/* Multi-process/thread control for GDB, the GNU debugger. Copyright 1986, 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. Contributed by Lynx Real-Time Systems, Inc. Los Gatos, CA. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "symtab.h" #include "frame.h" #include "inferior.h" #include "environ.h" #include "value.h" #include "target.h" #include "gdbthread.h" #include "command.h" #include "gdbcmd.h" #include "regcache.h" #include "gdb.h" #include "gdb_string.h" #include #include #include #include "ui-out.h" /*#include "lynxos-core.h" */ /* Definition of struct thread_info exported to gdbthread.h */ /* Prototypes for exported functions. */ void _initialize_thread (void); /* Prototypes for local functions. */ static struct thread_info *thread_list = NULL; static int highest_thread_num; static struct thread_info *find_thread_id (int num); static void thread_command (char *tidstr, int from_tty); static void thread_apply_all_command (char *, int); static int thread_alive (struct thread_info *); static void info_threads_command (char *, int); static void thread_apply_command (char *, int); static void restore_current_thread (ptid_t); static void switch_to_thread (ptid_t ptid); static void prune_threads (void); void delete_step_resume_breakpoint (void *arg) { struct breakpoint **breakpointp = (struct breakpoint **) arg; struct thread_info *tp; if (*breakpointp != NULL) { delete_breakpoint (*breakpointp); for (tp = thread_list; tp; tp = tp->next) if (tp->step_resume_breakpoint == *breakpointp) tp->step_resume_breakpoint = NULL; *breakpointp = NULL; } } static void free_thread (struct thread_info *tp) { /* NOTE: this will take care of any left-over step_resume breakpoints, but not any user-specified thread-specific breakpoints. */ if (tp->step_resume_breakpoint) delete_breakpoint (tp->step_resume_breakpoint); /* FIXME: do I ever need to call the back-end to give it a chance at this private data before deleting the thread? */ if (tp->private) xfree (tp->private); xfree (tp); } void init_thread_list (void) { struct thread_info *tp, *tpnext; highest_thread_num = 0; if (!thread_list) return; for (tp = thread_list; tp; tp = tpnext) { tpnext = tp->next; free_thread (tp); } thread_list = NULL; } /* add_thread now returns a pointer to the new thread_info, so that back_ends can initialize their private data. */ struct thread_info * add_thread (ptid_t ptid) { struct thread_info *tp; tp = (struct thread_info *) xmalloc (sizeof (*tp)); memset (tp, 0, sizeof (*tp)); tp->ptid = ptid; tp->num = ++highest_thread_num; tp->next = thread_list; thread_list = tp; return tp; } void delete_thread (ptid_t ptid) { struct thread_info *tp, *tpprev; tpprev = NULL; for (tp = thread_list; tp; tpprev = tp, tp = tp->next) if (ptid_equal (tp->ptid, ptid)) break; if (!tp) return; if (tpprev) tpprev->next = tp->next; else thread_list = tp->next; free_thread (tp); } static struct thread_info * find_thread_id (int num) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (tp->num == num) return tp; return NULL; } /* Find a thread_info by matching PTID. */ struct thread_info * find_thread_pid (ptid_t ptid) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (ptid_equal (tp->ptid, ptid)) return tp; return NULL; } /* * Thread iterator function. * * Calls a callback function once for each thread, so long as * the callback function returns false. If the callback function * returns true, the iteration will end and the current thread * will be returned. This can be useful for implementing a * search for a thread with arbitrary attributes, or for applying * some operation to every thread. * * FIXME: some of the existing functionality, such as * "Thread apply all", might be rewritten using this functionality. */ struct thread_info * iterate_over_threads (int (*callback) (struct thread_info *, void *), void *data) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if ((*callback) (tp, data)) return tp; return NULL; } int valid_thread_id (int num) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (tp->num == num) return 1; return 0; } int pid_to_thread_id (ptid_t ptid) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (ptid_equal (tp->ptid, ptid)) return tp->num; return 0; } ptid_t thread_id_to_pid (int num) { struct thread_info *thread = find_thread_id (num); if (thread) return thread->ptid; else return pid_to_ptid (-1); } int in_thread_list (ptid_t ptid) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (ptid_equal (tp->ptid, ptid)) return 1; return 0; /* Never heard of 'im */ } /* Print a list of thread ids currently known, and the total number of threads. To be used from within catch_errors. */ static int do_captured_list_thread_ids (struct ui_out *uiout, void *arg) { struct thread_info *tp; int num = 0; struct cleanup *cleanup_chain; prune_threads (); target_find_new_threads (); cleanup_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "thread-ids"); for (tp = thread_list; tp; tp = tp->next) { num++; ui_out_field_int (uiout, "thread-id", tp->num); } do_cleanups (cleanup_chain); ui_out_field_int (uiout, "number-of-threads", num); return GDB_RC_OK; } /* Official gdblib interface function to get a list of thread ids and the total number. */ enum gdb_rc gdb_list_thread_ids (struct ui_out *uiout) { return catch_exceptions (uiout, do_captured_list_thread_ids, NULL, NULL, RETURN_MASK_ALL); } /* Load infrun state for the thread PID. */ void load_infrun_state (ptid_t ptid, CORE_ADDR *prev_pc, int *trap_expected, struct breakpoint **step_resume_breakpoint, struct breakpoint **through_sigtramp_breakpoint, CORE_ADDR *step_range_start, CORE_ADDR *step_range_end, struct frame_id *step_frame_id, int *handling_longjmp, int *another_trap, int *stepping_through_solib_after_catch, bpstat *stepping_through_solib_catchpoints, int *stepping_through_sigtramp, int *current_line, struct symtab **current_symtab, CORE_ADDR *step_sp) { struct thread_info *tp; /* If we can't find the thread, then we're debugging a single threaded process. No need to do anything in that case. */ tp = find_thread_id (pid_to_thread_id (ptid)); if (tp == NULL) return; *prev_pc = tp->prev_pc; *trap_expected = tp->trap_expected; *step_resume_breakpoint = tp->step_resume_breakpoint; *through_sigtramp_breakpoint = tp->through_sigtramp_breakpoint; *step_range_start = tp->step_range_start; *step_range_end = tp->step_range_end; *step_frame_id = tp->step_frame_id; *handling_longjmp = tp->handling_longjmp; *another_trap = tp->another_trap; *stepping_through_solib_after_catch = tp->stepping_through_solib_after_catch; *stepping_through_solib_catchpoints = tp->stepping_through_solib_catchpoints; *stepping_through_sigtramp = tp->stepping_through_sigtramp; *current_line = tp->current_line; *current_symtab = tp->current_symtab; *step_sp = tp->step_sp; } /* Save infrun state for the thread PID. */ void save_infrun_state (ptid_t ptid, CORE_ADDR prev_pc, int trap_expected, struct breakpoint *step_resume_breakpoint, struct breakpoint *through_sigtramp_breakpoint, CORE_ADDR step_range_start, CORE_ADDR step_range_end, const struct frame_id *step_frame_id, int handling_longjmp, int another_trap, int stepping_through_solib_after_catch, bpstat stepping_through_solib_catchpoints, int stepping_through_sigtramp, int current_line, struct symtab *current_symtab, CORE_ADDR step_sp) { struct thread_info *tp; /* If we can't find the thread, then we're debugging a single-threaded process. Nothing to do in that case. */ tp = find_thread_id (pid_to_thread_id (ptid)); if (tp == NULL) return; tp->prev_pc = prev_pc; tp->trap_expected = trap_expected; tp->step_resume_breakpoint = step_resume_breakpoint; tp->through_sigtramp_breakpoint = through_sigtramp_breakpoint; tp->step_range_start = step_range_start; tp->step_range_end = step_range_end; tp->step_frame_id = (*step_frame_id); tp->handling_longjmp = handling_longjmp; tp->another_trap = another_trap; tp->stepping_through_solib_after_catch = stepping_through_solib_after_catch; tp->stepping_through_solib_catchpoints = stepping_through_solib_catchpoints; tp->stepping_through_sigtramp = stepping_through_sigtramp; tp->current_line = current_line; tp->current_symtab = current_symtab; tp->step_sp = step_sp; } /* Return true if TP is an active thread. */ static int thread_alive (struct thread_info *tp) { if (PIDGET (tp->ptid) == -1) return 0; if (!target_thread_alive (tp->ptid)) { tp->ptid = pid_to_ptid (-1); /* Mark it as dead */ return 0; } return 1; } static void prune_threads (void) { struct thread_info *tp, *next; for (tp = thread_list; tp; tp = next) { next = tp->next; if (!thread_alive (tp)) delete_thread (tp->ptid); } } /* Print information about currently known threads * Note: this has the drawback that it _really_ switches * threads, which frees the frame cache. A no-side * effects info-threads command would be nicer. */ static void info_threads_command (char *arg, int from_tty) { struct thread_info *tp; ptid_t current_ptid; struct frame_info *cur_frame; int saved_frame_level = frame_relative_level (get_selected_frame ()); int counter; char *extra_info; /* Check that there really is a frame. This happens when a simulator is connected but not loaded or running, for instance. */ if (legacy_frame_p (current_gdbarch) && saved_frame_level < 0) error ("No frame."); prune_threads (); target_find_new_threads (); current_ptid = inferior_ptid; for (tp = thread_list; tp; tp = tp->next) { if (ptid_equal (tp->ptid, current_ptid)) printf_filtered ("* "); else printf_filtered (" "); #ifdef HPUXHPPA printf_filtered ("%d %s", tp->num, target_tid_to_str (tp->ptid)); #else printf_filtered ("%d %s", tp->num, target_pid_to_str (tp->ptid)); #endif extra_info = target_extra_thread_info (tp); if (extra_info) printf_filtered (" (%s)", extra_info); puts_filtered (" "); switch_to_thread (tp->ptid); print_stack_frame (get_selected_frame (), -1, 0); } switch_to_thread (current_ptid); /* Code below copied from "up_silently_base" in "stack.c". * It restores the frame set by the user before the "info threads" * command. We have finished the info-threads display by switching * back to the current thread. That switch has put us at the top * of the stack (leaf frame). */ counter = saved_frame_level; cur_frame = find_relative_frame (get_selected_frame (), &counter); if (counter != 0) { /* Ooops, can't restore, tell user where we are. */ warning ("Couldn't restore frame in current thread, at frame 0"); print_stack_frame (get_selected_frame (), -1, 0); } else { select_frame (cur_frame); } /* re-show current frame. */ show_stack_frame (cur_frame); } /* Switch from one thread to another. */ static void switch_to_thread (ptid_t ptid) { if (ptid_equal (ptid, inferior_ptid)) return; inferior_ptid = ptid; flush_cached_frames (); registers_changed (); stop_pc = read_pc (); select_frame (get_current_frame ()); } static void restore_current_thread (ptid_t ptid) { if (!ptid_equal (ptid, inferior_ptid)) { switch_to_thread (ptid); print_stack_frame (get_current_frame (), 0, -1); } } struct current_thread_cleanup { ptid_t inferior_ptid; }; static void do_restore_current_thread_cleanup (void *arg) { struct current_thread_cleanup *old = arg; restore_current_thread (old->inferior_ptid); xfree (old); } static struct cleanup * make_cleanup_restore_current_thread (ptid_t inferior_ptid) { struct current_thread_cleanup *old = xmalloc (sizeof (struct current_thread_cleanup)); old->inferior_ptid = inferior_ptid; return make_cleanup (do_restore_current_thread_cleanup, old); } /* Apply a GDB command to a list of threads. List syntax is a whitespace seperated list of numbers, or ranges, or the keyword `all'. Ranges consist of two numbers seperated by a hyphen. Examples: thread apply 1 2 7 4 backtrace Apply backtrace cmd to threads 1,2,7,4 thread apply 2-7 9 p foo(1) Apply p foo(1) cmd to threads 2->7 & 9 thread apply all p x/i $pc Apply x/i $pc cmd to all threads */ static void thread_apply_all_command (char *cmd, int from_tty) { struct thread_info *tp; struct cleanup *old_chain; struct cleanup *saved_cmd_cleanup_chain; char *saved_cmd; if (cmd == NULL || *cmd == '\000') error ("Please specify a command following the thread ID list"); old_chain = make_cleanup_restore_current_thread (inferior_ptid); /* It is safe to update the thread list now, before traversing it for "thread apply all". MVS */ target_find_new_threads (); /* Save a copy of the command in case it is clobbered by execute_command */ saved_cmd = xstrdup (cmd); saved_cmd_cleanup_chain = make_cleanup (xfree, (void *) saved_cmd); for (tp = thread_list; tp; tp = tp->next) if (thread_alive (tp)) { switch_to_thread (tp->ptid); #ifdef HPUXHPPA printf_filtered ("\nThread %d (%s):\n", tp->num, target_tid_to_str (inferior_ptid)); #else printf_filtered ("\nThread %d (%s):\n", tp->num, target_pid_to_str (inferior_ptid)); #endif execute_command (cmd, from_tty); strcpy (cmd, saved_cmd); /* Restore exact command used previously */ } do_cleanups (saved_cmd_cleanup_chain); do_cleanups (old_chain); } static void thread_apply_command (char *tidlist, int from_tty) { char *cmd; char *p; struct cleanup *old_chain; struct cleanup *saved_cmd_cleanup_chain; char *saved_cmd; if (tidlist == NULL || *tidlist == '\000') error ("Please specify a thread ID list"); for (cmd = tidlist; *cmd != '\000' && !isalpha (*cmd); cmd++); if (*cmd == '\000') error ("Please specify a command following the thread ID list"); old_chain = make_cleanup_restore_current_thread (inferior_ptid); /* Save a copy of the command in case it is clobbered by execute_command */ saved_cmd = xstrdup (cmd); saved_cmd_cleanup_chain = make_cleanup (xfree, (void *) saved_cmd); while (tidlist < cmd) { struct thread_info *tp; int start, end; start = strtol (tidlist, &p, 10); if (p == tidlist) error ("Error parsing %s", tidlist); tidlist = p; while (*tidlist == ' ' || *tidlist == '\t') tidlist++; if (*tidlist == '-') /* Got a range of IDs? */ { tidlist++; /* Skip the - */ end = strtol (tidlist, &p, 10); if (p == tidlist) error ("Error parsing %s", tidlist); tidlist = p; while (*tidlist == ' ' || *tidlist == '\t') tidlist++; } else end = start; for (; start <= end; start++) { tp = find_thread_id (start); if (!tp) warning ("Unknown thread %d.", start); else if (!thread_alive (tp)) warning ("Thread %d has terminated.", start); else { switch_to_thread (tp->ptid); #ifdef HPUXHPPA printf_filtered ("\nThread %d (%s):\n", tp->num, target_tid_to_str (inferior_ptid)); #else printf_filtered ("\nThread %d (%s):\n", tp->num, target_pid_to_str (inferior_ptid)); #endif execute_command (cmd, from_tty); strcpy (cmd, saved_cmd); /* Restore exact command used previously */ } } } do_cleanups (saved_cmd_cleanup_chain); do_cleanups (old_chain); } /* Switch to the specified thread. Will dispatch off to thread_apply_command if prefix of arg is `apply'. */ static void thread_command (char *tidstr, int from_tty) { if (!tidstr) { /* Don't generate an error, just say which thread is current. */ if (target_has_stack) printf_filtered ("[Current thread is %d (%s)]\n", pid_to_thread_id (inferior_ptid), #if defined(HPUXHPPA) target_tid_to_str (inferior_ptid) #else target_pid_to_str (inferior_ptid) #endif ); else error ("No stack."); return; } gdb_thread_select (uiout, tidstr); } static int do_captured_thread_select (struct ui_out *uiout, void *tidstr) { int num; struct thread_info *tp; num = value_as_long (parse_and_eval (tidstr)); tp = find_thread_id (num); if (!tp) error ("Thread ID %d not known.", num); if (!thread_alive (tp)) error ("Thread ID %d has terminated.\n", num); switch_to_thread (tp->ptid); ui_out_text (uiout, "[Switching to thread "); ui_out_field_int (uiout, "new-thread-id", pid_to_thread_id (inferior_ptid)); ui_out_text (uiout, " ("); #if defined(HPUXHPPA) ui_out_text (uiout, target_tid_to_str (inferior_ptid)); #else ui_out_text (uiout, target_pid_to_str (inferior_ptid)); #endif ui_out_text (uiout, ")]"); print_stack_frame (deprecated_selected_frame, frame_relative_level (deprecated_selected_frame), 1); return GDB_RC_OK; } enum gdb_rc gdb_thread_select (struct ui_out *uiout, char *tidstr) { return catch_exceptions (uiout, do_captured_thread_select, tidstr, NULL, RETURN_MASK_ALL); } /* Commands with a prefix of `thread'. */ struct cmd_list_element *thread_cmd_list = NULL; void _initialize_thread (void) { static struct cmd_list_element *thread_apply_list = NULL; add_info ("threads", info_threads_command, "IDs of currently known threads."); add_prefix_cmd ("thread", class_run, thread_command, "Use this command to switch between threads.\n\ The new thread ID must be currently known.", &thread_cmd_list, "thread ", 1, &cmdlist); add_prefix_cmd ("apply", class_run, thread_apply_command, "Apply a command to a list of threads.", &thread_apply_list, "apply ", 1, &thread_cmd_list); add_cmd ("all", class_run, thread_apply_all_command, "Apply a command to all threads.", &thread_apply_list); if (!xdb_commands) add_com_alias ("t", "thread", class_run, 1); }