//===- TargetItinerary.td - Target Itinierary Description --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent scheduling interfaces // which should be implemented by each target that uses instruction // itineraries for scheduling. Itineraries are details reservation // tables for each instruction class. They are most appropriate for // in-order machine with complicated scheduling or bundling constraints. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Processor functional unit - These values represent the function units // available across all chip sets for the target. Eg., IntUnit, FPUnit, ... // These may be independent values for each chip set or may be shared across // all chip sets of the target. Each functional unit is treated as a resource // during scheduling and has an affect instruction order based on availability // during a time interval. // class FuncUnit; //===----------------------------------------------------------------------===// // Pipeline bypass / forwarding - These values specifies the symbolic names of // pipeline bypasses which can be used to forward results of instructions // that are forwarded to uses. class Bypass; def NoBypass : Bypass; class ReservationKind val> { int Value = val; } def Required : ReservationKind<0>; def Reserved : ReservationKind<1>; //===----------------------------------------------------------------------===// // Instruction stage - These values represent a non-pipelined step in // the execution of an instruction. Cycles represents the number of // discrete time slots needed to complete the stage. Units represent // the choice of functional units that can be used to complete the // stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many // cycles should elapse from the start of this stage to the start of // the next stage in the itinerary. For example: // // A stage is specified in one of two ways: // // InstrStage<1, [FU_x, FU_y]> - TimeInc defaults to Cycles // InstrStage<1, [FU_x, FU_y], 0> - TimeInc explicit // class InstrStage units, int timeinc = -1, ReservationKind kind = Required> { int Cycles = cycles; // length of stage in machine cycles list Units = units; // choice of functional units int TimeInc = timeinc; // cycles till start of next stage int Kind = kind.Value; // kind of FU reservation } //===----------------------------------------------------------------------===// // Instruction itinerary - An itinerary represents a sequential series of steps // required to complete an instruction. Itineraries are represented as lists of // instruction stages. // //===----------------------------------------------------------------------===// // Instruction itinerary classes - These values represent 'named' instruction // itinerary. Using named itineraries simplifies managing groups of // instructions across chip sets. An instruction uses the same itinerary class // across all chip sets. Thus a new chip set can be added without modifying // instruction information. // class InstrItinClass; def NoItinerary : InstrItinClass; //===----------------------------------------------------------------------===// // Instruction itinerary data - These values provide a runtime map of an // instruction itinerary class (name) to its itinerary data. // // NumMicroOps represents the number of micro-operations that each instruction // in the class are decoded to. If the number is zero, then it means the // instruction can decode into variable number of micro-ops and it must be // determined dynamically. This directly relates to the itineraries // global IssueWidth property, which constrains the number of microops // that can issue per cycle. // // OperandCycles are optional "cycle counts". They specify the cycle after // instruction issue the values which correspond to specific operand indices // are defined or read. Bypasses are optional "pipeline forwarding pathes", if // a def by an instruction is available on a specific bypass and the use can // read from the same bypass, then the operand use latency is reduced by one. // // InstrItinData, // InstrStage<1, [A9_AGU]>], // [3, 1], [A9_LdBypass]>, // InstrItinData], // [1, 1], [NoBypass, A9_LdBypass]>, // // In this example, the instruction of IIC_iLoadi reads its input on cycle 1 // (after issue) and the result of the load is available on cycle 3. The result // is available via forwarding path A9_LdBypass. If it's used by the first // source operand of instructions of IIC_iMVNr class, then the operand latency // is reduced by 1. class InstrItinData stages, list operandcycles = [], list bypasses = [], int uops = 1> { InstrItinClass TheClass = Class; int NumMicroOps = uops; list Stages = stages; list OperandCycles = operandcycles; list Bypasses = bypasses; } //===----------------------------------------------------------------------===// // Processor itineraries - These values represent the set of all itinerary // classes for a given chip set. // // Set property values to -1 to use the default. // See InstrItineraryProps for comments and defaults. class ProcessorItineraries fu, list bp, list iid> { list FU = fu; list BP = bp; list IID = iid; } // NoItineraries - A marker that can be used by processors without schedule // info. Subtargets using NoItineraries can bypass the scheduler's // expensive HazardRecognizer because no reservation table is needed. def NoItineraries : ProcessorItineraries<[], [], []>;