//===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a set that has insertion order iteration // characteristics. This is useful for keeping a set of things that need to be // visited later but in a deterministic order (insertion order). The interface // is purposefully minimal. // // This file defines SetVector and SmallSetVector, which performs no allocations // if the SetVector has less than a certain number of elements. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SETVECTOR_H #define LLVM_ADT_SETVECTOR_H #include "llvm/ADT/SmallSet.h" #include #include #include namespace llvm { /// \brief A vector that has set insertion semantics. /// /// This adapter class provides a way to keep a set of things that also has the /// property of a deterministic iteration order. The order of iteration is the /// order of insertion. template , typename Set = SmallSet > class SetVector { public: typedef T value_type; typedef T key_type; typedef T& reference; typedef const T& const_reference; typedef Set set_type; typedef Vector vector_type; typedef typename vector_type::const_iterator iterator; typedef typename vector_type::const_iterator const_iterator; typedef typename vector_type::size_type size_type; /// \brief Construct an empty SetVector SetVector() {} /// \brief Initialize a SetVector with a range of elements template SetVector(It Start, It End) { insert(Start, End); } /// \brief Determine if the SetVector is empty or not. bool empty() const { return vector_.empty(); } /// \brief Determine the number of elements in the SetVector. size_type size() const { return vector_.size(); } /// \brief Get an iterator to the beginning of the SetVector. iterator begin() { return vector_.begin(); } /// \brief Get a const_iterator to the beginning of the SetVector. const_iterator begin() const { return vector_.begin(); } /// \brief Get an iterator to the end of the SetVector. iterator end() { return vector_.end(); } /// \brief Get a const_iterator to the end of the SetVector. const_iterator end() const { return vector_.end(); } /// \brief Return the last element of the SetVector. const T &back() const { assert(!empty() && "Cannot call back() on empty SetVector!"); return vector_.back(); } /// \brief Index into the SetVector. const_reference operator[](size_type n) const { assert(n < vector_.size() && "SetVector access out of range!"); return vector_[n]; } /// \brief Insert a new element into the SetVector. /// \returns true iff the element was inserted into the SetVector. bool insert(const value_type &X) { bool result = set_.insert(X); if (result) vector_.push_back(X); return result; } /// \brief Insert a range of elements into the SetVector. template void insert(It Start, It End) { for (; Start != End; ++Start) if (set_.insert(*Start)) vector_.push_back(*Start); } /// \brief Remove an item from the set vector. bool remove(const value_type& X) { if (set_.erase(X)) { typename vector_type::iterator I = std::find(vector_.begin(), vector_.end(), X); assert(I != vector_.end() && "Corrupted SetVector instances!"); vector_.erase(I); return true; } return false; } /// \brief Remove items from the set vector based on a predicate function. /// /// This is intended to be equivalent to the following code, if we could /// write it: /// /// \code /// V.erase(std::remove_if(V.begin(), V.end(), P), V.end()); /// \endcode /// /// However, SetVector doesn't expose non-const iterators, making any /// algorithm like remove_if impossible to use. /// /// \returns true if any element is removed. template bool remove_if(UnaryPredicate P) { typename vector_type::iterator I = std::remove_if(vector_.begin(), vector_.end(), TestAndEraseFromSet(P, set_)); if (I == vector_.end()) return false; vector_.erase(I, vector_.end()); return true; } /// \brief Count the number of elements of a given key in the SetVector. /// \returns 0 if the element is not in the SetVector, 1 if it is. size_type count(const key_type &key) const { return set_.count(key); } /// \brief Completely clear the SetVector void clear() { set_.clear(); vector_.clear(); } /// \brief Remove the last element of the SetVector. void pop_back() { assert(!empty() && "Cannot remove an element from an empty SetVector!"); set_.erase(back()); vector_.pop_back(); } T pop_back_val() { T Ret = back(); pop_back(); return Ret; } bool operator==(const SetVector &that) const { return vector_ == that.vector_; } bool operator!=(const SetVector &that) const { return vector_ != that.vector_; } private: /// \brief A wrapper predicate designed for use with std::remove_if. /// /// This predicate wraps a predicate suitable for use with std::remove_if to /// call set_.erase(x) on each element which is slated for removal. template class TestAndEraseFromSet { UnaryPredicate P; set_type &set_; public: typedef typename UnaryPredicate::argument_type argument_type; TestAndEraseFromSet(UnaryPredicate P, set_type &set_) : P(P), set_(set_) {} bool operator()(argument_type Arg) { if (P(Arg)) { set_.erase(Arg); return true; } return false; } }; set_type set_; ///< The set. vector_type vector_; ///< The vector. }; /// \brief A SetVector that performs no allocations if smaller than /// a certain size. template class SmallSetVector : public SetVector, SmallSet > { public: SmallSetVector() {} /// \brief Initialize a SmallSetVector with a range of elements template SmallSetVector(It Start, It End) { this->insert(Start, End); } }; } // End llvm namespace // vim: sw=2 ai #endif