

© Stichting NLnet Labs

http://www.nlnetlabs.nl/

Unbound in C

San Diego - 2006
Wouter Wijngaards

(wouter@NLnetLabs.nl)

 http://www.nlnetlabs.nl/

page 2

Outline
 Goals
 Design

 Server design
 Module design

 Major Issues
 Threads
 Local zone server
 Compression

 Detail Issues
 Data Store
 Spoofing Prevention
 Overload Handling

 http://www.nlnetlabs.nl/

page 3

Goals
● Validating recursive DNS resolver
● Another alternative open source implementation
● DNSSEC, RFC compliant, high performance
● Elegant design
● Portable C
● BSD License(?)
● NOT

● an authoritative server
● Feature bloat – difficult for a resolver

 http://www.nlnetlabs.nl/

page 4

Server design options

•How to thread and do the workflow?
– Looked into literature

•Event driven
– Select() and events drive state machines
– Every thread has all modules

•SEDA
– Staged event driven arch
– Queues to threadpools that do one module

•Discussion of these two options on next slides

 http://www.nlnetlabs.nl/

page 5

SEDA

• Positive
– Queues reordered for cache
– Unequal validation load could be moved

• Negative
– Queues add enormous latency to requests
– Queue and thread management problem
– Slight downfall on DoS
– Queue growth memory problem

clients

queue/pool manager

queue ModuleAccept Next
queue...

threadpoolthreadpool

thread

 http://www.nlnetlabs.nl/

page 6

Event driven

• Main routine blocks in select() call

– Every module has a state, event-driven
– Process every request until finished or blocked.

• Positive
– Good characteristics under heavy load

• Requests are finished instead of queued up.
– Less overhead in queuing, locks, thread scheduling

• Negative
– Complicated due to stateful modules
– Validation load falls to thread that accepted request

clients Worker
threadpool

Moduleevent

 http://www.nlnetlabs.nl/

page 7

Workflow

•Clean modules can be used for any design
•Modules to call another – from Unbound Java

Network
accept query Validator Iterator Network

to servers

Cacheclients Other
servers

 http://www.nlnetlabs.nl/

page 8

Server design

•Server main puts
requests in queue

•Handler
– Look in msg cache
– Calls modules
– Send reply if done

•Messages from
network can wake up
a suspended request

Query
packet

Request list

Scheduler

Module

Pending listServer
reply

next
done

Clients

Other
servers

 http://www.nlnetlabs.nl/

page 9

Module Design – input!

Per module
• Module caches
• Module config
• Module callbacks

Per request
• qname, type, class
• Module state var
• No buffers (plz!)

module_activate()

Callbacks

Custom alloc
RRset cache
Msg cache

Network query
Create subreq

Subreq to what module?
• First, next, same

More callbacks ?

Output
• Finished: result (ptr to msg)
• HandOver: Call next module
• Suspended (subreq, network)

Input
• Request
• Results from:

• Module call
• Network / timeout
• Subrequest

State

 http://www.nlnetlabs.nl/

page 10

Link and Compile

• Every module can be linked on its own
against a main program

• Main program provides callback services
• Different main programs to make

– Unit test programs
– Resolver library
– Remote (TCP) module connections
– Server

• Valid, iter are clean modules but cache is still
special.

 http://www.nlnetlabs.nl/

page 11

Threading and forks
● Threads

● Speed advantage on shared
memory cache

● As little locks as possible
● Work without threads too

● Every thread
● Listens on port 53
● Listens to own port(s)
● Own query list
● Own local cache (called L1)

Main process

proc nproc 1

thread 1 thread m

• Shared - locked
– shared cache (called L2)
– Request counts
– malloc/free service

 http://www.nlnetlabs.nl/

page 12

Caches – Need input!
● Caches

● RRset
● Msg-reply
● Trusted-key
● Infrastructure

● Where? L1(local),
L2(shared).

• Clean cache design?
– Generic L1-L2

fallback
– Generic by datatype,

module.
– Some caches do

• static config
• Localzone serve

 http://www.nlnetlabs.nl/

page 13

Local Cache

•L1: rbtree, hashtable.
– LRU double linked list woven in, delete items to

make room if at max size of the cache.
– Timeout checked when access an item - refetch

LRU
Lookup

Tree+LRU Hashtable+LRU

 http://www.nlnetlabs.nl/

page 14

Shared Caches

•L2: hashtable, locks per bucket.
– Read: Copy data out – no locks per entry
– LRU? Write/Delete? Avoid deadlock.

• Separate double linked LRU list?
– Find an item to delete – snip off LRU list. Then delete in

hashtable (get lock on buckets).

• LRU updated on reads – how locking?
– Unlock bucket, get lock on entire LRU list to update.

• One big lock on LRU list. Bad. (input!)

 http://www.nlnetlabs.nl/

page 15

Local zone server
● Need a local zone served (.localdomain)
● AS112 zones, do not leak
● Unbound not authoritative server!
● Options

● NXDOMAIN (default for AS112)
● Forward to (NSD) on host:port
● Basic service

● No CNAME, DNAME, wildcards, NSEC ...
● This is authoritative service!

● Do it right or don't.

 http://www.nlnetlabs.nl/

page 16

Compression
● Never uncompress incoming data:

● Hard to store RRsets separately
● sendmsg/writev gather of uncompressed data

● Use header,qname and rrset data without copying (!)
● Have to update TTL values before send
● Canonical rrset format ready for validation crypto

● copy&compress: use rbtree in L1 rrset cache for offsets
● As a config option; copy=less cpu, compress=less bytes.

● Keep Rrsets locally compressed
● Have to update compression ptrs and TTLs before send
● Not canonical format
● Imperfect compression ratio

 http://www.nlnetlabs.nl/

page 17

Data store

•Packed RRset
– Keeps wireformat RRset, ptrs to RRs, TTL.
– Could keep RRSIG over the RRset as well

•TTL in absolute times
– Use min TTL for RRsets, messages.

•Cache entries have validation status
•Store hashvalue in cache objects.
•dnames kept in wireformat, label offsets
•Ldns: No need to do all DNS constants again

 http://www.nlnetlabs.nl/

page 18

Msg-RRset pointers
● Msg(q+reply) consists of RRsets

● Keeping RRset inside msg is waste memory
● Rrset*: hard to find/lock msg on rrset delete

● First 64bits in RRset are creation ID.
● thread_num (16bit), seq_number (48bit).
● seq_number wraps: clear cache / abort
● Keep RRset* and ID, check ID on use.

● Reuse RRset memory only for RRsets
● Zero ID means RRset is not in use.
● Copy RRset from/to cache gets new ID.

 http://www.nlnetlabs.nl/

page 19

Spoof Prevention

•Random IDs:
– Random() with initstate(256 bytes)

•port ranges:
– Needed per thread (to listen easily)
– Kqueue, kpoll() sys calls

•Scrubber for incoming messages
– Routine in Iterator? Or Validator?
– Spoofed NS additionals confuse iterator

• But get caught by validator afterwards
– Scrubber as a module?

• Between iterator and network.
Valid. Iter. Scrub.

 http://www.nlnetlabs.nl/

page 20

Overload handling

•On overload answer from cache
•Detect overload

– Request list is full
– One thread: stop listen port 53
– All threads: overload mode

• Answer from cache or drop query.
•Schedule 1:2 ratio for port 53 : other ports

– Does not depend on number of other ports
– Drives towards completion of waiting queries
– Every select: perform 0/1 port 53 and round

robin the other ports handle at most 2.

 http://www.nlnetlabs.nl/

page 21

Concept Module:
Remote Cache module

A remote server
● Runs with a cache

module only
● Store/Retrieve msg

and reply
● Like remote msg

cache
● Localhost cache for

nonthreaded pcs
● For a resolver farm

Cache module
– Checks msg cache
– If not: network msg

to cache server
(suspend)

– If not: next module
– Result next module

• Store on server
• Finished(result).

 http://www.nlnetlabs.nl/

page 22

Summary

•Event driven
•Modular design

– Callbacks – minimal OO
– Modules can call next module
– Suspend waiting for network reply

•Threads: minimal, cache a copy
•Needs tweaks

– Compression choice
– Cache code
– Module interfacing

Family of
Unbound-Java

Unbound-C

