/* mips16 floating point support code Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc. Contributed by Cygnus Support This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file with other programs, and to distribute those programs without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into another program.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* As a special exception, if you link this library with other files, some of which are compiled with GCC, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* This file contains mips16 floating point support functions. These functions are called by mips16 code to handle floating point when -msoft-float is not used. They accept the arguments and return values using the soft-float calling convention, but do the actual operation using the hard floating point instructions. */ /* This file contains 32 bit assembly code. */ .set nomips16 /* Start a function. */ #define STARTFN(NAME) .globl NAME; .ent NAME; NAME: /* Finish a function. */ #define ENDFN(NAME) .end NAME /* Single precision math. */ /* This macro defines a function which loads two single precision values, performs an operation, and returns the single precision result. */ #define SFOP(NAME, OPCODE) \ STARTFN (NAME); \ .set noreorder; \ mtc1 $4,$f0; \ mtc1 $5,$f2; \ nop; \ OPCODE $f0,$f0,$f2; \ mfc1 $2,$f0; \ j $31; \ nop; \ .set reorder; \ ENDFN (NAME) #ifdef L_m16addsf3 SFOP(__mips16_addsf3, add.s) #endif #ifdef L_m16subsf3 SFOP(__mips16_subsf3, sub.s) #endif #ifdef L_m16mulsf3 SFOP(__mips16_mulsf3, mul.s) #endif #ifdef L_m16divsf3 SFOP(__mips16_divsf3, div.s) #endif #define SFOP2(NAME, OPCODE) \ STARTFN (NAME); \ .set noreorder; \ mtc1 $4,$f0; \ nop; \ OPCODE $f0,$f0; \ mfc1 $2,$f0; \ j $31; \ nop; \ .set reorder; \ ENDFN (NAME) #ifdef L_m16negsf2 SFOP2(__mips16_negsf2, neg.s) #endif #ifdef L_m16abssf2 SFOP2(__mips16_abssf2, abs.s) #endif /* Single precision comparisons. */ /* This macro defines a function which loads two single precision values, performs a floating point comparison, and returns the specified values according to whether the comparison is true or false. */ #define SFCMP(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ mtc1 $4,$f0; \ mtc1 $5,$f2; \ OPCODE $f0,$f2; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) /* This macro is like SFCMP, but it reverses the comparison. */ #define SFREVCMP(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ mtc1 $4,$f0; \ mtc1 $5,$f2; \ OPCODE $f2,$f0; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) #ifdef L_m16eqsf2 SFCMP(__mips16_eqsf2, c.eq.s, 0, 1) #endif #ifdef L_m16nesf2 SFCMP(__mips16_nesf2, c.eq.s, 0, 1) #endif #ifdef L_m16gtsf2 SFREVCMP(__mips16_gtsf2, c.lt.s, 1, 0) #endif #ifdef L_m16gesf2 SFREVCMP(__mips16_gesf2, c.le.s, 0, -1) #endif #ifdef L_m16lesf2 SFCMP(__mips16_lesf2, c.le.s, 0, 1) #endif #ifdef L_m16ltsf2 SFCMP(__mips16_ltsf2, c.lt.s, -1, 0) #endif /* Single precision conversions. */ #ifdef L_m16fltsisf STARTFN (__mips16_floatsisf) .set noreorder mtc1 $4,$f0 nop cvt.s.w $f0,$f0 mfc1 $2,$f0 j $31 nop .set reorder ENDFN (__mips16_floatsisf) #endif #ifdef L_m16fix_truncsfsi STARTFN (__mips16_fix_truncsfsi) .set noreorder mtc1 $4,$f0 nop trunc.w.s $f0,$f0,$4 mfc1 $2,$f0 j $31 nop .set reorder ENDFN (__mips16_fix_truncsfsi) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) /* The double precision operations. We need to use different code based on the preprocessor symbol __mips64, because the way in which double precision values will change. Without __mips64, the value is passed in two 32 bit registers. With __mips64, the value is passed in a single 64 bit register. */ /* Load the first double precision operand. */ #if defined(__mips64) #define LDDBL1 dmtc1 $4,$f12 #elif defined(__mipsfp64) #define LDDBL1 sw $4,0($29); sw $5,4($29); l.d $f12,0($29) #elif defined(__MIPSEB__) #define LDDBL1 mtc1 $4,$f13; mtc1 $5,$f12 #else #define LDDBL1 mtc1 $4,$f12; mtc1 $5,$f13 #endif /* Load the second double precision operand. */ #if defined(__mips64) /* XXX this should be $6 for Algo arg passing model */ #define LDDBL2 dmtc1 $5,$f14 #elif defined(__mipsfp64) #define LDDBL2 sw $6,8($29); sw $7,12($29); l.d $f14,8($29) #elif defined(__MIPSEB__) #define LDDBL2 mtc1 $6,$f15; mtc1 $7,$f14 #else #define LDDBL2 mtc1 $6,$f14; mtc1 $7,$f15 #endif /* Move the double precision return value to the right place. */ #if defined(__mips64) #define RETDBL dmfc1 $2,$f0 #elif defined(__mipsfp64) #define RETDBL s.d $f0,0($29); lw $2,0($29); lw $3,4($29) #elif defined(__MIPSEB__) #define RETDBL mfc1 $2,$f1; mfc1 $3,$f0 #else #define RETDBL mfc1 $2,$f0; mfc1 $3,$f1 #endif /* Double precision math. */ /* This macro defines a function which loads two double precision values, performs an operation, and returns the double precision result. */ #define DFOP(NAME, OPCODE) \ STARTFN (NAME); \ .set noreorder; \ LDDBL1; \ LDDBL2; \ nop; \ OPCODE $f0,$f12,$f14; \ RETDBL; \ j $31; \ nop; \ .set reorder; \ ENDFN (NAME) #ifdef L_m16adddf3 DFOP(__mips16_adddf3, add.d) #endif #ifdef L_m16subdf3 DFOP(__mips16_subdf3, sub.d) #endif #ifdef L_m16muldf3 DFOP(__mips16_muldf3, mul.d) #endif #ifdef L_m16divdf3 DFOP(__mips16_divdf3, div.d) #endif #define DFOP2(NAME, OPCODE) \ STARTFN (NAME); \ .set noreorder; \ LDDBL1; \ nop; \ OPCODE $f0,$f12; \ RETDBL; \ j $31; \ nop; \ .set reorder; \ ENDFN (NAME) #ifdef L_m16negdf2 DFOP2(__mips16_negdf2, neg.d) #endif #ifdef L_m16absdf2 DFOP2(__mips16_absdf2, abs.d) #endif /* Conversions between single and double precision. */ #ifdef L_m16extsfdf2 STARTFN (__mips16_extendsfdf2) .set noreorder mtc1 $4,$f12 nop cvt.d.s $f0,$f12 RETDBL j $31 nop .set reorder ENDFN (__mips16_extendsfdf2) #endif #ifdef L_m16trdfsf2 STARTFN (__mips16_truncdfsf2) .set noreorder LDDBL1 nop cvt.s.d $f0,$f12 mfc1 $2,$f0 j $31 nop .set reorder ENDFN (__mips16_truncdfsf2) #endif /* Double precision comparisons. */ /* This macro defines a function which loads two double precision values, performs a floating point comparison, and returns the specified values according to whether the comparison is true or false. */ #define DFCMP(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ LDDBL1; \ LDDBL2; \ OPCODE $f12,$f14; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) /* This macro is like DFCMP, but it reverses the comparison. */ #define DFREVCMP(NAME, OPCODE, TRUE, FALSE) \ STARTFN (NAME); \ LDDBL1; \ LDDBL2; \ OPCODE $f14,$f12; \ li $2,TRUE; \ bc1t 1f; \ li $2,FALSE; \ 1:; \ j $31; \ ENDFN (NAME) #ifdef L_m16eqdf2 DFCMP(__mips16_eqdf2, c.eq.d, 0, 1) #endif #ifdef L_m16nedf2 DFCMP(__mips16_nedf2, c.eq.d, 0, 1) #endif #ifdef L_m16gtdf2 DFREVCMP(__mips16_gtdf2, c.lt.d, 1, 0) #endif #ifdef L_m16gedf2 DFREVCMP(__mips16_gedf2, c.le.d, 0, -1) #endif #ifdef L_m16ledf2 DFCMP(__mips16_ledf2, c.le.d, 0, 1) #endif #ifdef L_m16ltdf2 DFCMP(__mips16_ltdf2, c.lt.d, -1, 0) #endif /* Double precision conversions. */ #ifdef L_m16fltsidf STARTFN (__mips16_floatsidf) .set noreorder mtc1 $4,$f12 nop cvt.d.w $f0,$f12 RETDBL j $31 nop .set reorder ENDFN (__mips16_floatsidf) #endif #ifdef L_m16fix_truncdfsi STARTFN (__mips16_fix_truncdfsi) .set noreorder LDDBL1 nop trunc.w.d $f0,$f12,$4 mfc1 $2,$f0 j $31 nop .set reorder ENDFN (__mips16_fix_truncdfsi) #endif #endif /* !__mips_single_float */ /* These functions are used to return floating point values from mips16 functions. In this case we can put mtc1 in a jump delay slot, because we know that the next instruction will not refer to a floating point register. */ #ifdef L_m16retsf STARTFN (__mips16_ret_sf) .set noreorder j $31 mtc1 $2,$f0 .set reorder ENDFN (__mips16_ret_sf) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16retdf STARTFN (__mips16_ret_df) .set noreorder #if defined(__mips64) j $31 dmtc1 $2,$f0 #elif defined(__mipsfp64) sw $2,0($29) sw $3,4($29) l.d $f0,0($29) #elif defined(__MIPSEB__) mtc1 $2,$f1 j $31 mtc1 $3,$f0 #else mtc1 $2,$f0 j $31 mtc1 $3,$f1 #endif .set reorder ENDFN (__mips16_ret_df) #endif #endif /* !__mips_single_float */ /* These functions are used by 16 bit code when calling via a function pointer. They must copy the floating point arguments from the gp regs into the fp regs. The function to call will be in $2. The exact set of floating point arguments to copy is encoded in the function name; the final number is an fp_code, as described in mips.h in the comment about CUMULATIVE_ARGS. */ #ifdef L_m16stub1 /* (float) */ STARTFN (__mips16_call_stub_1) .set noreorder mtc1 $4,$f12 j $2 nop .set reorder ENDFN (__mips16_call_stub_1) #endif #ifdef L_m16stub5 /* (float, float) */ STARTFN (__mips16_call_stub_5) .set noreorder mtc1 $4,$f12 mtc1 $5,$f14 j $2 nop .set reorder ENDFN (__mips16_call_stub_5) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16stub2 /* (double) */ STARTFN (__mips16_call_stub_2) .set noreorder LDDBL1 j $2 nop .set reorder ENDFN (__mips16_call_stub_2) #endif #ifdef L_m16stub6 /* (double, float) */ STARTFN (__mips16_call_stub_6) .set noreorder LDDBL1 mtc1 $6,$f14 j $2 nop .set reorder ENDFN (__mips16_call_stub_6) #endif #ifdef L_m16stub9 /* (float, double) */ STARTFN (__mips16_call_stub_9) .set noreorder mtc1 $4,$f12 LDDBL2 j $2 nop .set reorder ENDFN (__mips16_call_stub_9) #endif #ifdef L_m16stub10 /* (double, double) */ STARTFN (__mips16_call_stub_10) .set noreorder LDDBL1 LDDBL2 j $2 nop .set reorder ENDFN (__mips16_call_stub_10) #endif #endif /* !__mips_single_float */ /* Now we have the same set of functions, except that this time the function being called returns an SFmode value. The calling function will arrange to preserve $18, so these functions are free to use it to hold the return address. Note that we do not know whether the function we are calling is 16 bit or 32 bit. However, it does not matter, because 16 bit functions always return floating point values in both the gp and the fp regs. It would be possible to check whether the function being called is 16 bits, in which case the copy is unnecessary; however, it's faster to always do the copy. */ #ifdef L_m16stubsf0 /* () */ STARTFN (__mips16_call_stub_sf_0) .set noreorder move $18,$31 jal $2 nop mfc1 $2,$f0 j $18 nop .set reorder ENDFN (__mips16_call_stub_sf_0) #endif #ifdef L_m16stubsf1 /* (float) */ STARTFN (__mips16_call_stub_sf_1) .set noreorder mtc1 $4,$f12 move $18,$31 jal $2 nop mfc1 $2,$f0 j $18 nop .set reorder ENDFN (__mips16_call_stub_sf_1) #endif #ifdef L_m16stubsf5 /* (float, float) */ STARTFN (__mips16_call_stub_sf_5) .set noreorder mtc1 $4,$f12 mtc1 $5,$f14 move $18,$31 jal $2 nop mfc1 $2,$f0 j $18 nop .set reorder ENDFN (__mips16_call_stub_sf_5) #endif #if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT) #ifdef L_m16stubsf2 /* (double) */ STARTFN (__mips16_call_stub_sf_2) .set noreorder LDDBL1 move $18,$31 jal $2 nop mfc1 $2,$f0 j $18 nop .set reorder ENDFN (__mips16_call_stub_sf_2) #endif #ifdef L_m16stubsf6 /* (double, float) */ STARTFN (__mips16_call_stub_sf_6) .set noreorder LDDBL1 mtc1 $6,$f14 move $18,$31 jal $2 nop mfc1 $2,$f0 j $18 nop .set reorder ENDFN (__mips16_call_stub_sf_6) #endif #ifdef L_m16stubsf9 /* (float, double) */ STARTFN (__mips16_call_stub_sf_9) .set noreorder mtc1 $4,$f12 LDDBL2 move $18,$31 jal $2 nop mfc1 $2,$f0 j $18 nop .set reorder ENDFN (__mips16_call_stub_sf_9) #endif #ifdef L_m16stubsf10 /* (double, double) */ STARTFN (__mips16_call_stub_sf_10) .set noreorder LDDBL1 LDDBL2 move $18,$31 jal $2 nop mfc1 $2,$f0 j $18 nop .set reorder ENDFN (__mips16_call_stub_sf_10) #endif /* Now we have the same set of functions again, except that this time the function being called returns an DFmode value. */ #ifdef L_m16stubdf0 /* () */ STARTFN (__mips16_call_stub_df_0) .set noreorder move $18,$31 jal $2 nop RETDBL j $18 nop .set reorder ENDFN (__mips16_call_stub_df_0) #endif #ifdef L_m16stubdf1 /* (float) */ STARTFN (__mips16_call_stub_df_1) .set noreorder mtc1 $4,$f12 move $18,$31 jal $2 nop RETDBL j $18 nop .set reorder ENDFN (__mips16_call_stub_df_1) #endif #ifdef L_m16stubdf2 /* (double) */ STARTFN (__mips16_call_stub_df_2) .set noreorder LDDBL1 move $18,$31 jal $2 nop RETDBL j $18 nop .set reorder ENDFN (__mips16_call_stub_df_2) #endif #ifdef L_m16stubdf5 /* (float, float) */ STARTFN (__mips16_call_stub_df_5) .set noreorder mtc1 $4,$f12 mtc1 $5,$f14 move $18,$31 jal $2 nop RETDBL j $18 nop .set reorder ENDFN (__mips16_call_stub_df_5) #endif #ifdef L_m16stubdf6 /* (double, float) */ STARTFN (__mips16_call_stub_df_6) .set noreorder LDDBL1 mtc1 $6,$f14 move $18,$31 jal $2 nop RETDBL j $18 nop .set reorder ENDFN (__mips16_call_stub_df_6) #endif #ifdef L_m16stubdf9 /* (float, double) */ STARTFN (__mips16_call_stub_df_9) .set noreorder mtc1 $4,$f12 LDDBL2 move $18,$31 jal $2 nop RETDBL j $18 nop .set reorder ENDFN (__mips16_call_stub_df_9) #endif #ifdef L_m16stubdf10 /* (double, double) */ STARTFN (__mips16_call_stub_df_10) .set noreorder LDDBL1 LDDBL2 move $18,$31 jal $2 nop RETDBL j $18 nop .set reorder ENDFN (__mips16_call_stub_df_10) #endif #endif /* !__mips_single_float */