into multiple chunks as required. // // RETURNS: number of bytes actually written //---------------------------------------------------------------------- nub_size_t DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->WriteMemory(addr, size, buf); return 0; } nub_addr_t DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().AllocateMemory (size, permissions); return 0; } nub_bool_t DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().DeallocateMemory (addr); return 0; } //---------------------------------------------------------------------- // Find attributes of the memory region that contains ADDR for process PID, // if possible, and return a string describing those attributes. // // Returns 1 if we could find attributes for this region and OUTBUF can // be sent to the remote debugger. // // Returns 0 if we couldn't find the attributes for a region of memory at // that address and OUTBUF should not be sent. // // Returns -1 if this platform cannot look up information about memory regions // or if we do not yet have a valid launched process. // //---------------------------------------------------------------------- int DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().GetMemoryRegionInfo (addr, region_info); return -1; } std::string DNBProcessGetProfileData (nub_process_t pid, DNBProfileDataScanType scanType) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().GetProfileData(scanType); return std::string(""); } nub_bool_t DNBProcessSetEnableAsyncProfiling (nub_process_t pid, nub_bool_t enable, uint64_t interval_usec, DNBProfileDataScanType scan_type) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type); return true; } return false; } //---------------------------------------------------------------------- // Get the number of threads for the specified process. //---------------------------------------------------------------------- nub_size_t DNBProcessGetNumThreads (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetNumThreads(); return 0; } //---------------------------------------------------------------------- // Get the thread ID of the current thread. //---------------------------------------------------------------------- nub_thread_t DNBProcessGetCurrentThread (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetCurrentThread(); return 0; } //---------------------------------------------------------------------- // Get the mach port number of the current thread. //---------------------------------------------------------------------- nub_thread_t DNBProcessGetCurrentThreadMachPort (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetCurrentThreadMachPort(); return 0; } //---------------------------------------------------------------------- // Change the current thread. //---------------------------------------------------------------------- nub_thread_t DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->SetCurrentThread (tid); return INVALID_NUB_THREAD; } //---------------------------------------------------------------------- // Dump a string describing a thread's stop reason to the specified file // handle //---------------------------------------------------------------------- nub_bool_t DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadStoppedReason (tid, stop_info); return false; } //---------------------------------------------------------------------- // Return string description for the specified thread. // // RETURNS: NULL if the thread isn't valid, else a NULL terminated C // string from a static buffer that must be copied prior to subsequent // calls. //---------------------------------------------------------------------- const char * DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadInfo (tid); return NULL; } //---------------------------------------------------------------------- // Get the thread ID given a thread index. //---------------------------------------------------------------------- nub_thread_t DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadAtIndex (thread_idx); return INVALID_NUB_THREAD; } //---------------------------------------------------------------------- // Do whatever is needed to sync the thread's register state with it's kernel values. //---------------------------------------------------------------------- nub_bool_t DNBProcessSyncThreadState (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->SyncThreadState (tid); return false; } nub_addr_t DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid) { MachProcessSP procSP; DNBError err; if (GetProcessSP (pid, procSP)) return procSP->Task().GetDYLDAllImageInfosAddress (err); return INVALID_NUB_ADDRESS; } nub_bool_t DNBProcessSharedLibrariesUpdated(nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SharedLibrariesUpdated (); return true; } return false; } //---------------------------------------------------------------------- // Get the current shared library information for a process. Only return // the shared libraries that have changed since the last shared library // state changed event if only_changed is non-zero. //---------------------------------------------------------------------- nub_size_t DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->CopyImageInfos (image_infos, only_changed); // If we have no process, then return NULL for the shared library info // and zero for shared library count *image_infos = NULL; return 0; } uint32_t DNBGetRegisterCPUType() { return DNBArchProtocol::GetRegisterCPUType (); } //---------------------------------------------------------------------- // Get the register set information for a specific thread. //---------------------------------------------------------------------- const DNBRegisterSetInfo * DNBGetRegisterSetInfo (nub_size_t *num_reg_sets) { return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets); } //---------------------------------------------------------------------- // Read a register value by register set and register index. //---------------------------------------------------------------------- nub_bool_t DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value) { MachProcessSP procSP; ::bzero (value, sizeof(DNBRegisterValue)); if (GetProcessSP (pid, procSP)) { if (tid != INVALID_NUB_THREAD) return procSP->GetRegisterValue (tid, set, reg, value); } return false; } nub_bool_t DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value) { if (tid != INVALID_NUB_THREAD) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->SetRegisterValue (tid, set, reg, value); } return false; } nub_size_t DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { if (tid != INVALID_NUB_THREAD) return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len); } ::bzero (buf, buf_len); return 0; } nub_size_t DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { if (tid != INVALID_NUB_THREAD) return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len); } return 0; } uint32_t DNBThreadSaveRegisterState (nub_process_t pid, nub_thread_t tid) { if (tid != INVALID_NUB_THREAD) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadList().SaveRegisterState (tid); } return 0; } nub_bool_t DNBThreadRestoreRegisterState (nub_process_t pid, nub_thread_t tid, uint32_t save_id) { if (tid != INVALID_NUB_THREAD) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadList().RestoreRegisterState (tid, save_id); } return false; } //---------------------------------------------------------------------- // Read a register value by name. //---------------------------------------------------------------------- nub_bool_t DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value) { MachProcessSP procSP; ::bzero (value, sizeof(DNBRegisterValue)); if (GetProcessSP (pid, procSP)) { const struct DNBRegisterSetInfo *set_info; nub_size_t num_reg_sets = 0; set_info = DNBGetRegisterSetInfo (&num_reg_sets); if (set_info) { uint32_t set = reg_set; uint32_t reg; if (set == REGISTER_SET_ALL) { for (set = 1; set < num_reg_sets; ++set) { for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) return procSP->GetRegisterValue (tid, set, reg, value); } } } else { for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) return procSP->GetRegisterValue (tid, set, reg, value); } } } } return false; } //---------------------------------------------------------------------- // Read a register set and register number from the register name. //---------------------------------------------------------------------- nub_bool_t DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info) { const struct DNBRegisterSetInfo *set_info; nub_size_t num_reg_sets = 0; set_info = DNBGetRegisterSetInfo (&num_reg_sets); if (set_info) { uint32_t set, reg; for (set = 1; set < num_reg_sets; ++set) { for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) { *info = set_info[set].registers[reg]; return true; } } } for (set = 1; set < num_reg_sets; ++set) { uint32_t reg; for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (set_info[set].registers[reg].alt == NULL) continue; if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0) { *info = set_info[set].registers[reg]; return true; } } } } ::bzero (info, sizeof(DNBRegisterInfo)); return false; } //---------------------------------------------------------------------- // Set the name to address callback function that this nub can use // for any name to address lookups that are needed. //---------------------------------------------------------------------- nub_bool_t DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetNameToAddressCallback (callback, baton); return true; } return false; } //---------------------------------------------------------------------- // Set the name to address callback function that this nub can use // for any name to address lookups that are needed. //---------------------------------------------------------------------- nub_bool_t DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetSharedLibraryInfoCallback (callback, baton); return true; } return false; } nub_addr_t DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->LookupSymbol (name, shlib); } return INVALID_NUB_ADDRESS; } nub_size_t DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetAvailableSTDOUT (buf, buf_size); return 0; } nub_size_t DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetAvailableSTDERR (buf, buf_size); return 0; } nub_size_t DNBProcessGetAvailableProfileData (nub_process_t pid, char *buf, nub_size_t buf_size) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetAsyncProfileData (buf, buf_size); return 0; } nub_size_t DNBProcessGetStopCount (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->StopCount(); return 0; } uint32_t DNBProcessGetCPUType (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetCPUType (); return 0; } nub_bool_t DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size) { if (path == NULL || path[0] == '\0') return false; char max_path[PATH_MAX]; std::string result; CFString::GlobPath(path, result); if (result.empty()) result = path; struct stat path_stat; if (::stat(path, &path_stat) == 0) { if ((path_stat.st_mode & S_IFMT) == S_IFDIR) { CFBundle bundle (path); CFReleaser url(bundle.CopyExecutableURL ()); if (url.get()) { if (::CFURLGetFileSystemRepresentation (url.get(), true, (UInt8*)resolved_path, resolved_path_size)) return true; } } } if (realpath(path, max_path)) { // Found the path relatively... ::strncpy(resolved_path, max_path, resolved_path_size); return strlen(resolved_path) + 1 < resolved_path_size; } else { // Not a relative path, check the PATH environment variable if the const char *PATH = getenv("PATH"); if (PATH) { const char *curr_path_start = PATH; const char *curr_path_end; while (curr_path_start && *curr_path_start) { curr_path_end = strchr(curr_path_start, ':'); if (curr_path_end == NULL) { result.assign(curr_path_start); curr_path_start = NULL; } else if (curr_path_end > curr_path_start) { size_t len = curr_path_end - curr_path_start; result.assign(curr_path_start, len); curr_path_start += len + 1; } else break; result += '/'; result += path; struct stat s; if (stat(result.c_str(), &s) == 0) { ::strncpy(resolved_path, result.c_str(), resolved_path_size); return result.size() + 1 < resolved_path_size; } } } } return false; } bool DNBGetOSVersionNumbers (uint64_t *major, uint64_t *minor, uint64_t *patch) { return MachProcess::GetOSVersionNumbers (major, minor, patch); } void DNBInitialize() { DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()"); #if defined (__i386__) || defined (__x86_64__) DNBArchImplI386::Initialize(); DNBArchImplX86_64::Initialize(); #elif defined (__arm__) || defined (__arm64__) || defined (__aarch64__) DNBArchMachARM::Initialize(); DNBArchMachARM64::Initialize(); #endif } void DNBTerminate() { } nub_bool_t DNBSetArchitecture (const char *arch) { if (arch && arch[0]) { if (strcasecmp (arch, "i386") == 0) return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386); else if ((strcasecmp (arch, "x86_64") == 0) || (strcasecmp (arch, "x86_64h") == 0)) return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64); else if (strstr (arch, "arm64") == arch || strstr (arch, "armv8") == arch || strstr (arch, "aarch64") == arch) return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM64); else if (strstr (arch, "arm") == arch) return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM); } return false; }