From 7c897ca91fe1cdb785531d2f5aa0d441c1d73142 Mon Sep 17 00:00:00 2001 From: Brooks Davis Date: Fri, 17 May 2019 15:24:00 +0000 Subject: [PATCH] FCP-101: Remove tl(4). Relnotes: yes FCP: https://github.com/freebsd/fcp/blob/master/fcp-0101.md Reviewed by: jhb, imp Differential Revision: https://reviews.freebsd.org/D20230 --- ObsoleteFiles.inc | 2 + share/man/man4/Makefile | 2 - share/man/man4/tl.4 | 193 ---- sys/amd64/conf/GENERIC | 1 - sys/conf/NOTES | 6 - sys/conf/files | 1 - sys/dev/tl/if_tl.c | 2281 -------------------------------------- sys/dev/tl/if_tlreg.h | 559 ---------- sys/i386/conf/GENERIC | 1 - sys/modules/Makefile | 1 - sys/modules/tl/Makefile | 9 - sys/sparc64/conf/GENERIC | 1 - 12 files changed, 2 insertions(+), 3055 deletions(-) delete mode 100644 share/man/man4/tl.4 delete mode 100644 sys/dev/tl/if_tl.c delete mode 100644 sys/dev/tl/if_tlreg.h delete mode 100644 sys/modules/tl/Makefile diff --git a/ObsoleteFiles.inc b/ObsoleteFiles.inc index 89e84d3dfa2..95ea1675d5a 100644 --- a/ObsoleteFiles.inc +++ b/ObsoleteFiles.inc @@ -54,6 +54,8 @@ OLD_FILES+=usr/share/man/man4/sf.4 OLD_FILES+=usr/share/man/man4/if_sf.4 OLD_FILES+=usr/share/man/man4/sn.4 OLD_FILES+=usr/share/man/man4/if_sn.4 +OLD_FILES+=usr/share/man/man4/tl.4 +OLD_FILES+=usr/share/man/man4/if_tl.4 # 20190513: libcap_sysctl interface change OLD_FILES+=lib/casper/libcap_sysctl.1 # 20190509: tests/sys/opencrypto requires the net/py-dpkt package. diff --git a/share/man/man4/Makefile b/share/man/man4/Makefile index bc7a68d4564..efd9ac22f0c 100644 --- a/share/man/man4/Makefile +++ b/share/man/man4/Makefile @@ -517,7 +517,6 @@ MAN= aac.4 \ textdump.4 \ ti.4 \ timecounters.4 \ - tl.4 \ ${_tpm.4} \ trm.4 \ tty.4 \ @@ -717,7 +716,6 @@ MLINKS+=syscons.4 sc.4 MLINKS+=tap.4 if_tap.4 MLINKS+=tdfx.4 tdfx_linux.4 MLINKS+=ti.4 if_ti.4 -MLINKS+=tl.4 if_tl.4 MLINKS+=tun.4 if_tun.4 MLINKS+=tx.4 if_tx.4 MLINKS+=txp.4 if_txp.4 diff --git a/share/man/man4/tl.4 b/share/man/man4/tl.4 deleted file mode 100644 index 7339ee5296c..00000000000 --- a/share/man/man4/tl.4 +++ /dev/null @@ -1,193 +0,0 @@ -.\" Copyright (c) 1997, 1998 -.\" Bill Paul . All rights reserved. -.\" -.\" Redistribution and use in source and binary forms, with or without -.\" modification, are permitted provided that the following conditions -.\" are met: -.\" 1. Redistributions of source code must retain the above copyright -.\" notice, this list of conditions and the following disclaimer. -.\" 2. Redistributions in binary form must reproduce the above copyright -.\" notice, this list of conditions and the following disclaimer in the -.\" documentation and/or other materials provided with the distribution. -.\" 3. All advertising materials mentioning features or use of this software -.\" must display the following acknowledgement: -.\" This product includes software developed by Bill Paul. -.\" 4. Neither the name of the author nor the names of any co-contributors -.\" may be used to endorse or promote products derived from this software -.\" without specific prior written permission. -.\" -.\" THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND -.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -.\" ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD -.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF -.\" THE POSSIBILITY OF SUCH DAMAGE. -.\" -.\" $FreeBSD$ -.\" -.Dd October 24, 2018 -.Dt TL 4 -.Os -.Sh NAME -.Nm tl -.Nd "Texas Instruments ThunderLAN Ethernet device driver" -.Sh SYNOPSIS -To compile this driver into the kernel, -place the following lines in your -kernel configuration file: -.Bd -ragged -offset indent -.Cd "device miibus" -.Cd "device tl" -.Ed -.Pp -Alternatively, to load the driver as a -module at boot time, place the following line in -.Xr loader.conf 5 : -.Bd -literal -offset indent -if_tl_load="YES" -.Ed -.Sh DEPRECATION NOTICE -The -.Nm -driver is not present in -.Fx 13.0 -and later. -See https://github.com/freebsd/fcp/blob/master/fcp-0101.md for more -information. -.Sh DESCRIPTION -The -.Nm -driver provides support for PCI Ethernet adapters based on the Texas -Instruments ThunderLAN Ethernet controller chip. -.Pp -The ThunderLAN controller has a standard MII interface that supports -up to 32 physical interface devices (PHYs). -It also has a built-in -10baseT PHY hardwired at MII address 31, which may be used in some -10Mbps-only hardware configurations. -In 100Mbps configurations, a -National Semiconductor DP83840A or other MII-compliant PHY may be -attached to the ThunderLAN's MII bus. -If a DP83840A or equivalent -is available, the ThunderLAN chip can operate at either 100Mbps or -10Mbps in either half-duplex or full-duplex modes. -The ThunderLAN's -built-in PHY and the DP83840A also support autonegotiation. -.Pp -The -.Nm -driver supports the following media types: -.Bl -tag -width xxxxxxxxxxxxxxxxxxxx -.It autoselect -Enable autoselection of the media type and options. -Note that this -option is only available on those PHYs that support autonegotiation. -Also, the PHY will not advertise those modes that have been explicitly -disabled using the following media options. -.It 10baseT/UTP -Set 10Mbps operation. -.It 100baseTX -Set 100Mbps (Fast Ethernet) operation. -.It 10base5/AUI -Enable AUI/BNC interface (useful only with the built-in PHY). -.El -.Pp -The -.Nm -driver supports the following media options: -.Bl -tag -width xxxxxxxxxxxxxxxxxxxx -.It full-duplex -Force full duplex operation. -.It half-duplex -Force half duplex operation. -.It hw-loopback -Enable hardware loopback mode. -.El -.Pp -Note that the 100baseTX media type is only available if supported -by the PHY. -For more information on configuring this device, see -.Xr ifconfig 8 . -.Sh HARDWARE -The -.Nm -driver supports Texas Instruments ThunderLAN based -Ethernet and Fast Ethernet adapters including a large -number of Compaq PCI Ethernet adapters. -Also supported are: -.Pp -.Bl -bullet -compact -.It -Olicom OC-2135/2138 10/100 TX UTP adapter -.It -Olicom OC-2325/OC-2326 10/100 TX UTP adapter -.It -Racore 8148 10baseT/100baseTX/100baseFX adapter -.It -Racore 8165 10/100baseTX adapter -.El -.Pp -The -.Nm -driver also supports the built-in Ethernet adapters of -various Compaq Prosignia servers and Compaq Deskpro desktop -machines including: -.Pp -.Bl -bullet -compact -.It -Compaq Netelligent 10 -.It -Compaq Netelligent 10 T PCI UTP/Coax -.It -Compaq Netelligent 10/100 -.It -Compaq Netelligent 10/100 Dual-Port -.It -Compaq Netelligent 10/100 Proliant -.It -Compaq Netelligent 10/100 TX Embedded UTP -.It -Compaq Netelligent 10/100 TX UTP -.It -Compaq NetFlex 3P -.It -Compaq NetFlex 3P Integrated -.It -Compaq NetFlex 3P w/BNC -.El -.Sh DIAGNOSTICS -.Bl -diag -.It "tl%d: couldn't map memory" -A fatal initialization error has occurred. -.It "tl%d: couldn't map interrupt" -A fatal initialization error has occurred. -.It "tl%d: device timeout" -The device has stopped responding to the network, or there is a problem with -the network connection (cable). -.It "tl%d: no memory for rx list" -The driver failed to allocate an mbuf for the receiver ring. -.It "tl%d: no memory for tx list" -The driver failed to allocate an mbuf for the transmitter ring when -allocating a pad buffer or collapsing an mbuf chain into a cluster. -.El -.Sh SEE ALSO -.Xr arp 4 , -.Xr miibus 4 , -.Xr netintro 4 , -.Xr ng_ether 4 , -.Xr ifconfig 8 -.Sh HISTORY -The -.Nm -device driver first appeared in -.Fx 2.2 . -.Sh AUTHORS -The -.Nm -driver was written by -.An Bill Paul Aq Mt wpaul@ctr.columbia.edu . diff --git a/sys/amd64/conf/GENERIC b/sys/amd64/conf/GENERIC index cf25c4764dc..24232fb80a1 100644 --- a/sys/amd64/conf/GENERIC +++ b/sys/amd64/conf/GENERIC @@ -278,7 +278,6 @@ device sis # Silicon Integrated Systems SiS 900/SiS 7016 device sk # SysKonnect SK-984x & SK-982x gigabit Ethernet device ste # Sundance ST201 (D-Link DFE-550TX) device stge # Sundance/Tamarack TC9021 gigabit Ethernet -device tl # Texas Instruments ThunderLAN device tx # SMC EtherPower II (83c170 ``EPIC'') device vge # VIA VT612x gigabit Ethernet device vr # VIA Rhine, Rhine II diff --git a/sys/conf/NOTES b/sys/conf/NOTES index 00ec37b1256..ae3cf8bd3f2 100644 --- a/sys/conf/NOTES +++ b/sys/conf/NOTES @@ -1995,11 +1995,6 @@ device xmphy # XaQti XMAC II # Tigon 1 and Tigon 2 chipsets. This includes the Alteon AceNIC, the # 3Com 3c985, the Netgear GA620 and various others. Note that you will # probably want to bump up kern.ipc.nmbclusters a lot to use this driver. -# tl: Support for the Texas Instruments TNETE100 series 'ThunderLAN' -# cards and integrated ethernet controllers. This includes several -# Compaq Netelligent 10/100 cards and the built-in ethernet controllers -# in several Compaq Prosignia, Proliant and Deskpro systems. It also -# supports several Olicom 10Mbps and 10/100 boards. # tx: SMC 9432 TX, BTX and FTX cards. (SMC EtherPower II series) # txp: Support for 3Com 3cR990 cards with the "Typhoon" chipset # vr: Support for various fast ethernet adapters based on the VIA @@ -2060,7 +2055,6 @@ device sis # Silicon Integrated Systems SiS 900/SiS 7016 device sk # SysKonnect SK-984x & SK-982x gigabit Ethernet device ste # Sundance ST201 (D-Link DFE-550TX) device stge # Sundance/Tamarack TC9021 gigabit Ethernet -device tl # Texas Instruments ThunderLAN device tx # SMC EtherPower II (83c170 ``EPIC'') device vr # VIA Rhine, Rhine II device vte # DM&P Vortex86 RDC R6040 Fast Ethernet diff --git a/sys/conf/files b/sys/conf/files index 34efc76183d..c320ace86dd 100644 --- a/sys/conf/files +++ b/sys/conf/files @@ -3135,7 +3135,6 @@ dev/tcp_log/tcp_log_dev.c optional tcp_blackbox inet | tcp_blackbox inet6 dev/tdfx/tdfx_linux.c optional tdfx_linux tdfx compat_linux dev/tdfx/tdfx_pci.c optional tdfx pci dev/ti/if_ti.c optional ti pci -dev/tl/if_tl.c optional tl pci dev/trm/trm.c optional trm dev/twa/tw_cl_init.c optional twa \ compile-with "${NORMAL_C} -I$S/dev/twa" diff --git a/sys/dev/tl/if_tl.c b/sys/dev/tl/if_tl.c deleted file mode 100644 index ed78cb2871b..00000000000 --- a/sys/dev/tl/if_tl.c +++ /dev/null @@ -1,2281 +0,0 @@ -/*- - * SPDX-License-Identifier: BSD-4-Clause - * - * Copyright (c) 1997, 1998 - * Bill Paul . All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * This product includes software developed by Bill Paul. - * 4. Neither the name of the author nor the names of any co-contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF - * THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include -__FBSDID("$FreeBSD$"); - -/* - * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x. - * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller, - * the National Semiconductor DP83840A physical interface and the - * Microchip Technology 24Cxx series serial EEPROM. - * - * Written using the following four documents: - * - * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com) - * National Semiconductor DP83840A data sheet (www.national.com) - * Microchip Technology 24C02C data sheet (www.microchip.com) - * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com) - * - * Written by Bill Paul - * Electrical Engineering Department - * Columbia University, New York City - */ -/* - * Some notes about the ThunderLAN: - * - * The ThunderLAN controller is a single chip containing PCI controller - * logic, approximately 3K of on-board SRAM, a LAN controller, and media - * independent interface (MII) bus. The MII allows the ThunderLAN chip to - * control up to 32 different physical interfaces (PHYs). The ThunderLAN - * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller - * to act as a complete ethernet interface. - * - * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards - * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec - * in full or half duplex. Some of the Compaq Deskpro machines use a - * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters - * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in - * concert with the ThunderLAN's internal PHY to provide full 10/100 - * support. This is cheaper than using a standalone external PHY for both - * 10/100 modes and letting the ThunderLAN's internal PHY go to waste. - * A serial EEPROM is also attached to the ThunderLAN chip to provide - * power-up default register settings and for storing the adapter's - * station address. Although not supported by this driver, the ThunderLAN - * chip can also be connected to token ring PHYs. - * - * The ThunderLAN has a set of registers which can be used to issue - * commands, acknowledge interrupts, and to manipulate other internal - * registers on its DIO bus. The primary registers can be accessed - * using either programmed I/O (inb/outb) or via PCI memory mapping, - * depending on how the card is configured during the PCI probing - * phase. It is even possible to have both PIO and memory mapped - * access turned on at the same time. - * - * Frame reception and transmission with the ThunderLAN chip is done - * using frame 'lists.' A list structure looks more or less like this: - * - * struct tl_frag { - * u_int32_t fragment_address; - * u_int32_t fragment_size; - * }; - * struct tl_list { - * u_int32_t forward_pointer; - * u_int16_t cstat; - * u_int16_t frame_size; - * struct tl_frag fragments[10]; - * }; - * - * The forward pointer in the list header can be either a 0 or the address - * of another list, which allows several lists to be linked together. Each - * list contains up to 10 fragment descriptors. This means the chip allows - * ethernet frames to be broken up into up to 10 chunks for transfer to - * and from the SRAM. Note that the forward pointer and fragment buffer - * addresses are physical memory addresses, not virtual. Note also that - * a single ethernet frame can not span lists: if the host wants to - * transmit a frame and the frame data is split up over more than 10 - * buffers, the frame has to collapsed before it can be transmitted. - * - * To receive frames, the driver sets up a number of lists and populates - * the fragment descriptors, then it sends an RX GO command to the chip. - * When a frame is received, the chip will DMA it into the memory regions - * specified by the fragment descriptors and then trigger an RX 'end of - * frame interrupt' when done. The driver may choose to use only one - * fragment per list; this may result is slighltly less efficient use - * of memory in exchange for improving performance. - * - * To transmit frames, the driver again sets up lists and fragment - * descriptors, only this time the buffers contain frame data that - * is to be DMA'ed into the chip instead of out of it. Once the chip - * has transferred the data into its on-board SRAM, it will trigger a - * TX 'end of frame' interrupt. It will also generate an 'end of channel' - * interrupt when it reaches the end of the list. - */ -/* - * Some notes about this driver: - * - * The ThunderLAN chip provides a couple of different ways to organize - * reception, transmission and interrupt handling. The simplest approach - * is to use one list each for transmission and reception. In this mode, - * the ThunderLAN will generate two interrupts for every received frame - * (one RX EOF and one RX EOC) and two for each transmitted frame (one - * TX EOF and one TX EOC). This may make the driver simpler but it hurts - * performance to have to handle so many interrupts. - * - * Initially I wanted to create a circular list of receive buffers so - * that the ThunderLAN chip would think there was an infinitely long - * receive channel and never deliver an RXEOC interrupt. However this - * doesn't work correctly under heavy load: while the manual says the - * chip will trigger an RXEOF interrupt each time a frame is copied into - * memory, you can't count on the chip waiting around for you to acknowledge - * the interrupt before it starts trying to DMA the next frame. The result - * is that the chip might traverse the entire circular list and then wrap - * around before you have a chance to do anything about it. Consequently, - * the receive list is terminated (with a 0 in the forward pointer in the - * last element). Each time an RXEOF interrupt arrives, the used list - * is shifted to the end of the list. This gives the appearance of an - * infinitely large RX chain so long as the driver doesn't fall behind - * the chip and allow all of the lists to be filled up. - * - * If all the lists are filled, the adapter will deliver an RX 'end of - * channel' interrupt when it hits the 0 forward pointer at the end of - * the chain. The RXEOC handler then cleans out the RX chain and resets - * the list head pointer in the ch_parm register and restarts the receiver. - * - * For frame transmission, it is possible to program the ThunderLAN's - * transmit interrupt threshold so that the chip can acknowledge multiple - * lists with only a single TX EOF interrupt. This allows the driver to - * queue several frames in one shot, and only have to handle a total - * two interrupts (one TX EOF and one TX EOC) no matter how many frames - * are transmitted. Frame transmission is done directly out of the - * mbufs passed to the tl_start() routine via the interface send queue. - * The driver simply sets up the fragment descriptors in the transmit - * lists to point to the mbuf data regions and sends a TX GO command. - * - * Note that since the RX and TX lists themselves are always used - * only by the driver, the are malloc()ed once at driver initialization - * time and never free()ed. - * - * Also, in order to remain as platform independent as possible, this - * driver uses memory mapped register access to manipulate the card - * as opposed to programmed I/O. This avoids the use of the inb/outb - * (and related) instructions which are specific to the i386 platform. - * - * Using these techniques, this driver achieves very high performance - * by minimizing the amount of interrupts generated during large - * transfers and by completely avoiding buffer copies. Frame transfer - * to and from the ThunderLAN chip is performed entirely by the chip - * itself thereby reducing the load on the host CPU. - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include - -#include - -#include /* for vtophys */ -#include /* for vtophys */ -#include -#include -#include -#include - -#include -#include -#include - -#include -#include - -/* - * Default to using PIO register access mode to pacify certain - * laptop docking stations with built-in ThunderLAN chips that - * don't seem to handle memory mapped mode properly. - */ -#define TL_USEIOSPACE - -#include - -MODULE_DEPEND(tl, pci, 1, 1, 1); -MODULE_DEPEND(tl, ether, 1, 1, 1); -MODULE_DEPEND(tl, miibus, 1, 1, 1); - -/* "device miibus" required. See GENERIC if you get errors here. */ -#include "miibus_if.h" - -/* - * Various supported device vendors/types and their names. - */ - -static const struct tl_type tl_devs[] = { - { TI_VENDORID, TI_DEVICEID_THUNDERLAN, - "Texas Instruments ThunderLAN" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10, - "Compaq Netelligent 10" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100, - "Compaq Netelligent 10/100" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT, - "Compaq Netelligent 10/100 Proliant" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL, - "Compaq Netelligent 10/100 Dual Port" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED, - "Compaq NetFlex-3/P Integrated" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P, - "Compaq NetFlex-3/P" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC, - "Compaq NetFlex 3/P w/ BNC" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED, - "Compaq Netelligent 10/100 TX Embedded UTP" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX, - "Compaq Netelligent 10 T/2 PCI UTP/Coax" }, - { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP, - "Compaq Netelligent 10/100 TX UTP" }, - { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183, - "Olicom OC-2183/2185" }, - { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325, - "Olicom OC-2325" }, - { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326, - "Olicom OC-2326 10/100 TX UTP" }, - { 0, 0, NULL } -}; - -static int tl_probe(device_t); -static int tl_attach(device_t); -static int tl_detach(device_t); -static int tl_intvec_rxeoc(void *, u_int32_t); -static int tl_intvec_txeoc(void *, u_int32_t); -static int tl_intvec_txeof(void *, u_int32_t); -static int tl_intvec_rxeof(void *, u_int32_t); -static int tl_intvec_adchk(void *, u_int32_t); -static int tl_intvec_netsts(void *, u_int32_t); - -static int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *); -static void tl_stats_update(void *); -static int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *); - -static void tl_intr(void *); -static void tl_start(struct ifnet *); -static void tl_start_locked(struct ifnet *); -static int tl_ioctl(struct ifnet *, u_long, caddr_t); -static void tl_init(void *); -static void tl_init_locked(struct tl_softc *); -static void tl_stop(struct tl_softc *); -static void tl_watchdog(struct tl_softc *); -static int tl_shutdown(device_t); -static int tl_ifmedia_upd(struct ifnet *); -static void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *); - -static u_int8_t tl_eeprom_putbyte(struct tl_softc *, int); -static u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *); -static int tl_read_eeprom(struct tl_softc *, caddr_t, int, int); - -static int tl_miibus_readreg(device_t, int, int); -static int tl_miibus_writereg(device_t, int, int, int); -static void tl_miibus_statchg(device_t); - -static void tl_setmode(struct tl_softc *, int); -static uint32_t tl_mchash(const uint8_t *); -static void tl_setmulti(struct tl_softc *); -static void tl_setfilt(struct tl_softc *, caddr_t, int); -static void tl_softreset(struct tl_softc *, int); -static void tl_hardreset(device_t); -static int tl_list_rx_init(struct tl_softc *); -static int tl_list_tx_init(struct tl_softc *); - -static u_int8_t tl_dio_read8(struct tl_softc *, int); -static u_int16_t tl_dio_read16(struct tl_softc *, int); -static u_int32_t tl_dio_read32(struct tl_softc *, int); -static void tl_dio_write8(struct tl_softc *, int, int); -static void tl_dio_write16(struct tl_softc *, int, int); -static void tl_dio_write32(struct tl_softc *, int, int); -static void tl_dio_setbit(struct tl_softc *, int, int); -static void tl_dio_clrbit(struct tl_softc *, int, int); -static void tl_dio_setbit16(struct tl_softc *, int, int); -static void tl_dio_clrbit16(struct tl_softc *, int, int); - -/* - * MII bit-bang glue - */ -static uint32_t tl_mii_bitbang_read(device_t); -static void tl_mii_bitbang_write(device_t, uint32_t); - -static const struct mii_bitbang_ops tl_mii_bitbang_ops = { - tl_mii_bitbang_read, - tl_mii_bitbang_write, - { - TL_SIO_MDATA, /* MII_BIT_MDO */ - TL_SIO_MDATA, /* MII_BIT_MDI */ - TL_SIO_MCLK, /* MII_BIT_MDC */ - TL_SIO_MTXEN, /* MII_BIT_DIR_HOST_PHY */ - 0, /* MII_BIT_DIR_PHY_HOST */ - } -}; - -#ifdef TL_USEIOSPACE -#define TL_RES SYS_RES_IOPORT -#define TL_RID TL_PCI_LOIO -#else -#define TL_RES SYS_RES_MEMORY -#define TL_RID TL_PCI_LOMEM -#endif - -static device_method_t tl_methods[] = { - /* Device interface */ - DEVMETHOD(device_probe, tl_probe), - DEVMETHOD(device_attach, tl_attach), - DEVMETHOD(device_detach, tl_detach), - DEVMETHOD(device_shutdown, tl_shutdown), - - /* MII interface */ - DEVMETHOD(miibus_readreg, tl_miibus_readreg), - DEVMETHOD(miibus_writereg, tl_miibus_writereg), - DEVMETHOD(miibus_statchg, tl_miibus_statchg), - - DEVMETHOD_END -}; - -static driver_t tl_driver = { - "tl", - tl_methods, - sizeof(struct tl_softc) -}; - -static devclass_t tl_devclass; - -DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0); -DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0); - -static u_int8_t tl_dio_read8(sc, reg) - struct tl_softc *sc; - int reg; -{ - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3))); -} - -static u_int16_t tl_dio_read16(sc, reg) - struct tl_softc *sc; - int reg; -{ - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3))); -} - -static u_int32_t tl_dio_read32(sc, reg) - struct tl_softc *sc; - int reg; -{ - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3))); -} - -static void tl_dio_write8(sc, reg, val) - struct tl_softc *sc; - int reg; - int val; -{ - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val); -} - -static void tl_dio_write16(sc, reg, val) - struct tl_softc *sc; - int reg; - int val; -{ - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val); -} - -static void tl_dio_write32(sc, reg, val) - struct tl_softc *sc; - int reg; - int val; -{ - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val); -} - -static void -tl_dio_setbit(sc, reg, bit) - struct tl_softc *sc; - int reg; - int bit; -{ - u_int8_t f; - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); - f |= bit; - CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); -} - -static void -tl_dio_clrbit(sc, reg, bit) - struct tl_softc *sc; - int reg; - int bit; -{ - u_int8_t f; - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); - f &= ~bit; - CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); -} - -static void tl_dio_setbit16(sc, reg, bit) - struct tl_softc *sc; - int reg; - int bit; -{ - u_int16_t f; - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); - f |= bit; - CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); -} - -static void tl_dio_clrbit16(sc, reg, bit) - struct tl_softc *sc; - int reg; - int bit; -{ - u_int16_t f; - - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_ADDR, reg); - CSR_BARRIER(sc, TL_DIO_ADDR, 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); - f &= ~bit; - CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); -} - -/* - * Send an instruction or address to the EEPROM, check for ACK. - */ -static u_int8_t tl_eeprom_putbyte(sc, byte) - struct tl_softc *sc; - int byte; -{ - int i, ack = 0; - - /* - * Make sure we're in TX mode. - */ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); - - /* - * Feed in each bit and stobe the clock. - */ - for (i = 0x80; i; i >>= 1) { - if (byte & i) { - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); - } else { - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); - } - DELAY(1); - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); - DELAY(1); - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); - } - - /* - * Turn off TX mode. - */ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); - - /* - * Check for ack. - */ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); - ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA; - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); - - return(ack); -} - -/* - * Read a byte of data stored in the EEPROM at address 'addr.' - */ -static u_int8_t tl_eeprom_getbyte(sc, addr, dest) - struct tl_softc *sc; - int addr; - u_int8_t *dest; -{ - int i; - u_int8_t byte = 0; - device_t tl_dev = sc->tl_dev; - - tl_dio_write8(sc, TL_NETSIO, 0); - - EEPROM_START; - - /* - * Send write control code to EEPROM. - */ - if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { - device_printf(tl_dev, "failed to send write command, status: %x\n", - tl_dio_read8(sc, TL_NETSIO)); - return(1); - } - - /* - * Send address of byte we want to read. - */ - if (tl_eeprom_putbyte(sc, addr)) { - device_printf(tl_dev, "failed to send address, status: %x\n", - tl_dio_read8(sc, TL_NETSIO)); - return(1); - } - - EEPROM_STOP; - EEPROM_START; - /* - * Send read control code to EEPROM. - */ - if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) { - device_printf(tl_dev, "failed to send write command, status: %x\n", - tl_dio_read8(sc, TL_NETSIO)); - return(1); - } - - /* - * Start reading bits from EEPROM. - */ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); - for (i = 0x80; i; i >>= 1) { - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); - DELAY(1); - if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA) - byte |= i; - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); - DELAY(1); - } - - EEPROM_STOP; - - /* - * No ACK generated for read, so just return byte. - */ - - *dest = byte; - - return(0); -} - -/* - * Read a sequence of bytes from the EEPROM. - */ -static int -tl_read_eeprom(sc, dest, off, cnt) - struct tl_softc *sc; - caddr_t dest; - int off; - int cnt; -{ - int err = 0, i; - u_int8_t byte = 0; - - for (i = 0; i < cnt; i++) { - err = tl_eeprom_getbyte(sc, off + i, &byte); - if (err) - break; - *(dest + i) = byte; - } - - return(err ? 1 : 0); -} - -#define TL_SIO_MII (TL_SIO_MCLK | TL_SIO_MDATA | TL_SIO_MTXEN) - -/* - * Read the MII serial port for the MII bit-bang module. - */ -static uint32_t -tl_mii_bitbang_read(device_t dev) -{ - struct tl_softc *sc; - uint32_t val; - - sc = device_get_softc(dev); - - val = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MII; - CSR_BARRIER(sc, TL_NETSIO, 1, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - - return (val); -} - -/* - * Write the MII serial port for the MII bit-bang module. - */ -static void -tl_mii_bitbang_write(device_t dev, uint32_t val) -{ - struct tl_softc *sc; - - sc = device_get_softc(dev); - - val = (tl_dio_read8(sc, TL_NETSIO) & ~TL_SIO_MII) | val; - CSR_BARRIER(sc, TL_NETSIO, 1, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); - tl_dio_write8(sc, TL_NETSIO, val); - CSR_BARRIER(sc, TL_NETSIO, 1, - BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); -} - -static int -tl_miibus_readreg(dev, phy, reg) - device_t dev; - int phy, reg; -{ - struct tl_softc *sc; - int minten, val; - - sc = device_get_softc(dev); - - /* - * Turn off MII interrupt by forcing MINTEN low. - */ - minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; - if (minten) { - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); - } - - val = mii_bitbang_readreg(dev, &tl_mii_bitbang_ops, phy, reg); - - /* Reenable interrupts. */ - if (minten) { - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); - } - - return (val); -} - -static int -tl_miibus_writereg(dev, phy, reg, data) - device_t dev; - int phy, reg, data; -{ - struct tl_softc *sc; - int minten; - - sc = device_get_softc(dev); - - /* - * Turn off MII interrupt by forcing MINTEN low. - */ - minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; - if (minten) { - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); - } - - mii_bitbang_writereg(dev, &tl_mii_bitbang_ops, phy, reg, data); - - /* Reenable interrupts. */ - if (minten) { - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); - } - - return(0); -} - -static void -tl_miibus_statchg(dev) - device_t dev; -{ - struct tl_softc *sc; - struct mii_data *mii; - - sc = device_get_softc(dev); - mii = device_get_softc(sc->tl_miibus); - - if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { - tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); - } else { - tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); - } -} - -/* - * Set modes for bitrate devices. - */ -static void -tl_setmode(sc, media) - struct tl_softc *sc; - int media; -{ - if (IFM_SUBTYPE(media) == IFM_10_5) - tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1); - if (IFM_SUBTYPE(media) == IFM_10_T) { - tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1); - if ((media & IFM_GMASK) == IFM_FDX) { - tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3); - tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); - } else { - tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3); - tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); - } - } -} - -/* - * Calculate the hash of a MAC address for programming the multicast hash - * table. This hash is simply the address split into 6-bit chunks - * XOR'd, e.g. - * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555 - * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210 - * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then - * the folded 24-bit value is split into 6-bit portions and XOR'd. - */ -static uint32_t -tl_mchash(addr) - const uint8_t *addr; -{ - int t; - - t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 | - (addr[2] ^ addr[5]); - return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f; -} - -/* - * The ThunderLAN has a perfect MAC address filter in addition to - * the multicast hash filter. The perfect filter can be programmed - * with up to four MAC addresses. The first one is always used to - * hold the station address, which leaves us free to use the other - * three for multicast addresses. - */ -static void -tl_setfilt(sc, addr, slot) - struct tl_softc *sc; - caddr_t addr; - int slot; -{ - int i; - u_int16_t regaddr; - - regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN); - - for (i = 0; i < ETHER_ADDR_LEN; i++) - tl_dio_write8(sc, regaddr + i, *(addr + i)); -} - -/* - * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly - * linked list. This is fine, except addresses are added from the head - * end of the list. We want to arrange for 224.0.0.1 (the "all hosts") - * group to always be in the perfect filter, but as more groups are added, - * the 224.0.0.1 entry (which is always added first) gets pushed down - * the list and ends up at the tail. So after 3 or 4 multicast groups - * are added, the all-hosts entry gets pushed out of the perfect filter - * and into the hash table. - * - * Because the multicast list is a doubly-linked list as opposed to a - * circular queue, we don't have the ability to just grab the tail of - * the list and traverse it backwards. Instead, we have to traverse - * the list once to find the tail, then traverse it again backwards to - * update the multicast filter. - */ -static void -tl_setmulti(sc) - struct tl_softc *sc; -{ - struct ifnet *ifp; - u_int32_t hashes[2] = { 0, 0 }; - int h, i; - struct ifmultiaddr *ifma; - u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; - ifp = sc->tl_ifp; - - /* First, zot all the existing filters. */ - for (i = 1; i < 4; i++) - tl_setfilt(sc, (caddr_t)&dummy, i); - tl_dio_write32(sc, TL_HASH1, 0); - tl_dio_write32(sc, TL_HASH2, 0); - - /* Now program new ones. */ - if (ifp->if_flags & IFF_ALLMULTI) { - hashes[0] = 0xFFFFFFFF; - hashes[1] = 0xFFFFFFFF; - } else { - i = 1; - if_maddr_rlock(ifp); - /* XXX want to maintain reverse semantics - pop list and re-add? */ - CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { - if (ifma->ifma_addr->sa_family != AF_LINK) - continue; - /* - * Program the first three multicast groups - * into the perfect filter. For all others, - * use the hash table. - */ - if (i < 4) { - tl_setfilt(sc, - LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); - i++; - continue; - } - - h = tl_mchash( - LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); - if (h < 32) - hashes[0] |= (1 << h); - else - hashes[1] |= (1 << (h - 32)); - } - if_maddr_runlock(ifp); - } - - tl_dio_write32(sc, TL_HASH1, hashes[0]); - tl_dio_write32(sc, TL_HASH2, hashes[1]); -} - -/* - * This routine is recommended by the ThunderLAN manual to insure that - * the internal PHY is powered up correctly. It also recommends a one - * second pause at the end to 'wait for the clocks to start' but in my - * experience this isn't necessary. - */ -static void -tl_hardreset(dev) - device_t dev; -{ - int i; - u_int16_t flags; - - mii_bitbang_sync(dev, &tl_mii_bitbang_ops); - - flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN; - - for (i = 0; i < MII_NPHY; i++) - tl_miibus_writereg(dev, i, MII_BMCR, flags); - - tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO); - DELAY(50000); - tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO); - mii_bitbang_sync(dev, &tl_mii_bitbang_ops); - while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET); - - DELAY(50000); -} - -static void -tl_softreset(sc, internal) - struct tl_softc *sc; - int internal; -{ - u_int32_t cmd, dummy, i; - - /* Assert the adapter reset bit. */ - CMD_SET(sc, TL_CMD_ADRST); - - /* Turn off interrupts */ - CMD_SET(sc, TL_CMD_INTSOFF); - - /* First, clear the stats registers. */ - for (i = 0; i < 5; i++) - dummy = tl_dio_read32(sc, TL_TXGOODFRAMES); - - /* Clear Areg and Hash registers */ - for (i = 0; i < 8; i++) - tl_dio_write32(sc, TL_AREG0_B5, 0x00000000); - - /* - * Set up Netconfig register. Enable one channel and - * one fragment mode. - */ - tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG); - if (internal && !sc->tl_bitrate) { - tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); - } else { - tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); - } - - /* Handle cards with bitrate devices. */ - if (sc->tl_bitrate) - tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE); - - /* - * Load adapter irq pacing timer and tx threshold. - * We make the transmit threshold 1 initially but we may - * change that later. - */ - cmd = CSR_READ_4(sc, TL_HOSTCMD); - cmd |= TL_CMD_NES; - cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK); - CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR)); - CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003)); - - /* Unreset the MII */ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST); - - /* Take the adapter out of reset */ - tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP); - - /* Wait for things to settle down a little. */ - DELAY(500); -} - -/* - * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs - * against our list and return its name if we find a match. - */ -static int -tl_probe(dev) - device_t dev; -{ - const struct tl_type *t; - - t = tl_devs; - - while(t->tl_name != NULL) { - if ((pci_get_vendor(dev) == t->tl_vid) && - (pci_get_device(dev) == t->tl_did)) { - device_set_desc(dev, t->tl_name); - return (BUS_PROBE_DEFAULT); - } - t++; - } - - return(ENXIO); -} - -static int -tl_attach(dev) - device_t dev; -{ - u_int16_t did, vid; - const struct tl_type *t; - struct ifnet *ifp; - struct tl_softc *sc; - int error, flags, i, rid, unit; - u_char eaddr[6]; - - vid = pci_get_vendor(dev); - did = pci_get_device(dev); - sc = device_get_softc(dev); - sc->tl_dev = dev; - unit = device_get_unit(dev); - - t = tl_devs; - while(t->tl_name != NULL) { - if (vid == t->tl_vid && did == t->tl_did) - break; - t++; - } - - if (t->tl_name == NULL) { - device_printf(dev, "unknown device!?\n"); - return (ENXIO); - } - - mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, - MTX_DEF); - - /* - * Map control/status registers. - */ - pci_enable_busmaster(dev); - -#ifdef TL_USEIOSPACE - - rid = TL_PCI_LOIO; - sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, - RF_ACTIVE); - - /* - * Some cards have the I/O and memory mapped address registers - * reversed. Try both combinations before giving up. - */ - if (sc->tl_res == NULL) { - rid = TL_PCI_LOMEM; - sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, - RF_ACTIVE); - } -#else - rid = TL_PCI_LOMEM; - sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, - RF_ACTIVE); - if (sc->tl_res == NULL) { - rid = TL_PCI_LOIO; - sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, - RF_ACTIVE); - } -#endif - - if (sc->tl_res == NULL) { - device_printf(dev, "couldn't map ports/memory\n"); - error = ENXIO; - goto fail; - } - -#ifdef notdef - /* - * The ThunderLAN manual suggests jacking the PCI latency - * timer all the way up to its maximum value. I'm not sure - * if this is really necessary, but what the manual wants, - * the manual gets. - */ - command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4); - command |= 0x0000FF00; - pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4); -#endif - - /* Allocate interrupt */ - rid = 0; - sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, - RF_SHAREABLE | RF_ACTIVE); - - if (sc->tl_irq == NULL) { - device_printf(dev, "couldn't map interrupt\n"); - error = ENXIO; - goto fail; - } - - /* - * Now allocate memory for the TX and RX lists. - */ - sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF, - M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); - - if (sc->tl_ldata == NULL) { - device_printf(dev, "no memory for list buffers!\n"); - error = ENXIO; - goto fail; - } - - bzero(sc->tl_ldata, sizeof(struct tl_list_data)); - - if (vid == COMPAQ_VENDORID || vid == TI_VENDORID) - sc->tl_eeaddr = TL_EEPROM_EADDR; - if (vid == OLICOM_VENDORID) - sc->tl_eeaddr = TL_EEPROM_EADDR_OC; - - /* Reset the adapter. */ - tl_softreset(sc, 1); - tl_hardreset(dev); - tl_softreset(sc, 1); - - /* - * Get station address from the EEPROM. - */ - if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) { - device_printf(dev, "failed to read station address\n"); - error = ENXIO; - goto fail; - } - - /* - * XXX Olicom, in its desire to be different from the - * rest of the world, has done strange things with the - * encoding of the station address in the EEPROM. First - * of all, they store the address at offset 0xF8 rather - * than at 0x83 like the ThunderLAN manual suggests. - * Second, they store the address in three 16-bit words in - * network byte order, as opposed to storing it sequentially - * like all the other ThunderLAN cards. In order to get - * the station address in a form that matches what the Olicom - * diagnostic utility specifies, we have to byte-swap each - * word. To make things even more confusing, neither 00:00:28 - * nor 00:00:24 appear in the IEEE OUI database. - */ - if (vid == OLICOM_VENDORID) { - for (i = 0; i < ETHER_ADDR_LEN; i += 2) { - u_int16_t *p; - p = (u_int16_t *)&eaddr[i]; - *p = ntohs(*p); - } - } - - ifp = sc->tl_ifp = if_alloc(IFT_ETHER); - if (ifp == NULL) { - device_printf(dev, "can not if_alloc()\n"); - error = ENOSPC; - goto fail; - } - ifp->if_softc = sc; - if_initname(ifp, device_get_name(dev), device_get_unit(dev)); - ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; - ifp->if_ioctl = tl_ioctl; - ifp->if_start = tl_start; - ifp->if_init = tl_init; - ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1; - ifp->if_capabilities |= IFCAP_VLAN_MTU; - ifp->if_capenable |= IFCAP_VLAN_MTU; - callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0); - - /* Reset the adapter again. */ - tl_softreset(sc, 1); - tl_hardreset(dev); - tl_softreset(sc, 1); - - /* - * Do MII setup. If no PHYs are found, then this is a - * bitrate ThunderLAN chip that only supports 10baseT - * and AUI/BNC. - * XXX mii_attach() can fail for reason different than - * no PHYs found! - */ - flags = 0; - if (vid == COMPAQ_VENDORID) { - if (did == COMPAQ_DEVICEID_NETEL_10_100_PROLIANT || - did == COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED || - did == COMPAQ_DEVICEID_NETFLEX_3P_BNC || - did == COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX) - flags |= MIIF_MACPRIV0; - if (did == COMPAQ_DEVICEID_NETEL_10 || - did == COMPAQ_DEVICEID_NETEL_10_100_DUAL || - did == COMPAQ_DEVICEID_NETFLEX_3P || - did == COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED) - flags |= MIIF_MACPRIV1; - } else if (vid == OLICOM_VENDORID && did == OLICOM_DEVICEID_OC2183) - flags |= MIIF_MACPRIV0 | MIIF_MACPRIV1; - if (mii_attach(dev, &sc->tl_miibus, ifp, tl_ifmedia_upd, - tl_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0)) { - struct ifmedia *ifm; - sc->tl_bitrate = 1; - ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts); - ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); - ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); - ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); - ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); - ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T); - /* Reset again, this time setting bitrate mode. */ - tl_softreset(sc, 1); - ifm = &sc->ifmedia; - ifm->ifm_media = ifm->ifm_cur->ifm_media; - tl_ifmedia_upd(ifp); - } - - /* - * Call MI attach routine. - */ - ether_ifattach(ifp, eaddr); - - /* Hook interrupt last to avoid having to lock softc */ - error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE, - NULL, tl_intr, sc, &sc->tl_intrhand); - - if (error) { - device_printf(dev, "couldn't set up irq\n"); - ether_ifdetach(ifp); - goto fail; - } - - gone_by_fcp101_dev(dev); - -fail: - if (error) - tl_detach(dev); - - return(error); -} - -/* - * Shutdown hardware and free up resources. This can be called any - * time after the mutex has been initialized. It is called in both - * the error case in attach and the normal detach case so it needs - * to be careful about only freeing resources that have actually been - * allocated. - */ -static int -tl_detach(dev) - device_t dev; -{ - struct tl_softc *sc; - struct ifnet *ifp; - - sc = device_get_softc(dev); - KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized")); - ifp = sc->tl_ifp; - - /* These should only be active if attach succeeded */ - if (device_is_attached(dev)) { - ether_ifdetach(ifp); - TL_LOCK(sc); - tl_stop(sc); - TL_UNLOCK(sc); - callout_drain(&sc->tl_stat_callout); - } - if (sc->tl_miibus) - device_delete_child(dev, sc->tl_miibus); - bus_generic_detach(dev); - - if (sc->tl_ldata) - contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF); - if (sc->tl_bitrate) - ifmedia_removeall(&sc->ifmedia); - - if (sc->tl_intrhand) - bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand); - if (sc->tl_irq) - bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq); - if (sc->tl_res) - bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res); - - if (ifp) - if_free(ifp); - - mtx_destroy(&sc->tl_mtx); - - return(0); -} - -/* - * Initialize the transmit lists. - */ -static int -tl_list_tx_init(sc) - struct tl_softc *sc; -{ - struct tl_chain_data *cd; - struct tl_list_data *ld; - int i; - - cd = &sc->tl_cdata; - ld = sc->tl_ldata; - for (i = 0; i < TL_TX_LIST_CNT; i++) { - cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i]; - if (i == (TL_TX_LIST_CNT - 1)) - cd->tl_tx_chain[i].tl_next = NULL; - else - cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1]; - } - - cd->tl_tx_free = &cd->tl_tx_chain[0]; - cd->tl_tx_tail = cd->tl_tx_head = NULL; - sc->tl_txeoc = 1; - - return(0); -} - -/* - * Initialize the RX lists and allocate mbufs for them. - */ -static int -tl_list_rx_init(sc) - struct tl_softc *sc; -{ - struct tl_chain_data *cd; - struct tl_list_data *ld; - int i; - - cd = &sc->tl_cdata; - ld = sc->tl_ldata; - - for (i = 0; i < TL_RX_LIST_CNT; i++) { - cd->tl_rx_chain[i].tl_ptr = - (struct tl_list_onefrag *)&ld->tl_rx_list[i]; - if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS) - return(ENOBUFS); - if (i == (TL_RX_LIST_CNT - 1)) { - cd->tl_rx_chain[i].tl_next = NULL; - ld->tl_rx_list[i].tlist_fptr = 0; - } else { - cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1]; - ld->tl_rx_list[i].tlist_fptr = - vtophys(&ld->tl_rx_list[i + 1]); - } - } - - cd->tl_rx_head = &cd->tl_rx_chain[0]; - cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; - - return(0); -} - -static int -tl_newbuf(sc, c) - struct tl_softc *sc; - struct tl_chain_onefrag *c; -{ - struct mbuf *m_new = NULL; - - m_new = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); - if (m_new == NULL) - return(ENOBUFS); - - c->tl_mbuf = m_new; - c->tl_next = NULL; - c->tl_ptr->tlist_frsize = MCLBYTES; - c->tl_ptr->tlist_fptr = 0; - c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t)); - c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; - c->tl_ptr->tlist_cstat = TL_CSTAT_READY; - - return(0); -} -/* - * Interrupt handler for RX 'end of frame' condition (EOF). This - * tells us that a full ethernet frame has been captured and we need - * to handle it. - * - * Reception is done using 'lists' which consist of a header and a - * series of 10 data count/data address pairs that point to buffers. - * Initially you're supposed to create a list, populate it with pointers - * to buffers, then load the physical address of the list into the - * ch_parm register. The adapter is then supposed to DMA the received - * frame into the buffers for you. - * - * To make things as fast as possible, we have the chip DMA directly - * into mbufs. This saves us from having to do a buffer copy: we can - * just hand the mbufs directly to ether_input(). Once the frame has - * been sent on its way, the 'list' structure is assigned a new buffer - * and moved to the end of the RX chain. As long we we stay ahead of - * the chip, it will always think it has an endless receive channel. - * - * If we happen to fall behind and the chip manages to fill up all of - * the buffers, it will generate an end of channel interrupt and wait - * for us to empty the chain and restart the receiver. - */ -static int -tl_intvec_rxeof(xsc, type) - void *xsc; - u_int32_t type; -{ - struct tl_softc *sc; - int r = 0, total_len = 0; - struct ether_header *eh; - struct mbuf *m; - struct ifnet *ifp; - struct tl_chain_onefrag *cur_rx; - - sc = xsc; - ifp = sc->tl_ifp; - - TL_LOCK_ASSERT(sc); - - while(sc->tl_cdata.tl_rx_head != NULL) { - cur_rx = sc->tl_cdata.tl_rx_head; - if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) - break; - r++; - sc->tl_cdata.tl_rx_head = cur_rx->tl_next; - m = cur_rx->tl_mbuf; - total_len = cur_rx->tl_ptr->tlist_frsize; - - if (tl_newbuf(sc, cur_rx) == ENOBUFS) { - if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); - cur_rx->tl_ptr->tlist_frsize = MCLBYTES; - cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY; - cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; - continue; - } - - sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr = - vtophys(cur_rx->tl_ptr); - sc->tl_cdata.tl_rx_tail->tl_next = cur_rx; - sc->tl_cdata.tl_rx_tail = cur_rx; - - /* - * Note: when the ThunderLAN chip is in 'capture all - * frames' mode, it will receive its own transmissions. - * We drop don't need to process our own transmissions, - * so we drop them here and continue. - */ - eh = mtod(m, struct ether_header *); - /*if (ifp->if_flags & IFF_PROMISC && */ - if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp), - ETHER_ADDR_LEN)) { - m_freem(m); - continue; - } - - m->m_pkthdr.rcvif = ifp; - m->m_pkthdr.len = m->m_len = total_len; - - TL_UNLOCK(sc); - (*ifp->if_input)(ifp, m); - TL_LOCK(sc); - } - - return(r); -} - -/* - * The RX-EOC condition hits when the ch_parm address hasn't been - * initialized or the adapter reached a list with a forward pointer - * of 0 (which indicates the end of the chain). In our case, this means - * the card has hit the end of the receive buffer chain and we need to - * empty out the buffers and shift the pointer back to the beginning again. - */ -static int -tl_intvec_rxeoc(xsc, type) - void *xsc; - u_int32_t type; -{ - struct tl_softc *sc; - int r; - struct tl_chain_data *cd; - - - sc = xsc; - cd = &sc->tl_cdata; - - /* Flush out the receive queue and ack RXEOF interrupts. */ - r = tl_intvec_rxeof(xsc, type); - CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000))); - r = 1; - cd->tl_rx_head = &cd->tl_rx_chain[0]; - cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; - CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr)); - r |= (TL_CMD_GO|TL_CMD_RT); - return(r); -} - -static int -tl_intvec_txeof(xsc, type) - void *xsc; - u_int32_t type; -{ - struct tl_softc *sc; - int r = 0; - struct tl_chain *cur_tx; - - sc = xsc; - - /* - * Go through our tx list and free mbufs for those - * frames that have been sent. - */ - while (sc->tl_cdata.tl_tx_head != NULL) { - cur_tx = sc->tl_cdata.tl_tx_head; - if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) - break; - sc->tl_cdata.tl_tx_head = cur_tx->tl_next; - - r++; - m_freem(cur_tx->tl_mbuf); - cur_tx->tl_mbuf = NULL; - - cur_tx->tl_next = sc->tl_cdata.tl_tx_free; - sc->tl_cdata.tl_tx_free = cur_tx; - if (!cur_tx->tl_ptr->tlist_fptr) - break; - } - - return(r); -} - -/* - * The transmit end of channel interrupt. The adapter triggers this - * interrupt to tell us it hit the end of the current transmit list. - * - * A note about this: it's possible for a condition to arise where - * tl_start() may try to send frames between TXEOF and TXEOC interrupts. - * You have to avoid this since the chip expects things to go in a - * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC. - * When the TXEOF handler is called, it will free all of the transmitted - * frames and reset the tx_head pointer to NULL. However, a TXEOC - * interrupt should be received and acknowledged before any more frames - * are queued for transmission. If tl_statrt() is called after TXEOF - * resets the tx_head pointer but _before_ the TXEOC interrupt arrives, - * it could attempt to issue a transmit command prematurely. - * - * To guard against this, tl_start() will only issue transmit commands - * if the tl_txeoc flag is set, and only the TXEOC interrupt handler - * can set this flag once tl_start() has cleared it. - */ -static int -tl_intvec_txeoc(xsc, type) - void *xsc; - u_int32_t type; -{ - struct tl_softc *sc; - struct ifnet *ifp; - u_int32_t cmd; - - sc = xsc; - ifp = sc->tl_ifp; - - /* Clear the timeout timer. */ - sc->tl_timer = 0; - - if (sc->tl_cdata.tl_tx_head == NULL) { - ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; - sc->tl_cdata.tl_tx_tail = NULL; - sc->tl_txeoc = 1; - } else { - sc->tl_txeoc = 0; - /* First we have to ack the EOC interrupt. */ - CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type); - /* Then load the address of the next TX list. */ - CSR_WRITE_4(sc, TL_CH_PARM, - vtophys(sc->tl_cdata.tl_tx_head->tl_ptr)); - /* Restart TX channel. */ - cmd = CSR_READ_4(sc, TL_HOSTCMD); - cmd &= ~TL_CMD_RT; - cmd |= TL_CMD_GO|TL_CMD_INTSON; - CMD_PUT(sc, cmd); - return(0); - } - - return(1); -} - -static int -tl_intvec_adchk(xsc, type) - void *xsc; - u_int32_t type; -{ - struct tl_softc *sc; - - sc = xsc; - - if (type) - device_printf(sc->tl_dev, "adapter check: %x\n", - (unsigned int)CSR_READ_4(sc, TL_CH_PARM)); - - tl_softreset(sc, 1); - tl_stop(sc); - tl_init_locked(sc); - CMD_SET(sc, TL_CMD_INTSON); - - return(0); -} - -static int -tl_intvec_netsts(xsc, type) - void *xsc; - u_int32_t type; -{ - struct tl_softc *sc; - u_int16_t netsts; - - sc = xsc; - - netsts = tl_dio_read16(sc, TL_NETSTS); - tl_dio_write16(sc, TL_NETSTS, netsts); - - device_printf(sc->tl_dev, "network status: %x\n", netsts); - - return(1); -} - -static void -tl_intr(xsc) - void *xsc; -{ - struct tl_softc *sc; - struct ifnet *ifp; - int r = 0; - u_int32_t type = 0; - u_int16_t ints = 0; - u_int8_t ivec = 0; - - sc = xsc; - TL_LOCK(sc); - - /* Disable interrupts */ - ints = CSR_READ_2(sc, TL_HOST_INT); - CSR_WRITE_2(sc, TL_HOST_INT, ints); - type = (ints << 16) & 0xFFFF0000; - ivec = (ints & TL_VEC_MASK) >> 5; - ints = (ints & TL_INT_MASK) >> 2; - - ifp = sc->tl_ifp; - - switch(ints) { - case (TL_INTR_INVALID): -#ifdef DIAGNOSTIC - device_printf(sc->tl_dev, "got an invalid interrupt!\n"); -#endif - /* Re-enable interrupts but don't ack this one. */ - CMD_PUT(sc, type); - r = 0; - break; - case (TL_INTR_TXEOF): - r = tl_intvec_txeof((void *)sc, type); - break; - case (TL_INTR_TXEOC): - r = tl_intvec_txeoc((void *)sc, type); - break; - case (TL_INTR_STATOFLOW): - tl_stats_update(sc); - r = 1; - break; - case (TL_INTR_RXEOF): - r = tl_intvec_rxeof((void *)sc, type); - break; - case (TL_INTR_DUMMY): - device_printf(sc->tl_dev, "got a dummy interrupt\n"); - r = 1; - break; - case (TL_INTR_ADCHK): - if (ivec) - r = tl_intvec_adchk((void *)sc, type); - else - r = tl_intvec_netsts((void *)sc, type); - break; - case (TL_INTR_RXEOC): - r = tl_intvec_rxeoc((void *)sc, type); - break; - default: - device_printf(sc->tl_dev, "bogus interrupt type\n"); - break; - } - - /* Re-enable interrupts */ - if (r) { - CMD_PUT(sc, TL_CMD_ACK | r | type); - } - - if (ifp->if_snd.ifq_head != NULL) - tl_start_locked(ifp); - - TL_UNLOCK(sc); -} - -static void -tl_stats_update(xsc) - void *xsc; -{ - struct tl_softc *sc; - struct ifnet *ifp; - struct tl_stats tl_stats; - struct mii_data *mii; - u_int32_t *p; - - bzero((char *)&tl_stats, sizeof(struct tl_stats)); - - sc = xsc; - TL_LOCK_ASSERT(sc); - ifp = sc->tl_ifp; - - p = (u_int32_t *)&tl_stats; - - CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC); - *p++ = CSR_READ_4(sc, TL_DIO_DATA); - *p++ = CSR_READ_4(sc, TL_DIO_DATA); - *p++ = CSR_READ_4(sc, TL_DIO_DATA); - *p++ = CSR_READ_4(sc, TL_DIO_DATA); - *p++ = CSR_READ_4(sc, TL_DIO_DATA); - - if_inc_counter(ifp, IFCOUNTER_OPACKETS, tl_tx_goodframes(tl_stats)); - if_inc_counter(ifp, IFCOUNTER_COLLISIONS, - tl_stats.tl_tx_single_collision + tl_stats.tl_tx_multi_collision); - if_inc_counter(ifp, IFCOUNTER_IPACKETS, tl_rx_goodframes(tl_stats)); - if_inc_counter(ifp, IFCOUNTER_IERRORS, tl_stats.tl_crc_errors + - tl_stats.tl_code_errors + tl_rx_overrun(tl_stats)); - if_inc_counter(ifp, IFCOUNTER_OERRORS, tl_tx_underrun(tl_stats)); - - if (tl_tx_underrun(tl_stats)) { - u_int8_t tx_thresh; - tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH; - if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) { - tx_thresh >>= 4; - tx_thresh++; - device_printf(sc->tl_dev, "tx underrun -- increasing " - "tx threshold to %d bytes\n", - (64 * (tx_thresh * 4))); - tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH); - tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4); - } - } - - if (sc->tl_timer > 0 && --sc->tl_timer == 0) - tl_watchdog(sc); - - callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc); - - if (!sc->tl_bitrate) { - mii = device_get_softc(sc->tl_miibus); - mii_tick(mii); - } -} - -/* - * Encapsulate an mbuf chain in a list by coupling the mbuf data - * pointers to the fragment pointers. - */ -static int -tl_encap(sc, c, m_head) - struct tl_softc *sc; - struct tl_chain *c; - struct mbuf *m_head; -{ - int frag = 0; - struct tl_frag *f = NULL; - int total_len; - struct mbuf *m; - struct ifnet *ifp = sc->tl_ifp; - - /* - * Start packing the mbufs in this chain into - * the fragment pointers. Stop when we run out - * of fragments or hit the end of the mbuf chain. - */ - m = m_head; - total_len = 0; - - for (m = m_head, frag = 0; m != NULL; m = m->m_next) { - if (m->m_len != 0) { - if (frag == TL_MAXFRAGS) - break; - total_len+= m->m_len; - c->tl_ptr->tl_frag[frag].tlist_dadr = - vtophys(mtod(m, vm_offset_t)); - c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len; - frag++; - } - } - - /* - * Handle special cases. - * Special case #1: we used up all 10 fragments, but - * we have more mbufs left in the chain. Copy the - * data into an mbuf cluster. Note that we don't - * bother clearing the values in the other fragment - * pointers/counters; it wouldn't gain us anything, - * and would waste cycles. - */ - if (m != NULL) { - struct mbuf *m_new = NULL; - - MGETHDR(m_new, M_NOWAIT, MT_DATA); - if (m_new == NULL) { - if_printf(ifp, "no memory for tx list\n"); - return(1); - } - if (m_head->m_pkthdr.len > MHLEN) { - if (!(MCLGET(m_new, M_NOWAIT))) { - m_freem(m_new); - if_printf(ifp, "no memory for tx list\n"); - return(1); - } - } - m_copydata(m_head, 0, m_head->m_pkthdr.len, - mtod(m_new, caddr_t)); - m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; - m_freem(m_head); - m_head = m_new; - f = &c->tl_ptr->tl_frag[0]; - f->tlist_dadr = vtophys(mtod(m_new, caddr_t)); - f->tlist_dcnt = total_len = m_new->m_len; - frag = 1; - } - - /* - * Special case #2: the frame is smaller than the minimum - * frame size. We have to pad it to make the chip happy. - */ - if (total_len < TL_MIN_FRAMELEN) { - if (frag == TL_MAXFRAGS) - if_printf(ifp, - "all frags filled but frame still to small!\n"); - f = &c->tl_ptr->tl_frag[frag]; - f->tlist_dcnt = TL_MIN_FRAMELEN - total_len; - f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad); - total_len += f->tlist_dcnt; - frag++; - } - - c->tl_mbuf = m_head; - c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG; - c->tl_ptr->tlist_frsize = total_len; - c->tl_ptr->tlist_cstat = TL_CSTAT_READY; - c->tl_ptr->tlist_fptr = 0; - - return(0); -} - -/* - * Main transmit routine. To avoid having to do mbuf copies, we put pointers - * to the mbuf data regions directly in the transmit lists. We also save a - * copy of the pointers since the transmit list fragment pointers are - * physical addresses. - */ -static void -tl_start(ifp) - struct ifnet *ifp; -{ - struct tl_softc *sc; - - sc = ifp->if_softc; - TL_LOCK(sc); - tl_start_locked(ifp); - TL_UNLOCK(sc); -} - -static void -tl_start_locked(ifp) - struct ifnet *ifp; -{ - struct tl_softc *sc; - struct mbuf *m_head = NULL; - u_int32_t cmd; - struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx; - - sc = ifp->if_softc; - TL_LOCK_ASSERT(sc); - - /* - * Check for an available queue slot. If there are none, - * punt. - */ - if (sc->tl_cdata.tl_tx_free == NULL) { - ifp->if_drv_flags |= IFF_DRV_OACTIVE; - return; - } - - start_tx = sc->tl_cdata.tl_tx_free; - - while(sc->tl_cdata.tl_tx_free != NULL) { - IF_DEQUEUE(&ifp->if_snd, m_head); - if (m_head == NULL) - break; - - /* Pick a chain member off the free list. */ - cur_tx = sc->tl_cdata.tl_tx_free; - sc->tl_cdata.tl_tx_free = cur_tx->tl_next; - - cur_tx->tl_next = NULL; - - /* Pack the data into the list. */ - tl_encap(sc, cur_tx, m_head); - - /* Chain it together */ - if (prev != NULL) { - prev->tl_next = cur_tx; - prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr); - } - prev = cur_tx; - - /* - * If there's a BPF listener, bounce a copy of this frame - * to him. - */ - BPF_MTAP(ifp, cur_tx->tl_mbuf); - } - - /* - * If there are no packets queued, bail. - */ - if (cur_tx == NULL) - return; - - /* - * That's all we can stands, we can't stands no more. - * If there are no other transfers pending, then issue the - * TX GO command to the adapter to start things moving. - * Otherwise, just leave the data in the queue and let - * the EOF/EOC interrupt handler send. - */ - if (sc->tl_cdata.tl_tx_head == NULL) { - sc->tl_cdata.tl_tx_head = start_tx; - sc->tl_cdata.tl_tx_tail = cur_tx; - - if (sc->tl_txeoc) { - sc->tl_txeoc = 0; - CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr)); - cmd = CSR_READ_4(sc, TL_HOSTCMD); - cmd &= ~TL_CMD_RT; - cmd |= TL_CMD_GO|TL_CMD_INTSON; - CMD_PUT(sc, cmd); - } - } else { - sc->tl_cdata.tl_tx_tail->tl_next = start_tx; - sc->tl_cdata.tl_tx_tail = cur_tx; - } - - /* - * Set a timeout in case the chip goes out to lunch. - */ - sc->tl_timer = 5; -} - -static void -tl_init(xsc) - void *xsc; -{ - struct tl_softc *sc = xsc; - - TL_LOCK(sc); - tl_init_locked(sc); - TL_UNLOCK(sc); -} - -static void -tl_init_locked(sc) - struct tl_softc *sc; -{ - struct ifnet *ifp = sc->tl_ifp; - struct mii_data *mii; - - TL_LOCK_ASSERT(sc); - - ifp = sc->tl_ifp; - - /* - * Cancel pending I/O. - */ - tl_stop(sc); - - /* Initialize TX FIFO threshold */ - tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH); - tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG); - - /* Set PCI burst size */ - tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG); - - /* - * Set 'capture all frames' bit for promiscuous mode. - */ - if (ifp->if_flags & IFF_PROMISC) - tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); - else - tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); - - /* - * Set capture broadcast bit to capture broadcast frames. - */ - if (ifp->if_flags & IFF_BROADCAST) - tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX); - else - tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX); - - tl_dio_write16(sc, TL_MAXRX, MCLBYTES); - - /* Init our MAC address */ - tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0); - - /* Init multicast filter, if needed. */ - tl_setmulti(sc); - - /* Init circular RX list. */ - if (tl_list_rx_init(sc) == ENOBUFS) { - device_printf(sc->tl_dev, - "initialization failed: no memory for rx buffers\n"); - tl_stop(sc); - return; - } - - /* Init TX pointers. */ - tl_list_tx_init(sc); - - /* Enable PCI interrupts. */ - CMD_SET(sc, TL_CMD_INTSON); - - /* Load the address of the rx list */ - CMD_SET(sc, TL_CMD_RT); - CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0])); - - if (!sc->tl_bitrate) { - if (sc->tl_miibus != NULL) { - mii = device_get_softc(sc->tl_miibus); - mii_mediachg(mii); - } - } else { - tl_ifmedia_upd(ifp); - } - - /* Send the RX go command */ - CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT); - - ifp->if_drv_flags |= IFF_DRV_RUNNING; - ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; - - /* Start the stats update counter */ - callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc); -} - -/* - * Set media options. - */ -static int -tl_ifmedia_upd(ifp) - struct ifnet *ifp; -{ - struct tl_softc *sc; - struct mii_data *mii = NULL; - - sc = ifp->if_softc; - - TL_LOCK(sc); - if (sc->tl_bitrate) - tl_setmode(sc, sc->ifmedia.ifm_media); - else { - mii = device_get_softc(sc->tl_miibus); - mii_mediachg(mii); - } - TL_UNLOCK(sc); - - return(0); -} - -/* - * Report current media status. - */ -static void -tl_ifmedia_sts(ifp, ifmr) - struct ifnet *ifp; - struct ifmediareq *ifmr; -{ - struct tl_softc *sc; - struct mii_data *mii; - - sc = ifp->if_softc; - - TL_LOCK(sc); - ifmr->ifm_active = IFM_ETHER; - - if (sc->tl_bitrate) { - if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1) - ifmr->ifm_active = IFM_ETHER|IFM_10_5; - else - ifmr->ifm_active = IFM_ETHER|IFM_10_T; - if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3) - ifmr->ifm_active |= IFM_HDX; - else - ifmr->ifm_active |= IFM_FDX; - return; - } else { - mii = device_get_softc(sc->tl_miibus); - mii_pollstat(mii); - ifmr->ifm_active = mii->mii_media_active; - ifmr->ifm_status = mii->mii_media_status; - } - TL_UNLOCK(sc); -} - -static int -tl_ioctl(ifp, command, data) - struct ifnet *ifp; - u_long command; - caddr_t data; -{ - struct tl_softc *sc = ifp->if_softc; - struct ifreq *ifr = (struct ifreq *) data; - int error = 0; - - switch(command) { - case SIOCSIFFLAGS: - TL_LOCK(sc); - if (ifp->if_flags & IFF_UP) { - if (ifp->if_drv_flags & IFF_DRV_RUNNING && - ifp->if_flags & IFF_PROMISC && - !(sc->tl_if_flags & IFF_PROMISC)) { - tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); - tl_setmulti(sc); - } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && - !(ifp->if_flags & IFF_PROMISC) && - sc->tl_if_flags & IFF_PROMISC) { - tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); - tl_setmulti(sc); - } else - tl_init_locked(sc); - } else { - if (ifp->if_drv_flags & IFF_DRV_RUNNING) { - tl_stop(sc); - } - } - sc->tl_if_flags = ifp->if_flags; - TL_UNLOCK(sc); - error = 0; - break; - case SIOCADDMULTI: - case SIOCDELMULTI: - TL_LOCK(sc); - tl_setmulti(sc); - TL_UNLOCK(sc); - error = 0; - break; - case SIOCSIFMEDIA: - case SIOCGIFMEDIA: - if (sc->tl_bitrate) - error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); - else { - struct mii_data *mii; - mii = device_get_softc(sc->tl_miibus); - error = ifmedia_ioctl(ifp, ifr, - &mii->mii_media, command); - } - break; - default: - error = ether_ioctl(ifp, command, data); - break; - } - - return(error); -} - -static void -tl_watchdog(sc) - struct tl_softc *sc; -{ - struct ifnet *ifp; - - TL_LOCK_ASSERT(sc); - ifp = sc->tl_ifp; - - if_printf(ifp, "device timeout\n"); - - if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); - - tl_softreset(sc, 1); - tl_init_locked(sc); -} - -/* - * Stop the adapter and free any mbufs allocated to the - * RX and TX lists. - */ -static void -tl_stop(sc) - struct tl_softc *sc; -{ - int i; - struct ifnet *ifp; - - TL_LOCK_ASSERT(sc); - - ifp = sc->tl_ifp; - - /* Stop the stats updater. */ - callout_stop(&sc->tl_stat_callout); - - /* Stop the transmitter */ - CMD_CLR(sc, TL_CMD_RT); - CMD_SET(sc, TL_CMD_STOP); - CSR_WRITE_4(sc, TL_CH_PARM, 0); - - /* Stop the receiver */ - CMD_SET(sc, TL_CMD_RT); - CMD_SET(sc, TL_CMD_STOP); - CSR_WRITE_4(sc, TL_CH_PARM, 0); - - /* - * Disable host interrupts. - */ - CMD_SET(sc, TL_CMD_INTSOFF); - - /* - * Clear list pointer. - */ - CSR_WRITE_4(sc, TL_CH_PARM, 0); - - /* - * Free the RX lists. - */ - for (i = 0; i < TL_RX_LIST_CNT; i++) { - if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) { - m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf); - sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL; - } - } - bzero((char *)&sc->tl_ldata->tl_rx_list, - sizeof(sc->tl_ldata->tl_rx_list)); - - /* - * Free the TX list buffers. - */ - for (i = 0; i < TL_TX_LIST_CNT; i++) { - if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) { - m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf); - sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL; - } - } - bzero((char *)&sc->tl_ldata->tl_tx_list, - sizeof(sc->tl_ldata->tl_tx_list)); - - ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); -} - -/* - * Stop all chip I/O so that the kernel's probe routines don't - * get confused by errant DMAs when rebooting. - */ -static int -tl_shutdown(dev) - device_t dev; -{ - struct tl_softc *sc; - - sc = device_get_softc(dev); - - TL_LOCK(sc); - tl_stop(sc); - TL_UNLOCK(sc); - - return (0); -} diff --git a/sys/dev/tl/if_tlreg.h b/sys/dev/tl/if_tlreg.h deleted file mode 100644 index 51fb6820bd8..00000000000 --- a/sys/dev/tl/if_tlreg.h +++ /dev/null @@ -1,559 +0,0 @@ -/*- - * SPDX-License-Identifier: BSD-4-Clause - * - * Copyright (c) 1997, 1998 - * Bill Paul . All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * This product includes software developed by Bill Paul. - * 4. Neither the name of the author nor the names of any co-contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD - * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF - * THE POSSIBILITY OF SUCH DAMAGE. - * - * $FreeBSD$ - */ - -struct tl_type { - u_int16_t tl_vid; - u_int16_t tl_did; - const char *tl_name; -}; - -/* - * ThunderLAN TX/RX list format. The TX and RX lists are pretty much - * identical: the list begins with a 32-bit forward pointer which points - * at the next list in the chain, followed by 16 bits for the total - * frame size, and a 16 bit status field. This is followed by a series - * of 10 32-bit data count/data address pairs that point to the fragments - * that make up the complete frame. - */ - -#define TL_MAXFRAGS 10 -#define TL_RX_LIST_CNT 64 -#define TL_TX_LIST_CNT 128 -#define TL_MIN_FRAMELEN 64 - -struct tl_frag { - u_int32_t tlist_dcnt; - u_int32_t tlist_dadr; -}; - -struct tl_list { - u_int32_t tlist_fptr; /* phys address of next list */ - u_int16_t tlist_cstat; /* status word */ - u_int16_t tlist_frsize; /* size of data in frame */ - struct tl_frag tl_frag[TL_MAXFRAGS]; -}; - -/* - * This is a special case of an RX list. By setting the One_Frag - * bit in the NETCONFIG register, the driver can force the ThunderLAN - * chip to use only one fragment when DMAing RX frames. - */ - -struct tl_list_onefrag { - u_int32_t tlist_fptr; - u_int16_t tlist_cstat; - u_int16_t tlist_frsize; - struct tl_frag tl_frag; -}; - -struct tl_list_data { - struct tl_list_onefrag tl_rx_list[TL_RX_LIST_CNT]; - struct tl_list tl_tx_list[TL_TX_LIST_CNT]; - unsigned char tl_pad[TL_MIN_FRAMELEN]; -}; - -struct tl_chain { - struct tl_list *tl_ptr; - struct mbuf *tl_mbuf; - struct tl_chain *tl_next; -}; - -struct tl_chain_onefrag { - struct tl_list_onefrag *tl_ptr; - struct mbuf *tl_mbuf; - struct tl_chain_onefrag *tl_next; -}; - -struct tl_chain_data { - struct tl_chain_onefrag tl_rx_chain[TL_RX_LIST_CNT]; - struct tl_chain tl_tx_chain[TL_TX_LIST_CNT]; - - struct tl_chain_onefrag *tl_rx_head; - struct tl_chain_onefrag *tl_rx_tail; - - struct tl_chain *tl_tx_head; - struct tl_chain *tl_tx_tail; - struct tl_chain *tl_tx_free; -}; - -struct tl_softc { - struct ifnet *tl_ifp; - device_t tl_dev; - struct ifmedia ifmedia; /* media info */ - void *tl_intrhand; - struct resource *tl_irq; - struct resource *tl_res; - device_t tl_miibus; - u_int8_t tl_eeaddr; - struct tl_list_data *tl_ldata; /* TX/RX lists and mbufs */ - struct tl_chain_data tl_cdata; - u_int8_t tl_txeoc; - u_int8_t tl_bitrate; - int tl_if_flags; - struct callout tl_stat_callout; - struct mtx tl_mtx; - int tl_timer; -}; - -#define TL_LOCK(_sc) mtx_lock(&(_sc)->tl_mtx) -#define TL_UNLOCK(_sc) mtx_unlock(&(_sc)->tl_mtx) -#define TL_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tl_mtx, MA_OWNED) - -/* - * Transmit interrupt threshold. - */ -#define TX_THR 0x00000004 - -/* - * General constants that are fun to know. - * - * The ThunderLAN controller is made by Texas Instruments. The - * manual indicates that if the EEPROM checksum fails, the PCI - * vendor and device ID registers will be loaded with TI-specific - * values. - */ -#define TI_VENDORID 0x104C -#define TI_DEVICEID_THUNDERLAN 0x0500 - -/* - * These are the PCI vendor and device IDs for Compaq ethernet - * adapters based on the ThunderLAN controller. - */ -#define COMPAQ_VENDORID 0x0E11 -#define COMPAQ_DEVICEID_NETEL_10_100 0xAE32 -#define COMPAQ_DEVICEID_NETEL_UNKNOWN 0xAE33 -#define COMPAQ_DEVICEID_NETEL_10 0xAE34 -#define COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED 0xAE35 -#define COMPAQ_DEVICEID_NETEL_10_100_DUAL 0xAE40 -#define COMPAQ_DEVICEID_NETEL_10_100_PROLIANT 0xAE43 -#define COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED 0xB011 -#define COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX 0xB012 -#define COMPAQ_DEVICEID_NETEL_10_100_TX_UTP 0xB030 -#define COMPAQ_DEVICEID_NETFLEX_3P 0xF130 -#define COMPAQ_DEVICEID_NETFLEX_3P_BNC 0xF150 - -/* - * These are the PCI vendor and device IDs for Olicom - * adapters based on the ThunderLAN controller. - */ -#define OLICOM_VENDORID 0x108D -#define OLICOM_DEVICEID_OC2183 0x0013 -#define OLICOM_DEVICEID_OC2325 0x0012 -#define OLICOM_DEVICEID_OC2326 0x0014 - -/* - * PCI low memory base and low I/O base - */ -#define TL_PCI_LOIO 0x10 -#define TL_PCI_LOMEM 0x14 - -/* - * PCI latency timer (it's actually 0x0D, but we want a value - * that's longword aligned). - */ -#define TL_PCI_LATENCY_TIMER 0x0C - -#define TL_DIO_ADDR_INC 0x8000 /* Increment addr on each read */ -#define TL_DIO_RAM_SEL 0x4000 /* RAM address select */ -#define TL_DIO_ADDR_MASK 0x3FFF /* address bits mask */ - -/* - * Interrupt types - */ -#define TL_INTR_INVALID 0x0 -#define TL_INTR_TXEOF 0x1 -#define TL_INTR_STATOFLOW 0x2 -#define TL_INTR_RXEOF 0x3 -#define TL_INTR_DUMMY 0x4 -#define TL_INTR_TXEOC 0x5 -#define TL_INTR_ADCHK 0x6 -#define TL_INTR_RXEOC 0x7 - -#define TL_INT_MASK 0x001C -#define TL_VEC_MASK 0x1FE0 - -/* - * Host command register bits - */ -#define TL_CMD_GO 0x80000000 -#define TL_CMD_STOP 0x40000000 -#define TL_CMD_ACK 0x20000000 -#define TL_CMD_CHSEL7 0x10000000 -#define TL_CMD_CHSEL6 0x08000000 -#define TL_CMD_CHSEL5 0x04000000 -#define TL_CMD_CHSEL4 0x02000000 -#define TL_CMD_CHSEL3 0x01000000 -#define TL_CMD_CHSEL2 0x00800000 -#define TL_CMD_CHSEL1 0x00400000 -#define TL_CMD_CHSEL0 0x00200000 -#define TL_CMD_EOC 0x00100000 -#define TL_CMD_RT 0x00080000 -#define TL_CMD_NES 0x00040000 -#define TL_CMD_ZERO0 0x00020000 -#define TL_CMD_ZERO1 0x00010000 -#define TL_CMD_ADRST 0x00008000 -#define TL_CMD_LDTMR 0x00004000 -#define TL_CMD_LDTHR 0x00002000 -#define TL_CMD_REQINT 0x00001000 -#define TL_CMD_INTSOFF 0x00000800 -#define TL_CMD_INTSON 0x00000400 -#define TL_CMD_RSVD0 0x00000200 -#define TL_CMD_RSVD1 0x00000100 -#define TL_CMD_ACK7 0x00000080 -#define TL_CMD_ACK6 0x00000040 -#define TL_CMD_ACK5 0x00000020 -#define TL_CMD_ACK4 0x00000010 -#define TL_CMD_ACK3 0x00000008 -#define TL_CMD_ACK2 0x00000004 -#define TL_CMD_ACK1 0x00000002 -#define TL_CMD_ACK0 0x00000001 - -#define TL_CMD_CHSEL_MASK 0x01FE0000 -#define TL_CMD_ACK_MASK 0xFF - -/* - * EEPROM address where station address resides. - */ -#define TL_EEPROM_EADDR 0x83 -#define TL_EEPROM_EADDR2 0x99 -#define TL_EEPROM_EADDR3 0xAF -#define TL_EEPROM_EADDR_OC 0xF8 /* Olicom cards use a different - address than Compaqs. */ -/* - * ThunderLAN host command register offsets. - * (Can be accessed either by IO ports or memory map.) - */ -#define TL_HOSTCMD 0x00 -#define TL_CH_PARM 0x04 -#define TL_DIO_ADDR 0x08 -#define TL_HOST_INT 0x0A -#define TL_DIO_DATA 0x0C - -/* - * ThunderLAN internal registers - */ -#define TL_NETCMD 0x00 -#define TL_NETSIO 0x01 -#define TL_NETSTS 0x02 -#define TL_NETMASK 0x03 - -#define TL_NETCONFIG 0x04 -#define TL_MANTEST 0x06 - -#define TL_VENID_LSB 0x08 -#define TL_VENID_MSB 0x09 -#define TL_DEVID_LSB 0x0A -#define TL_DEVID_MSB 0x0B - -#define TL_REVISION 0x0C -#define TL_SUBCLASS 0x0D -#define TL_MINLAT 0x0E -#define TL_MAXLAT 0x0F - -#define TL_AREG0_B5 0x10 -#define TL_AREG0_B4 0x11 -#define TL_AREG0_B3 0x12 -#define TL_AREG0_B2 0x13 - -#define TL_AREG0_B1 0x14 -#define TL_AREG0_B0 0x15 -#define TL_AREG1_B5 0x16 -#define TL_AREG1_B4 0x17 - -#define TL_AREG1_B3 0x18 -#define TL_AREG1_B2 0x19 -#define TL_AREG1_B1 0x1A -#define TL_AREG1_B0 0x1B - -#define TL_AREG2_B5 0x1C -#define TL_AREG2_B4 0x1D -#define TL_AREG2_B3 0x1E -#define TL_AREG2_B2 0x1F - -#define TL_AREG2_B1 0x20 -#define TL_AREG2_B0 0x21 -#define TL_AREG3_B5 0x22 -#define TL_AREG3_B4 0x23 - -#define TL_AREG3_B3 0x24 -#define TL_AREG3_B2 0x25 -#define TL_AREG3_B1 0x26 -#define TL_AREG3_B0 0x27 - -#define TL_HASH1 0x28 -#define TL_HASH2 0x2C -#define TL_TXGOODFRAMES 0x30 -#define TL_TXUNDERRUN 0x33 -#define TL_RXGOODFRAMES 0x34 -#define TL_RXOVERRUN 0x37 -#define TL_DEFEREDTX 0x38 -#define TL_CRCERROR 0x3A -#define TL_CODEERROR 0x3B -#define TL_MULTICOLTX 0x3C -#define TL_SINGLECOLTX 0x3E -#define TL_EXCESSIVECOL 0x40 -#define TL_LATECOL 0x41 -#define TL_CARRIERLOSS 0x42 -#define TL_ACOMMIT 0x43 -#define TL_LDREG 0x44 -#define TL_BSIZEREG 0x45 -#define TL_MAXRX 0x46 - -/* - * ThunderLAN SIO register bits - */ -#define TL_SIO_MINTEN 0x80 -#define TL_SIO_ECLOK 0x40 -#define TL_SIO_ETXEN 0x20 -#define TL_SIO_EDATA 0x10 -#define TL_SIO_NMRST 0x08 -#define TL_SIO_MCLK 0x04 -#define TL_SIO_MTXEN 0x02 -#define TL_SIO_MDATA 0x01 - -/* - * Thunderlan NETCONFIG bits - */ -#define TL_CFG_RCLKTEST 0x8000 -#define TL_CFG_TCLKTEST 0x4000 -#define TL_CFG_BITRATE 0x2000 -#define TL_CFG_RXCRC 0x1000 -#define TL_CFG_PEF 0x0800 -#define TL_CFG_ONEFRAG 0x0400 -#define TL_CFG_ONECHAN 0x0200 -#define TL_CFG_MTEST 0x0100 -#define TL_CFG_PHYEN 0x0080 -#define TL_CFG_MACSEL6 0x0040 -#define TL_CFG_MACSEL5 0x0020 -#define TL_CFG_MACSEL4 0x0010 -#define TL_CFG_MACSEL3 0x0008 -#define TL_CFG_MACSEL2 0x0004 -#define TL_CFG_MACSEL1 0x0002 -#define TL_CFG_MACSEL0 0x0001 - -/* - * ThunderLAN NETSTS bits - */ -#define TL_STS_MIRQ 0x80 -#define TL_STS_HBEAT 0x40 -#define TL_STS_TXSTOP 0x20 -#define TL_STS_RXSTOP 0x10 - -/* - * ThunderLAN NETCMD bits - */ -#define TL_CMD_NRESET 0x80 -#define TL_CMD_NWRAP 0x40 -#define TL_CMD_CSF 0x20 -#define TL_CMD_CAF 0x10 -#define TL_CMD_NOBRX 0x08 -#define TL_CMD_DUPLEX 0x04 -#define TL_CMD_TRFRAM 0x02 -#define TL_CMD_TXPACE 0x01 - -/* - * ThunderLAN NETMASK bits - */ -#define TL_MASK_MASK7 0x80 -#define TL_MASK_MASK6 0x40 -#define TL_MASK_MASK5 0x20 -#define TL_MASK_MASK4 0x10 - -#define TL_LAST_FRAG 0x80000000 -#define TL_CSTAT_UNUSED 0x8000 -#define TL_CSTAT_FRAMECMP 0x4000 -#define TL_CSTAT_READY 0x3000 -#define TL_CSTAT_UNUSED13 0x2000 -#define TL_CSTAT_UNUSED12 0x1000 -#define TL_CSTAT_EOC 0x0800 -#define TL_CSTAT_RXERROR 0x0400 -#define TL_CSTAT_PASSCRC 0x0200 -#define TL_CSTAT_DPRIO 0x0100 - -#define TL_FRAME_MASK 0x00FFFFFF -#define tl_tx_goodframes(x) (x.tl_txstat & TL_FRAME_MASK) -#define tl_tx_underrun(x) ((x.tl_txstat & ~TL_FRAME_MASK) >> 24) -#define tl_rx_goodframes(x) (x.tl_rxstat & TL_FRAME_MASK) -#define tl_rx_overrun(x) ((x.tl_rxstat & ~TL_FRAME_MASK) >> 24) - -struct tl_stats { - u_int32_t tl_txstat; - u_int32_t tl_rxstat; - u_int16_t tl_deferred; - u_int8_t tl_crc_errors; - u_int8_t tl_code_errors; - u_int16_t tl_tx_multi_collision; - u_int16_t tl_tx_single_collision; - u_int8_t tl_excessive_collision; - u_int8_t tl_late_collision; - u_int8_t tl_carrier_loss; - u_int8_t acommit; -}; - -/* - * ACOMMIT register bits. These are used only when a bitrate - * PHY is selected ('bitrate' bit in netconfig register is set). - */ -#define TL_AC_MTXER 0x01 /* reserved */ -#define TL_AC_MTXD1 0x02 /* 0 == 10baseT 1 == AUI */ -#define TL_AC_MTXD2 0x04 /* loopback disable */ -#define TL_AC_MTXD3 0x08 /* full duplex disable */ - -#define TL_AC_TXTHRESH 0xF0 -#define TL_AC_TXTHRESH_16LONG 0x00 -#define TL_AC_TXTHRESH_32LONG 0x10 -#define TL_AC_TXTHRESH_64LONG 0x20 -#define TL_AC_TXTHRESH_128LONG 0x30 -#define TL_AC_TXTHRESH_256LONG 0x40 -#define TL_AC_TXTHRESH_WHOLEPKT 0x50 - -/* - * PCI burst size register (TL_BSIZEREG). - */ -#define TL_RXBURST 0x0F -#define TL_TXBURST 0xF0 - -#define TL_RXBURST_4LONG 0x00 -#define TL_RXBURST_8LONG 0x01 -#define TL_RXBURST_16LONG 0x02 -#define TL_RXBURST_32LONG 0x03 -#define TL_RXBURST_64LONG 0x04 -#define TL_RXBURST_128LONG 0x05 - -#define TL_TXBURST_4LONG 0x00 -#define TL_TXBURST_8LONG 0x10 -#define TL_TXBURST_16LONG 0x20 -#define TL_TXBURST_32LONG 0x30 -#define TL_TXBURST_64LONG 0x40 -#define TL_TXBURST_128LONG 0x50 - -/* - * register space access macros - */ -#define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->tl_res, reg, val) -#define CSR_WRITE_2(sc, reg, val) bus_write_2(sc->tl_res, reg, val) -#define CSR_WRITE_1(sc, reg, val) bus_write_1(sc->tl_res, reg, val) - -#define CSR_READ_4(sc, reg) bus_read_4(sc->tl_res, reg) -#define CSR_READ_2(sc, reg) bus_read_2(sc->tl_res, reg) -#define CSR_READ_1(sc, reg) bus_read_1(sc->tl_res, reg) - -#define CSR_BARRIER(sc, reg, length, flags) \ - bus_barrier(sc->tl_res, reg, length, flags) - -#define CMD_PUT(sc, x) CSR_WRITE_4(sc, TL_HOSTCMD, x) -#define CMD_SET(sc, x) \ - CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) | (x)) -#define CMD_CLR(sc, x) \ - CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) & ~(x)) - -/* - * ThunderLAN adapters typically have a serial EEPROM containing - * configuration information. The main reason we're interested in - * it is because it also contains the adapters's station address. - * - * Access to the EEPROM is a bit goofy since it is a serial device: - * you have to do reads and writes one bit at a time. The state of - * the DATA bit can only change while the CLOCK line is held low. - * Transactions work basically like this: - * - * 1) Send the EEPROM_START sequence to prepare the EEPROM for - * accepting commands. This pulls the clock high, sets - * the data bit to 0, enables transmission to the EEPROM, - * pulls the data bit up to 1, then pulls the clock low. - * The idea is to do a 0 to 1 transition of the data bit - * while the clock pin is held high. - * - * 2) To write a bit to the EEPROM, set the TXENABLE bit, then - * set the EDATA bit to send a 1 or clear it to send a 0. - * Finally, set and then clear ECLOK. Strobing the clock - * transmits the bit. After 8 bits have been written, the - * EEPROM should respond with an ACK, which should be read. - * - * 3) To read a bit from the EEPROM, clear the TXENABLE bit, - * then set ECLOK. The bit can then be read by reading EDATA. - * ECLOCK should then be cleared again. This can be repeated - * 8 times to read a whole byte, after which the - * - * 4) We need to send the address byte to the EEPROM. For this - * we have to send the write control byte to the EEPROM to - * tell it to accept data. The byte is 0xA0. The EEPROM should - * ack this. The address byte can be send after that. - * - * 5) Now we have to tell the EEPROM to send us data. For that we - * have to transmit the read control byte, which is 0xA1. This - * byte should also be acked. We can then read the data bits - * from the EEPROM. - * - * 6) When we're all finished, send the EEPROM_STOP sequence. - * - * Note that we use the ThunderLAN's NetSio register to access the - * EEPROM, however there is an alternate method. There is a PCI NVRAM - * register at PCI offset 0xB4 which can also be used with minor changes. - * The difference is that access to PCI registers via pci_conf_read() - * and pci_conf_write() is done using programmed I/O, which we want to - * avoid. - */ - -/* - * Note that EEPROM_START leaves transmission enabled. - */ -#define EEPROM_START \ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock pin high */\ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Set DATA bit to 1 */ \ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit to write bit */\ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA bit to 0 again */\ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */ - -/* - * EEPROM_STOP ends access to the EEPROM and clears the ETXEN bit so - * that no further data can be written to the EEPROM I/O pin. - */ -#define EEPROM_STOP \ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit */ \ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA to 0 */ \ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock high */ \ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit */ \ - tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Toggle DATA to 1 */ \ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit. */ \ - tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */ - - -/* - * Microchip Technology 24Cxx EEPROM control bytes - */ -#define EEPROM_CTL_READ 0xA1 /* 0101 0001 */ -#define EEPROM_CTL_WRITE 0xA0 /* 0101 0000 */ diff --git a/sys/i386/conf/GENERIC b/sys/i386/conf/GENERIC index cdbaf98fe74..a740845d55b 100644 --- a/sys/i386/conf/GENERIC +++ b/sys/i386/conf/GENERIC @@ -260,7 +260,6 @@ device sis # Silicon Integrated Systems SiS 900/SiS 7016 device sk # SysKonnect SK-984x & SK-982x gigabit Ethernet device ste # Sundance ST201 (D-Link DFE-550TX) device stge # Sundance/Tamarack TC9021 gigabit Ethernet -device tl # Texas Instruments ThunderLAN device tx # SMC EtherPower II (83c170 ``EPIC'') device vge # VIA VT612x gigabit Ethernet device vr # VIA Rhine, Rhine II diff --git a/sys/modules/Makefile b/sys/modules/Makefile index ca109c0886d..d4e35b74ad0 100644 --- a/sys/modules/Makefile +++ b/sys/modules/Makefile @@ -348,7 +348,6 @@ SUBDIR= \ sysvipc \ tcp \ ${_ti} \ - tl \ tmpfs \ ${_toecore} \ ${_tpm} \ diff --git a/sys/modules/tl/Makefile b/sys/modules/tl/Makefile deleted file mode 100644 index b3c1a461d96..00000000000 --- a/sys/modules/tl/Makefile +++ /dev/null @@ -1,9 +0,0 @@ -# $FreeBSD$ - -.PATH: ${SRCTOP}/sys/dev/tl - -KMOD= if_tl -SRCS= if_tl.c device_if.h bus_if.h pci_if.h -SRCS+= miibus_if.h - -.include diff --git a/sys/sparc64/conf/GENERIC b/sys/sparc64/conf/GENERIC index cf2edb5c7ee..e91fabac806 100644 --- a/sys/sparc64/conf/GENERIC +++ b/sys/sparc64/conf/GENERIC @@ -207,7 +207,6 @@ device sis # Silicon Integrated Systems SiS 900/SiS 7016 device sk # SysKonnect SK-984x & SK-982x gigabit Ethernet device ste # Sundance ST201 (D-Link DFE-550TX) device stge # Sundance/Tamarack TC9021 gigabit Ethernet -#device tl # Texas Instruments ThunderLAN #device tx # SMC EtherPower II (83c170 ``EPIC'') device vr # VIA Rhine, Rhine II #device wb # Winbond W89C840F -- 2.45.0