//===-- BumpVector.h - Vector-like ADT that uses bump allocation --*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides BumpVector, a vector-like ADT whose contents are // allocated from a BumpPtrAllocator. // //===----------------------------------------------------------------------===// // FIXME: Most of this is copy-and-paste from SmallVector.h. We can // refactor this core logic into something common that is shared between // the two. The main thing that is different is the allocation strategy. #ifndef LLVM_CLANG_BUMP_VECTOR #define LLVM_CLANG_BUMP_VECTOR #include "llvm/ADT/PointerIntPair.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/type_traits.h" #include #include #include #include namespace clang { class BumpVectorContext { llvm::PointerIntPair Alloc; public: /// Construct a new BumpVectorContext that creates a new BumpPtrAllocator /// and destroys it when the BumpVectorContext object is destroyed. BumpVectorContext() : Alloc(new llvm::BumpPtrAllocator(), 1) {} /// Construct a new BumpVectorContext that reuses an existing /// BumpPtrAllocator. This BumpPtrAllocator is not destroyed when the /// BumpVectorContext object is destroyed. BumpVectorContext(llvm::BumpPtrAllocator &A) : Alloc(&A, 0) {} ~BumpVectorContext() { if (Alloc.getInt()) delete Alloc.getPointer(); } llvm::BumpPtrAllocator &getAllocator() { return *Alloc.getPointer(); } }; template class BumpVector { T *Begin, *End, *Capacity; public: // Default ctor - Initialize to empty. explicit BumpVector(BumpVectorContext &C, unsigned N) : Begin(NULL), End(NULL), Capacity(NULL) { reserve(C, N); } ~BumpVector() { if (llvm::is_class::value) { // Destroy the constructed elements in the vector. destroy_range(Begin, End); } } typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef T* iterator; typedef const T* const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef T& reference; typedef const T& const_reference; typedef T* pointer; typedef const T* const_pointer; // forward iterator creation methods. iterator begin() { return Begin; } const_iterator begin() const { return Begin; } iterator end() { return End; } const_iterator end() const { return End; } // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} bool empty() const { return Begin == End; } size_type size() const { return End-Begin; } reference operator[](unsigned idx) { assert(Begin + idx < End); return Begin[idx]; } const_reference operator[](unsigned idx) const { assert(Begin + idx < End); return Begin[idx]; } reference front() { return begin()[0]; } const_reference front() const { return begin()[0]; } reference back() { return end()[-1]; } const_reference back() const { return end()[-1]; } void pop_back() { --End; End->~T(); } T pop_back_val() { T Result = back(); pop_back(); return Result; } void clear() { if (llvm::is_class::value) { destroy_range(Begin, End); } End = Begin; } /// data - Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(Begin); } /// data - Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(Begin); } void push_back(const_reference Elt, BumpVectorContext &C) { if (End < Capacity) { Retry: new (End) T(Elt); ++End; return; } grow(C); goto Retry; } /// insert - Insert some number of copies of element into a position. Return /// iterator to position after last inserted copy. iterator insert(iterator I, size_t Cnt, const_reference E, BumpVectorContext &C) { assert (I >= Begin && I <= End && "Iterator out of bounds."); if (End + Cnt <= Capacity) { Retry: move_range_right(I, End, Cnt); construct_range(I, I + Cnt, E); End += Cnt; return I + Cnt; } ptrdiff_t D = I - Begin; grow(C, size() + Cnt); I = Begin + D; goto Retry; } void reserve(BumpVectorContext &C, unsigned N) { if (unsigned(Capacity-Begin) < N) grow(C, N); } /// capacity - Return the total number of elements in the currently allocated /// buffer. size_t capacity() const { return Capacity - Begin; } private: /// grow - double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(BumpVectorContext &C, size_type MinSize = 1); void construct_range(T *S, T *E, const T &Elt) { for (; S != E; ++S) new (S) T(Elt); } void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } } void move_range_right(T *S, T *E, size_t D) { for (T *I = E + D - 1, *IL = S + D - 1; I != IL; --I) { --E; new (I) T(*E); E->~T(); } } }; // Define this out-of-line to dissuade the C++ compiler from inlining it. template void BumpVector::grow(BumpVectorContext &C, size_t MinSize) { size_t CurCapacity = Capacity-Begin; size_t CurSize = size(); size_t NewCapacity = 2*CurCapacity; if (NewCapacity < MinSize) NewCapacity = MinSize; // Allocate the memory from the BumpPtrAllocator. T *NewElts = C.getAllocator().template Allocate(NewCapacity); // Copy the elements over. if (llvm::is_class::value) { std::uninitialized_copy(Begin, End, NewElts); // Destroy the original elements. destroy_range(Begin, End); } else { // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). memcpy(NewElts, Begin, CurSize * sizeof(T)); } // For now, leak 'Begin'. We can add it back to a freelist in // BumpVectorContext. Begin = NewElts; End = NewElts+CurSize; Capacity = Begin+NewCapacity; } } // end: clang namespace #endif // end: LLVM_CLANG_BUMP_VECTOR