//===--- ASTReaderDecl.cpp - Decl Deserialization ---------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ASTReader::ReadDeclRecord method, which is the // entrypoint for loading a decl. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTReader.h" #include "ASTCommon.h" #include "ASTReaderInternals.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclGroup.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/Expr.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/Sema.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/Support/SaveAndRestore.h" using namespace clang; using namespace clang::serialization; //===----------------------------------------------------------------------===// // Declaration deserialization //===----------------------------------------------------------------------===// namespace clang { class ASTDeclReader : public DeclVisitor { ASTReader &Reader; ModuleFile &F; const DeclID ThisDeclID; const unsigned RawLocation; typedef ASTReader::RecordData RecordData; const RecordData &Record; unsigned &Idx; TypeID TypeIDForTypeDecl; bool HasPendingBody; uint64_t GetCurrentCursorOffset(); SourceLocation ReadSourceLocation(const RecordData &R, unsigned &I) { return Reader.ReadSourceLocation(F, R, I); } SourceRange ReadSourceRange(const RecordData &R, unsigned &I) { return Reader.ReadSourceRange(F, R, I); } TypeSourceInfo *GetTypeSourceInfo(const RecordData &R, unsigned &I) { return Reader.GetTypeSourceInfo(F, R, I); } serialization::DeclID ReadDeclID(const RecordData &R, unsigned &I) { return Reader.ReadDeclID(F, R, I); } Decl *ReadDecl(const RecordData &R, unsigned &I) { return Reader.ReadDecl(F, R, I); } template T *ReadDeclAs(const RecordData &R, unsigned &I) { return Reader.ReadDeclAs(F, R, I); } void ReadQualifierInfo(QualifierInfo &Info, const RecordData &R, unsigned &I) { Reader.ReadQualifierInfo(F, Info, R, I); } void ReadDeclarationNameLoc(DeclarationNameLoc &DNLoc, DeclarationName Name, const RecordData &R, unsigned &I) { Reader.ReadDeclarationNameLoc(F, DNLoc, Name, R, I); } void ReadDeclarationNameInfo(DeclarationNameInfo &NameInfo, const RecordData &R, unsigned &I) { Reader.ReadDeclarationNameInfo(F, NameInfo, R, I); } serialization::SubmoduleID readSubmoduleID(const RecordData &R, unsigned &I) { if (I >= R.size()) return 0; return Reader.getGlobalSubmoduleID(F, R[I++]); } Module *readModule(const RecordData &R, unsigned &I) { return Reader.getSubmodule(readSubmoduleID(R, I)); } void ReadCXXDefinitionData(struct CXXRecordDecl::DefinitionData &Data, const RecordData &R, unsigned &I); /// \brief RAII class used to capture the first ID within a redeclaration /// chain and to introduce it into the list of pending redeclaration chains /// on destruction. /// /// The caller can choose not to introduce this ID into the redeclaration /// chain by calling \c suppress(). class RedeclarableResult { ASTReader &Reader; GlobalDeclID FirstID; mutable bool Owning; Decl::Kind DeclKind; void operator=(RedeclarableResult &) LLVM_DELETED_FUNCTION; public: RedeclarableResult(ASTReader &Reader, GlobalDeclID FirstID, Decl::Kind DeclKind) : Reader(Reader), FirstID(FirstID), Owning(true), DeclKind(DeclKind) { } RedeclarableResult(const RedeclarableResult &Other) : Reader(Other.Reader), FirstID(Other.FirstID), Owning(Other.Owning) , DeclKind(Other.DeclKind) { Other.Owning = false; } ~RedeclarableResult() { if (FirstID && Owning && isRedeclarableDeclKind(DeclKind) && Reader.PendingDeclChainsKnown.insert(FirstID)) Reader.PendingDeclChains.push_back(FirstID); } /// \brief Retrieve the first ID. GlobalDeclID getFirstID() const { return FirstID; } /// \brief Do not introduce this declaration ID into the set of pending /// declaration chains. void suppress() { Owning = false; } }; /// \brief Class used to capture the result of searching for an existing /// declaration of a specific kind and name, along with the ability /// to update the place where this result was found (the declaration /// chain hanging off an identifier or the DeclContext we searched in) /// if requested. class FindExistingResult { ASTReader &Reader; NamedDecl *New; NamedDecl *Existing; mutable bool AddResult; void operator=(FindExistingResult&) LLVM_DELETED_FUNCTION; public: FindExistingResult(ASTReader &Reader) : Reader(Reader), New(0), Existing(0), AddResult(false) { } FindExistingResult(ASTReader &Reader, NamedDecl *New, NamedDecl *Existing) : Reader(Reader), New(New), Existing(Existing), AddResult(true) { } FindExistingResult(const FindExistingResult &Other) : Reader(Other.Reader), New(Other.New), Existing(Other.Existing), AddResult(Other.AddResult) { Other.AddResult = false; } ~FindExistingResult(); /// \brief Suppress the addition of this result into the known set of /// names. void suppress() { AddResult = false; } operator NamedDecl*() const { return Existing; } template operator T*() const { return dyn_cast_or_null(Existing); } }; FindExistingResult findExisting(NamedDecl *D); public: ASTDeclReader(ASTReader &Reader, ModuleFile &F, DeclID thisDeclID, unsigned RawLocation, const RecordData &Record, unsigned &Idx) : Reader(Reader), F(F), ThisDeclID(thisDeclID), RawLocation(RawLocation), Record(Record), Idx(Idx), TypeIDForTypeDecl(0), HasPendingBody(false) { } static void attachPreviousDecl(Decl *D, Decl *previous); static void attachLatestDecl(Decl *D, Decl *latest); /// \brief Determine whether this declaration has a pending body. bool hasPendingBody() const { return HasPendingBody; } void Visit(Decl *D); void UpdateDecl(Decl *D, ModuleFile &ModuleFile, const RecordData &Record); static void setNextObjCCategory(ObjCCategoryDecl *Cat, ObjCCategoryDecl *Next) { Cat->NextClassCategory = Next; } void VisitDecl(Decl *D); void VisitTranslationUnitDecl(TranslationUnitDecl *TU); void VisitNamedDecl(NamedDecl *ND); void VisitLabelDecl(LabelDecl *LD); void VisitNamespaceDecl(NamespaceDecl *D); void VisitUsingDirectiveDecl(UsingDirectiveDecl *D); void VisitNamespaceAliasDecl(NamespaceAliasDecl *D); void VisitTypeDecl(TypeDecl *TD); void VisitTypedefNameDecl(TypedefNameDecl *TD); void VisitTypedefDecl(TypedefDecl *TD); void VisitTypeAliasDecl(TypeAliasDecl *TD); void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D); void VisitTagDecl(TagDecl *TD); void VisitEnumDecl(EnumDecl *ED); void VisitRecordDecl(RecordDecl *RD); void VisitCXXRecordDecl(CXXRecordDecl *D); void VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D); void VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D); void VisitClassScopeFunctionSpecializationDecl( ClassScopeFunctionSpecializationDecl *D); void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D); void VisitValueDecl(ValueDecl *VD); void VisitEnumConstantDecl(EnumConstantDecl *ECD); void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D); void VisitDeclaratorDecl(DeclaratorDecl *DD); void VisitFunctionDecl(FunctionDecl *FD); void VisitCXXMethodDecl(CXXMethodDecl *D); void VisitCXXConstructorDecl(CXXConstructorDecl *D); void VisitCXXDestructorDecl(CXXDestructorDecl *D); void VisitCXXConversionDecl(CXXConversionDecl *D); void VisitFieldDecl(FieldDecl *FD); void VisitMSPropertyDecl(MSPropertyDecl *FD); void VisitIndirectFieldDecl(IndirectFieldDecl *FD); void VisitVarDecl(VarDecl *VD); void VisitImplicitParamDecl(ImplicitParamDecl *PD); void VisitParmVarDecl(ParmVarDecl *PD); void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D); void VisitTemplateDecl(TemplateDecl *D); RedeclarableResult VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D); void VisitClassTemplateDecl(ClassTemplateDecl *D); void VisitFunctionTemplateDecl(FunctionTemplateDecl *D); void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D); void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D); void VisitUsingDecl(UsingDecl *D); void VisitUsingShadowDecl(UsingShadowDecl *D); void VisitLinkageSpecDecl(LinkageSpecDecl *D); void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD); void VisitImportDecl(ImportDecl *D); void VisitAccessSpecDecl(AccessSpecDecl *D); void VisitFriendDecl(FriendDecl *D); void VisitFriendTemplateDecl(FriendTemplateDecl *D); void VisitStaticAssertDecl(StaticAssertDecl *D); void VisitBlockDecl(BlockDecl *BD); void VisitCapturedDecl(CapturedDecl *CD); void VisitEmptyDecl(EmptyDecl *D); std::pair VisitDeclContext(DeclContext *DC); template RedeclarableResult VisitRedeclarable(Redeclarable *D); template void mergeRedeclarable(Redeclarable *D, RedeclarableResult &Redecl); // FIXME: Reorder according to DeclNodes.td? void VisitObjCMethodDecl(ObjCMethodDecl *D); void VisitObjCContainerDecl(ObjCContainerDecl *D); void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); void VisitObjCIvarDecl(ObjCIvarDecl *D); void VisitObjCProtocolDecl(ObjCProtocolDecl *D); void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D); void VisitObjCCategoryDecl(ObjCCategoryDecl *D); void VisitObjCImplDecl(ObjCImplDecl *D); void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); void VisitObjCImplementationDecl(ObjCImplementationDecl *D); void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D); void VisitObjCPropertyDecl(ObjCPropertyDecl *D); void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D); void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D); }; } uint64_t ASTDeclReader::GetCurrentCursorOffset() { return F.DeclsCursor.GetCurrentBitNo() + F.GlobalBitOffset; } void ASTDeclReader::Visit(Decl *D) { DeclVisitor::Visit(D); if (DeclaratorDecl *DD = dyn_cast(D)) { if (DD->DeclInfo) { DeclaratorDecl::ExtInfo *Info = DD->DeclInfo.get(); Info->TInfo = GetTypeSourceInfo(Record, Idx); } else { DD->DeclInfo = GetTypeSourceInfo(Record, Idx); } } if (TypeDecl *TD = dyn_cast(D)) { // if we have a fully initialized TypeDecl, we can safely read its type now. TD->setTypeForDecl(Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull()); } else if (ObjCInterfaceDecl *ID = dyn_cast(D)) { // if we have a fully initialized TypeDecl, we can safely read its type now. ID->TypeForDecl = Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull(); } else if (FunctionDecl *FD = dyn_cast(D)) { // FunctionDecl's body was written last after all other Stmts/Exprs. // We only read it if FD doesn't already have a body (e.g., from another // module). // FIXME: Also consider = default and = delete. // FIXME: Can we diagnose ODR violations somehow? if (Record[Idx++]) { Reader.PendingBodies[FD] = GetCurrentCursorOffset(); HasPendingBody = true; } } } void ASTDeclReader::VisitDecl(Decl *D) { if (D->isTemplateParameter()) { // We don't want to deserialize the DeclContext of a template // parameter immediately, because the template parameter might be // used in the formulation of its DeclContext. Use the translation // unit DeclContext as a placeholder. GlobalDeclID SemaDCIDForTemplateParmDecl = ReadDeclID(Record, Idx); GlobalDeclID LexicalDCIDForTemplateParmDecl = ReadDeclID(Record, Idx); Reader.addPendingDeclContextInfo(D, SemaDCIDForTemplateParmDecl, LexicalDCIDForTemplateParmDecl); D->setDeclContext(Reader.getContext().getTranslationUnitDecl()); } else { DeclContext *SemaDC = ReadDeclAs(Record, Idx); DeclContext *LexicalDC = ReadDeclAs(Record, Idx); // Avoid calling setLexicalDeclContext() directly because it uses // Decl::getASTContext() internally which is unsafe during derialization. D->setDeclContextsImpl(SemaDC, LexicalDC, Reader.getContext()); } D->setLocation(Reader.ReadSourceLocation(F, RawLocation)); D->setInvalidDecl(Record[Idx++]); if (Record[Idx++]) { // hasAttrs AttrVec Attrs; Reader.ReadAttributes(F, Attrs, Record, Idx); // Avoid calling setAttrs() directly because it uses Decl::getASTContext() // internally which is unsafe during derialization. D->setAttrsImpl(Attrs, Reader.getContext()); } D->setImplicit(Record[Idx++]); D->setUsed(Record[Idx++]); D->setReferenced(Record[Idx++]); D->setTopLevelDeclInObjCContainer(Record[Idx++]); D->setAccess((AccessSpecifier)Record[Idx++]); D->FromASTFile = true; D->setModulePrivate(Record[Idx++]); D->Hidden = D->isModulePrivate(); // Determine whether this declaration is part of a (sub)module. If so, it // may not yet be visible. if (unsigned SubmoduleID = readSubmoduleID(Record, Idx)) { // Store the owning submodule ID in the declaration. D->setOwningModuleID(SubmoduleID); // Module-private declarations are never visible, so there is no work to do. if (!D->isModulePrivate()) { if (Module *Owner = Reader.getSubmodule(SubmoduleID)) { if (Owner->NameVisibility != Module::AllVisible) { // The owning module is not visible. Mark this declaration as hidden. D->Hidden = true; // Note that this declaration was hidden because its owning module is // not yet visible. Reader.HiddenNamesMap[Owner].push_back(D); } } } } } void ASTDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) { llvm_unreachable("Translation units are not serialized"); } void ASTDeclReader::VisitNamedDecl(NamedDecl *ND) { VisitDecl(ND); ND->setDeclName(Reader.ReadDeclarationName(F, Record, Idx)); } void ASTDeclReader::VisitTypeDecl(TypeDecl *TD) { VisitNamedDecl(TD); TD->setLocStart(ReadSourceLocation(Record, Idx)); // Delay type reading until after we have fully initialized the decl. TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]); } void ASTDeclReader::VisitTypedefNameDecl(TypedefNameDecl *TD) { RedeclarableResult Redecl = VisitRedeclarable(TD); VisitTypeDecl(TD); TD->setTypeSourceInfo(GetTypeSourceInfo(Record, Idx)); mergeRedeclarable(TD, Redecl); } void ASTDeclReader::VisitTypedefDecl(TypedefDecl *TD) { VisitTypedefNameDecl(TD); } void ASTDeclReader::VisitTypeAliasDecl(TypeAliasDecl *TD) { VisitTypedefNameDecl(TD); } void ASTDeclReader::VisitTagDecl(TagDecl *TD) { RedeclarableResult Redecl = VisitRedeclarable(TD); VisitTypeDecl(TD); TD->IdentifierNamespace = Record[Idx++]; TD->setTagKind((TagDecl::TagKind)Record[Idx++]); TD->setCompleteDefinition(Record[Idx++]); TD->setEmbeddedInDeclarator(Record[Idx++]); TD->setFreeStanding(Record[Idx++]); TD->setRBraceLoc(ReadSourceLocation(Record, Idx)); if (Record[Idx++]) { // hasExtInfo TagDecl::ExtInfo *Info = new (Reader.getContext()) TagDecl::ExtInfo(); ReadQualifierInfo(*Info, Record, Idx); TD->TypedefNameDeclOrQualifier = Info; } else TD->setTypedefNameForAnonDecl(ReadDeclAs(Record, Idx)); mergeRedeclarable(TD, Redecl); } void ASTDeclReader::VisitEnumDecl(EnumDecl *ED) { VisitTagDecl(ED); if (TypeSourceInfo *TI = Reader.GetTypeSourceInfo(F, Record, Idx)) ED->setIntegerTypeSourceInfo(TI); else ED->setIntegerType(Reader.readType(F, Record, Idx)); ED->setPromotionType(Reader.readType(F, Record, Idx)); ED->setNumPositiveBits(Record[Idx++]); ED->setNumNegativeBits(Record[Idx++]); ED->IsScoped = Record[Idx++]; ED->IsScopedUsingClassTag = Record[Idx++]; ED->IsFixed = Record[Idx++]; if (EnumDecl *InstED = ReadDeclAs(Record, Idx)) { TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++]; SourceLocation POI = ReadSourceLocation(Record, Idx); ED->setInstantiationOfMemberEnum(Reader.getContext(), InstED, TSK); ED->getMemberSpecializationInfo()->setPointOfInstantiation(POI); } } void ASTDeclReader::VisitRecordDecl(RecordDecl *RD) { VisitTagDecl(RD); RD->setHasFlexibleArrayMember(Record[Idx++]); RD->setAnonymousStructOrUnion(Record[Idx++]); RD->setHasObjectMember(Record[Idx++]); RD->setHasVolatileMember(Record[Idx++]); } void ASTDeclReader::VisitValueDecl(ValueDecl *VD) { VisitNamedDecl(VD); VD->setType(Reader.readType(F, Record, Idx)); } void ASTDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) { VisitValueDecl(ECD); if (Record[Idx++]) ECD->setInitExpr(Reader.ReadExpr(F)); ECD->setInitVal(Reader.ReadAPSInt(Record, Idx)); } void ASTDeclReader::VisitDeclaratorDecl(DeclaratorDecl *DD) { VisitValueDecl(DD); DD->setInnerLocStart(ReadSourceLocation(Record, Idx)); if (Record[Idx++]) { // hasExtInfo DeclaratorDecl::ExtInfo *Info = new (Reader.getContext()) DeclaratorDecl::ExtInfo(); ReadQualifierInfo(*Info, Record, Idx); DD->DeclInfo = Info; } } void ASTDeclReader::VisitFunctionDecl(FunctionDecl *FD) { RedeclarableResult Redecl = VisitRedeclarable(FD); VisitDeclaratorDecl(FD); ReadDeclarationNameLoc(FD->DNLoc, FD->getDeclName(), Record, Idx); FD->IdentifierNamespace = Record[Idx++]; // FunctionDecl's body is handled last at ASTDeclReader::Visit, // after everything else is read. FD->SClass = (StorageClass)Record[Idx++]; FD->IsInline = Record[Idx++]; FD->IsInlineSpecified = Record[Idx++]; FD->IsVirtualAsWritten = Record[Idx++]; FD->IsPure = Record[Idx++]; FD->HasInheritedPrototype = Record[Idx++]; FD->HasWrittenPrototype = Record[Idx++]; FD->IsDeleted = Record[Idx++]; FD->IsTrivial = Record[Idx++]; FD->IsDefaulted = Record[Idx++]; FD->IsExplicitlyDefaulted = Record[Idx++]; FD->HasImplicitReturnZero = Record[Idx++]; FD->IsConstexpr = Record[Idx++]; FD->HasSkippedBody = Record[Idx++]; FD->HasCachedLinkage = true; FD->CachedLinkage = Record[Idx++]; FD->EndRangeLoc = ReadSourceLocation(Record, Idx); switch ((FunctionDecl::TemplatedKind)Record[Idx++]) { case FunctionDecl::TK_NonTemplate: mergeRedeclarable(FD, Redecl); break; case FunctionDecl::TK_FunctionTemplate: FD->setDescribedFunctionTemplate(ReadDeclAs(Record, Idx)); break; case FunctionDecl::TK_MemberSpecialization: { FunctionDecl *InstFD = ReadDeclAs(Record, Idx); TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++]; SourceLocation POI = ReadSourceLocation(Record, Idx); FD->setInstantiationOfMemberFunction(Reader.getContext(), InstFD, TSK); FD->getMemberSpecializationInfo()->setPointOfInstantiation(POI); break; } case FunctionDecl::TK_FunctionTemplateSpecialization: { FunctionTemplateDecl *Template = ReadDeclAs(Record, Idx); TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++]; // Template arguments. SmallVector TemplArgs; Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx); // Template args as written. SmallVector TemplArgLocs; SourceLocation LAngleLoc, RAngleLoc; bool HasTemplateArgumentsAsWritten = Record[Idx++]; if (HasTemplateArgumentsAsWritten) { unsigned NumTemplateArgLocs = Record[Idx++]; TemplArgLocs.reserve(NumTemplateArgLocs); for (unsigned i=0; i != NumTemplateArgLocs; ++i) TemplArgLocs.push_back( Reader.ReadTemplateArgumentLoc(F, Record, Idx)); LAngleLoc = ReadSourceLocation(Record, Idx); RAngleLoc = ReadSourceLocation(Record, Idx); } SourceLocation POI = ReadSourceLocation(Record, Idx); ASTContext &C = Reader.getContext(); TemplateArgumentList *TemplArgList = TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size()); TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc); for (unsigned i=0, e = TemplArgLocs.size(); i != e; ++i) TemplArgsInfo.addArgument(TemplArgLocs[i]); FunctionTemplateSpecializationInfo *FTInfo = FunctionTemplateSpecializationInfo::Create(C, FD, Template, TSK, TemplArgList, HasTemplateArgumentsAsWritten ? &TemplArgsInfo : 0, POI); FD->TemplateOrSpecialization = FTInfo; if (FD->isCanonicalDecl()) { // if canonical add to template's set. // The template that contains the specializations set. It's not safe to // use getCanonicalDecl on Template since it may still be initializing. FunctionTemplateDecl *CanonTemplate = ReadDeclAs(Record, Idx); // Get the InsertPos by FindNodeOrInsertPos() instead of calling // InsertNode(FTInfo) directly to avoid the getASTContext() call in // FunctionTemplateSpecializationInfo's Profile(). // We avoid getASTContext because a decl in the parent hierarchy may // be initializing. llvm::FoldingSetNodeID ID; FunctionTemplateSpecializationInfo::Profile(ID, TemplArgs.data(), TemplArgs.size(), C); void *InsertPos = 0; CanonTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); if (InsertPos) CanonTemplate->getSpecializations().InsertNode(FTInfo, InsertPos); else assert(0 && "Another specialization already inserted!"); } break; } case FunctionDecl::TK_DependentFunctionTemplateSpecialization: { // Templates. UnresolvedSet<8> TemplDecls; unsigned NumTemplates = Record[Idx++]; while (NumTemplates--) TemplDecls.addDecl(ReadDeclAs(Record, Idx)); // Templates args. TemplateArgumentListInfo TemplArgs; unsigned NumArgs = Record[Idx++]; while (NumArgs--) TemplArgs.addArgument(Reader.ReadTemplateArgumentLoc(F, Record, Idx)); TemplArgs.setLAngleLoc(ReadSourceLocation(Record, Idx)); TemplArgs.setRAngleLoc(ReadSourceLocation(Record, Idx)); FD->setDependentTemplateSpecialization(Reader.getContext(), TemplDecls, TemplArgs); break; } } // Read in the parameters. unsigned NumParams = Record[Idx++]; SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(ReadDeclAs(Record, Idx)); FD->setParams(Reader.getContext(), Params); } void ASTDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) { VisitNamedDecl(MD); if (Record[Idx++]) { // Load the body on-demand. Most clients won't care, because method // definitions rarely show up in headers. Reader.PendingBodies[MD] = GetCurrentCursorOffset(); HasPendingBody = true; MD->setSelfDecl(ReadDeclAs(Record, Idx)); MD->setCmdDecl(ReadDeclAs(Record, Idx)); } MD->setInstanceMethod(Record[Idx++]); MD->setVariadic(Record[Idx++]); MD->setPropertyAccessor(Record[Idx++]); MD->setDefined(Record[Idx++]); MD->IsOverriding = Record[Idx++]; MD->HasSkippedBody = Record[Idx++]; MD->IsRedeclaration = Record[Idx++]; MD->HasRedeclaration = Record[Idx++]; if (MD->HasRedeclaration) Reader.getContext().setObjCMethodRedeclaration(MD, ReadDeclAs(Record, Idx)); MD->setDeclImplementation((ObjCMethodDecl::ImplementationControl)Record[Idx++]); MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]); MD->SetRelatedResultType(Record[Idx++]); MD->setResultType(Reader.readType(F, Record, Idx)); MD->setResultTypeSourceInfo(GetTypeSourceInfo(Record, Idx)); MD->DeclEndLoc = ReadSourceLocation(Record, Idx); unsigned NumParams = Record[Idx++]; SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(ReadDeclAs(Record, Idx)); MD->SelLocsKind = Record[Idx++]; unsigned NumStoredSelLocs = Record[Idx++]; SmallVector SelLocs; SelLocs.reserve(NumStoredSelLocs); for (unsigned i = 0; i != NumStoredSelLocs; ++i) SelLocs.push_back(ReadSourceLocation(Record, Idx)); MD->setParamsAndSelLocs(Reader.getContext(), Params, SelLocs); } void ASTDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) { VisitNamedDecl(CD); CD->setAtStartLoc(ReadSourceLocation(Record, Idx)); CD->setAtEndRange(ReadSourceRange(Record, Idx)); } void ASTDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) { RedeclarableResult Redecl = VisitRedeclarable(ID); VisitObjCContainerDecl(ID); TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]); mergeRedeclarable(ID, Redecl); if (Record[Idx++]) { // Read the definition. ID->allocateDefinitionData(); // Set the definition data of the canonical declaration, so other // redeclarations will see it. ID->getCanonicalDecl()->Data = ID->Data; ObjCInterfaceDecl::DefinitionData &Data = ID->data(); // Read the superclass. Data.SuperClass = ReadDeclAs(Record, Idx); Data.SuperClassLoc = ReadSourceLocation(Record, Idx); Data.EndLoc = ReadSourceLocation(Record, Idx); // Read the directly referenced protocols and their SourceLocations. unsigned NumProtocols = Record[Idx++]; SmallVector Protocols; Protocols.reserve(NumProtocols); for (unsigned I = 0; I != NumProtocols; ++I) Protocols.push_back(ReadDeclAs(Record, Idx)); SmallVector ProtoLocs; ProtoLocs.reserve(NumProtocols); for (unsigned I = 0; I != NumProtocols; ++I) ProtoLocs.push_back(ReadSourceLocation(Record, Idx)); ID->setProtocolList(Protocols.data(), NumProtocols, ProtoLocs.data(), Reader.getContext()); // Read the transitive closure of protocols referenced by this class. NumProtocols = Record[Idx++]; Protocols.clear(); Protocols.reserve(NumProtocols); for (unsigned I = 0; I != NumProtocols; ++I) Protocols.push_back(ReadDeclAs(Record, Idx)); ID->data().AllReferencedProtocols.set(Protocols.data(), NumProtocols, Reader.getContext()); // We will rebuild this list lazily. ID->setIvarList(0); // Note that we have deserialized a definition. Reader.PendingDefinitions.insert(ID); // Note that we've loaded this Objective-C class. Reader.ObjCClassesLoaded.push_back(ID); } else { ID->Data = ID->getCanonicalDecl()->Data; } } void ASTDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) { VisitFieldDecl(IVD); IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record[Idx++]); // This field will be built lazily. IVD->setNextIvar(0); bool synth = Record[Idx++]; IVD->setSynthesize(synth); } void ASTDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) { RedeclarableResult Redecl = VisitRedeclarable(PD); VisitObjCContainerDecl(PD); mergeRedeclarable(PD, Redecl); if (Record[Idx++]) { // Read the definition. PD->allocateDefinitionData(); // Set the definition data of the canonical declaration, so other // redeclarations will see it. PD->getCanonicalDecl()->Data = PD->Data; unsigned NumProtoRefs = Record[Idx++]; SmallVector ProtoRefs; ProtoRefs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoRefs.push_back(ReadDeclAs(Record, Idx)); SmallVector ProtoLocs; ProtoLocs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoLocs.push_back(ReadSourceLocation(Record, Idx)); PD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(), Reader.getContext()); // Note that we have deserialized a definition. Reader.PendingDefinitions.insert(PD); } else { PD->Data = PD->getCanonicalDecl()->Data; } } void ASTDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) { VisitFieldDecl(FD); } void ASTDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) { VisitObjCContainerDecl(CD); CD->setCategoryNameLoc(ReadSourceLocation(Record, Idx)); CD->setIvarLBraceLoc(ReadSourceLocation(Record, Idx)); CD->setIvarRBraceLoc(ReadSourceLocation(Record, Idx)); // Note that this category has been deserialized. We do this before // deserializing the interface declaration, so that it will consider this /// category. Reader.CategoriesDeserialized.insert(CD); CD->ClassInterface = ReadDeclAs(Record, Idx); unsigned NumProtoRefs = Record[Idx++]; SmallVector ProtoRefs; ProtoRefs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoRefs.push_back(ReadDeclAs(Record, Idx)); SmallVector ProtoLocs; ProtoLocs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoLocs.push_back(ReadSourceLocation(Record, Idx)); CD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(), Reader.getContext()); } void ASTDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) { VisitNamedDecl(CAD); CAD->setClassInterface(ReadDeclAs(Record, Idx)); } void ASTDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) { VisitNamedDecl(D); D->setAtLoc(ReadSourceLocation(Record, Idx)); D->setLParenLoc(ReadSourceLocation(Record, Idx)); D->setType(GetTypeSourceInfo(Record, Idx)); // FIXME: stable encoding D->setPropertyAttributes( (ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]); D->setPropertyAttributesAsWritten( (ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]); // FIXME: stable encoding D->setPropertyImplementation( (ObjCPropertyDecl::PropertyControl)Record[Idx++]); D->setGetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector()); D->setSetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector()); D->setGetterMethodDecl(ReadDeclAs(Record, Idx)); D->setSetterMethodDecl(ReadDeclAs(Record, Idx)); D->setPropertyIvarDecl(ReadDeclAs(Record, Idx)); } void ASTDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) { VisitObjCContainerDecl(D); D->setClassInterface(ReadDeclAs(Record, Idx)); } void ASTDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { VisitObjCImplDecl(D); D->setIdentifier(Reader.GetIdentifierInfo(F, Record, Idx)); D->CategoryNameLoc = ReadSourceLocation(Record, Idx); } void ASTDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { VisitObjCImplDecl(D); D->setSuperClass(ReadDeclAs(Record, Idx)); D->SuperLoc = ReadSourceLocation(Record, Idx); D->setIvarLBraceLoc(ReadSourceLocation(Record, Idx)); D->setIvarRBraceLoc(ReadSourceLocation(Record, Idx)); D->setHasNonZeroConstructors(Record[Idx++]); D->setHasDestructors(Record[Idx++]); llvm::tie(D->IvarInitializers, D->NumIvarInitializers) = Reader.ReadCXXCtorInitializers(F, Record, Idx); } void ASTDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) { VisitDecl(D); D->setAtLoc(ReadSourceLocation(Record, Idx)); D->setPropertyDecl(ReadDeclAs(Record, Idx)); D->PropertyIvarDecl = ReadDeclAs(Record, Idx); D->IvarLoc = ReadSourceLocation(Record, Idx); D->setGetterCXXConstructor(Reader.ReadExpr(F)); D->setSetterCXXAssignment(Reader.ReadExpr(F)); } void ASTDeclReader::VisitFieldDecl(FieldDecl *FD) { VisitDeclaratorDecl(FD); FD->Mutable = Record[Idx++]; if (int BitWidthOrInitializer = Record[Idx++]) { FD->InitializerOrBitWidth.setInt(BitWidthOrInitializer - 1); FD->InitializerOrBitWidth.setPointer(Reader.ReadExpr(F)); } if (!FD->getDeclName()) { if (FieldDecl *Tmpl = ReadDeclAs(Record, Idx)) Reader.getContext().setInstantiatedFromUnnamedFieldDecl(FD, Tmpl); } } void ASTDeclReader::VisitMSPropertyDecl(MSPropertyDecl *PD) { VisitDeclaratorDecl(PD); PD->GetterId = Reader.GetIdentifierInfo(F, Record, Idx); PD->SetterId = Reader.GetIdentifierInfo(F, Record, Idx); } void ASTDeclReader::VisitIndirectFieldDecl(IndirectFieldDecl *FD) { VisitValueDecl(FD); FD->ChainingSize = Record[Idx++]; assert(FD->ChainingSize >= 2 && "Anonymous chaining must be >= 2"); FD->Chaining = new (Reader.getContext())NamedDecl*[FD->ChainingSize]; for (unsigned I = 0; I != FD->ChainingSize; ++I) FD->Chaining[I] = ReadDeclAs(Record, Idx); } void ASTDeclReader::VisitVarDecl(VarDecl *VD) { RedeclarableResult Redecl = VisitRedeclarable(VD); VisitDeclaratorDecl(VD); VD->VarDeclBits.SClass = (StorageClass)Record[Idx++]; VD->VarDeclBits.TSCSpec = Record[Idx++]; VD->VarDeclBits.InitStyle = Record[Idx++]; VD->VarDeclBits.ExceptionVar = Record[Idx++]; VD->VarDeclBits.NRVOVariable = Record[Idx++]; VD->VarDeclBits.CXXForRangeDecl = Record[Idx++]; VD->VarDeclBits.ARCPseudoStrong = Record[Idx++]; VD->VarDeclBits.IsConstexpr = Record[Idx++]; VD->HasCachedLinkage = true; VD->CachedLinkage = Record[Idx++]; // Only true variables (not parameters or implicit parameters) can be merged. if (VD->getKind() == Decl::Var) mergeRedeclarable(VD, Redecl); if (uint64_t Val = Record[Idx++]) { VD->setInit(Reader.ReadExpr(F)); if (Val > 1) { EvaluatedStmt *Eval = VD->ensureEvaluatedStmt(); Eval->CheckedICE = true; Eval->IsICE = Val == 3; } } if (Record[Idx++]) { // HasMemberSpecializationInfo. VarDecl *Tmpl = ReadDeclAs(Record, Idx); TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++]; SourceLocation POI = ReadSourceLocation(Record, Idx); Reader.getContext().setInstantiatedFromStaticDataMember(VD, Tmpl, TSK,POI); } } void ASTDeclReader::VisitImplicitParamDecl(ImplicitParamDecl *PD) { VisitVarDecl(PD); } void ASTDeclReader::VisitParmVarDecl(ParmVarDecl *PD) { VisitVarDecl(PD); unsigned isObjCMethodParam = Record[Idx++]; unsigned scopeDepth = Record[Idx++]; unsigned scopeIndex = Record[Idx++]; unsigned declQualifier = Record[Idx++]; if (isObjCMethodParam) { assert(scopeDepth == 0); PD->setObjCMethodScopeInfo(scopeIndex); PD->ParmVarDeclBits.ScopeDepthOrObjCQuals = declQualifier; } else { PD->setScopeInfo(scopeDepth, scopeIndex); } PD->ParmVarDeclBits.IsKNRPromoted = Record[Idx++]; PD->ParmVarDeclBits.HasInheritedDefaultArg = Record[Idx++]; if (Record[Idx++]) // hasUninstantiatedDefaultArg. PD->setUninstantiatedDefaultArg(Reader.ReadExpr(F)); } void ASTDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) { VisitDecl(AD); AD->setAsmString(cast(Reader.ReadExpr(F))); AD->setRParenLoc(ReadSourceLocation(Record, Idx)); } void ASTDeclReader::VisitBlockDecl(BlockDecl *BD) { VisitDecl(BD); BD->setBody(cast_or_null(Reader.ReadStmt(F))); BD->setSignatureAsWritten(GetTypeSourceInfo(Record, Idx)); unsigned NumParams = Record[Idx++]; SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(ReadDeclAs(Record, Idx)); BD->setParams(Params); BD->setIsVariadic(Record[Idx++]); BD->setBlockMissingReturnType(Record[Idx++]); BD->setIsConversionFromLambda(Record[Idx++]); bool capturesCXXThis = Record[Idx++]; unsigned numCaptures = Record[Idx++]; SmallVector captures; captures.reserve(numCaptures); for (unsigned i = 0; i != numCaptures; ++i) { VarDecl *decl = ReadDeclAs(Record, Idx); unsigned flags = Record[Idx++]; bool byRef = (flags & 1); bool nested = (flags & 2); Expr *copyExpr = ((flags & 4) ? Reader.ReadExpr(F) : 0); captures.push_back(BlockDecl::Capture(decl, byRef, nested, copyExpr)); } BD->setCaptures(Reader.getContext(), captures.begin(), captures.end(), capturesCXXThis); } void ASTDeclReader::VisitCapturedDecl(CapturedDecl *CD) { VisitDecl(CD); // Body is set by VisitCapturedStmt. for (unsigned i = 0; i < CD->NumParams; ++i) CD->setParam(i, ReadDeclAs(Record, Idx)); } void ASTDeclReader::VisitLinkageSpecDecl(LinkageSpecDecl *D) { VisitDecl(D); D->setLanguage((LinkageSpecDecl::LanguageIDs)Record[Idx++]); D->setExternLoc(ReadSourceLocation(Record, Idx)); D->setRBraceLoc(ReadSourceLocation(Record, Idx)); } void ASTDeclReader::VisitLabelDecl(LabelDecl *D) { VisitNamedDecl(D); D->setLocStart(ReadSourceLocation(Record, Idx)); } void ASTDeclReader::VisitNamespaceDecl(NamespaceDecl *D) { RedeclarableResult Redecl = VisitRedeclarable(D); VisitNamedDecl(D); D->setInline(Record[Idx++]); D->LocStart = ReadSourceLocation(Record, Idx); D->RBraceLoc = ReadSourceLocation(Record, Idx); mergeRedeclarable(D, Redecl); if (Redecl.getFirstID() == ThisDeclID) { // Each module has its own anonymous namespace, which is disjoint from // any other module's anonymous namespaces, so don't attach the anonymous // namespace at all. NamespaceDecl *Anon = ReadDeclAs(Record, Idx); if (F.Kind != MK_Module) D->setAnonymousNamespace(Anon); } else { // Link this namespace back to the first declaration, which has already // been deserialized. D->AnonOrFirstNamespaceAndInline.setPointer(D->getFirstDeclaration()); } } void ASTDeclReader::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { VisitNamedDecl(D); D->NamespaceLoc = ReadSourceLocation(Record, Idx); D->IdentLoc = ReadSourceLocation(Record, Idx); D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx); D->Namespace = ReadDeclAs(Record, Idx); } void ASTDeclReader::VisitUsingDecl(UsingDecl *D) { VisitNamedDecl(D); D->setUsingLocation(ReadSourceLocation(Record, Idx)); D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx); ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx); D->FirstUsingShadow.setPointer(ReadDeclAs(Record, Idx)); D->setTypeName(Record[Idx++]); if (NamedDecl *Pattern = ReadDeclAs(Record, Idx)) Reader.getContext().setInstantiatedFromUsingDecl(D, Pattern); } void ASTDeclReader::VisitUsingShadowDecl(UsingShadowDecl *D) { VisitNamedDecl(D); D->setTargetDecl(ReadDeclAs(Record, Idx)); D->UsingOrNextShadow = ReadDeclAs(Record, Idx); UsingShadowDecl *Pattern = ReadDeclAs(Record, Idx); if (Pattern) Reader.getContext().setInstantiatedFromUsingShadowDecl(D, Pattern); } void ASTDeclReader::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { VisitNamedDecl(D); D->UsingLoc = ReadSourceLocation(Record, Idx); D->NamespaceLoc = ReadSourceLocation(Record, Idx); D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx); D->NominatedNamespace = ReadDeclAs(Record, Idx); D->CommonAncestor = ReadDeclAs(Record, Idx); } void ASTDeclReader::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { VisitValueDecl(D); D->setUsingLoc(ReadSourceLocation(Record, Idx)); D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx); ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx); } void ASTDeclReader::VisitUnresolvedUsingTypenameDecl( UnresolvedUsingTypenameDecl *D) { VisitTypeDecl(D); D->TypenameLocation = ReadSourceLocation(Record, Idx); D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx); } void ASTDeclReader::ReadCXXDefinitionData( struct CXXRecordDecl::DefinitionData &Data, const RecordData &Record, unsigned &Idx) { // Note: the caller has deserialized the IsLambda bit already. Data.UserDeclaredConstructor = Record[Idx++]; Data.UserDeclaredSpecialMembers = Record[Idx++]; Data.Aggregate = Record[Idx++]; Data.PlainOldData = Record[Idx++]; Data.Empty = Record[Idx++]; Data.Polymorphic = Record[Idx++]; Data.Abstract = Record[Idx++]; Data.IsStandardLayout = Record[Idx++]; Data.HasNoNonEmptyBases = Record[Idx++]; Data.HasPrivateFields = Record[Idx++]; Data.HasProtectedFields = Record[Idx++]; Data.HasPublicFields = Record[Idx++]; Data.HasMutableFields = Record[Idx++]; Data.HasOnlyCMembers = Record[Idx++]; Data.HasInClassInitializer = Record[Idx++]; Data.HasUninitializedReferenceMember = Record[Idx++]; Data.NeedOverloadResolutionForMoveConstructor = Record[Idx++]; Data.NeedOverloadResolutionForMoveAssignment = Record[Idx++]; Data.NeedOverloadResolutionForDestructor = Record[Idx++]; Data.DefaultedMoveConstructorIsDeleted = Record[Idx++]; Data.DefaultedMoveAssignmentIsDeleted = Record[Idx++]; Data.DefaultedDestructorIsDeleted = Record[Idx++]; Data.HasTrivialSpecialMembers = Record[Idx++]; Data.HasIrrelevantDestructor = Record[Idx++]; Data.HasConstexprNonCopyMoveConstructor = Record[Idx++]; Data.DefaultedDefaultConstructorIsConstexpr = Record[Idx++]; Data.HasConstexprDefaultConstructor = Record[Idx++]; Data.HasNonLiteralTypeFieldsOrBases = Record[Idx++]; Data.ComputedVisibleConversions = Record[Idx++]; Data.UserProvidedDefaultConstructor = Record[Idx++]; Data.DeclaredSpecialMembers = Record[Idx++]; Data.ImplicitCopyConstructorHasConstParam = Record[Idx++]; Data.ImplicitCopyAssignmentHasConstParam = Record[Idx++]; Data.HasDeclaredCopyConstructorWithConstParam = Record[Idx++]; Data.HasDeclaredCopyAssignmentWithConstParam = Record[Idx++]; Data.FailedImplicitMoveConstructor = Record[Idx++]; Data.FailedImplicitMoveAssignment = Record[Idx++]; Data.NumBases = Record[Idx++]; if (Data.NumBases) Data.Bases = Reader.readCXXBaseSpecifiers(F, Record, Idx); Data.NumVBases = Record[Idx++]; if (Data.NumVBases) Data.VBases = Reader.readCXXBaseSpecifiers(F, Record, Idx); Reader.ReadUnresolvedSet(F, Data.Conversions, Record, Idx); Reader.ReadUnresolvedSet(F, Data.VisibleConversions, Record, Idx); assert(Data.Definition && "Data.Definition should be already set!"); Data.FirstFriend = ReadDeclAs(Record, Idx); if (Data.IsLambda) { typedef LambdaExpr::Capture Capture; CXXRecordDecl::LambdaDefinitionData &Lambda = static_cast(Data); Lambda.Dependent = Record[Idx++]; Lambda.NumCaptures = Record[Idx++]; Lambda.NumExplicitCaptures = Record[Idx++]; Lambda.ManglingNumber = Record[Idx++]; Lambda.ContextDecl = ReadDecl(Record, Idx); Lambda.Captures = (Capture*)Reader.Context.Allocate(sizeof(Capture)*Lambda.NumCaptures); Capture *ToCapture = Lambda.Captures; Lambda.MethodTyInfo = GetTypeSourceInfo(Record, Idx); for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) { SourceLocation Loc = ReadSourceLocation(Record, Idx); bool IsImplicit = Record[Idx++]; LambdaCaptureKind Kind = static_cast(Record[Idx++]); VarDecl *Var = ReadDeclAs(Record, Idx); SourceLocation EllipsisLoc = ReadSourceLocation(Record, Idx); *ToCapture++ = Capture(Loc, IsImplicit, Kind, Var, EllipsisLoc); } } } void ASTDeclReader::VisitCXXRecordDecl(CXXRecordDecl *D) { VisitRecordDecl(D); ASTContext &C = Reader.getContext(); if (Record[Idx++]) { // Determine whether this is a lambda closure type, so that we can // allocate the appropriate DefinitionData structure. bool IsLambda = Record[Idx++]; if (IsLambda) D->DefinitionData = new (C) CXXRecordDecl::LambdaDefinitionData(D, 0, false); else D->DefinitionData = new (C) struct CXXRecordDecl::DefinitionData(D); // Propagate the DefinitionData pointer to the canonical declaration, so // that all other deserialized declarations will see it. // FIXME: Complain if there already is a DefinitionData! D->getCanonicalDecl()->DefinitionData = D->DefinitionData; ReadCXXDefinitionData(*D->DefinitionData, Record, Idx); // Note that we have deserialized a definition. Any declarations // deserialized before this one will be be given the DefinitionData pointer // at the end. Reader.PendingDefinitions.insert(D); } else { // Propagate DefinitionData pointer from the canonical declaration. D->DefinitionData = D->getCanonicalDecl()->DefinitionData; } enum CXXRecKind { CXXRecNotTemplate = 0, CXXRecTemplate, CXXRecMemberSpecialization }; switch ((CXXRecKind)Record[Idx++]) { case CXXRecNotTemplate: break; case CXXRecTemplate: D->TemplateOrInstantiation = ReadDeclAs(Record, Idx); break; case CXXRecMemberSpecialization: { CXXRecordDecl *RD = ReadDeclAs(Record, Idx); TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++]; SourceLocation POI = ReadSourceLocation(Record, Idx); MemberSpecializationInfo *MSI = new (C) MemberSpecializationInfo(RD, TSK); MSI->setPointOfInstantiation(POI); D->TemplateOrInstantiation = MSI; break; } } // Load the key function to avoid deserializing every method so we can // compute it. if (D->IsCompleteDefinition) { if (CXXMethodDecl *Key = ReadDeclAs(Record, Idx)) C.KeyFunctions[D] = Key; } } void ASTDeclReader::VisitCXXMethodDecl(CXXMethodDecl *D) { VisitFunctionDecl(D); unsigned NumOverridenMethods = Record[Idx++]; while (NumOverridenMethods--) { // Avoid invariant checking of CXXMethodDecl::addOverriddenMethod, // MD may be initializing. if (CXXMethodDecl *MD = ReadDeclAs(Record, Idx)) Reader.getContext().addOverriddenMethod(D, MD); } } void ASTDeclReader::VisitCXXConstructorDecl(CXXConstructorDecl *D) { VisitCXXMethodDecl(D); D->IsExplicitSpecified = Record[Idx++]; D->ImplicitlyDefined = Record[Idx++]; llvm::tie(D->CtorInitializers, D->NumCtorInitializers) = Reader.ReadCXXCtorInitializers(F, Record, Idx); } void ASTDeclReader::VisitCXXDestructorDecl(CXXDestructorDecl *D) { VisitCXXMethodDecl(D); D->ImplicitlyDefined = Record[Idx++]; D->OperatorDelete = ReadDeclAs(Record, Idx); } void ASTDeclReader::VisitCXXConversionDecl(CXXConversionDecl *D) { VisitCXXMethodDecl(D); D->IsExplicitSpecified = Record[Idx++]; } void ASTDeclReader::VisitImportDecl(ImportDecl *D) { VisitDecl(D); D->ImportedAndComplete.setPointer(readModule(Record, Idx)); D->ImportedAndComplete.setInt(Record[Idx++]); SourceLocation *StoredLocs = reinterpret_cast(D + 1); for (unsigned I = 0, N = Record.back(); I != N; ++I) StoredLocs[I] = ReadSourceLocation(Record, Idx); ++Idx; // The number of stored source locations. } void ASTDeclReader::VisitAccessSpecDecl(AccessSpecDecl *D) { VisitDecl(D); D->setColonLoc(ReadSourceLocation(Record, Idx)); } void ASTDeclReader::VisitFriendDecl(FriendDecl *D) { VisitDecl(D); if (Record[Idx++]) // hasFriendDecl D->Friend = ReadDeclAs(Record, Idx); else D->Friend = GetTypeSourceInfo(Record, Idx); for (unsigned i = 0; i != D->NumTPLists; ++i) D->getTPLists()[i] = Reader.ReadTemplateParameterList(F, Record, Idx); D->NextFriend = Record[Idx++]; D->UnsupportedFriend = (Record[Idx++] != 0); D->FriendLoc = ReadSourceLocation(Record, Idx); } void ASTDeclReader::VisitFriendTemplateDecl(FriendTemplateDecl *D) { VisitDecl(D); unsigned NumParams = Record[Idx++]; D->NumParams = NumParams; D->Params = new TemplateParameterList*[NumParams]; for (unsigned i = 0; i != NumParams; ++i) D->Params[i] = Reader.ReadTemplateParameterList(F, Record, Idx); if (Record[Idx++]) // HasFriendDecl D->Friend = ReadDeclAs(Record, Idx); else D->Friend = GetTypeSourceInfo(Record, Idx); D->FriendLoc = ReadSourceLocation(Record, Idx); } void ASTDeclReader::VisitTemplateDecl(TemplateDecl *D) { VisitNamedDecl(D); NamedDecl *TemplatedDecl = ReadDeclAs(Record, Idx); TemplateParameterList* TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx); D->init(TemplatedDecl, TemplateParams); } ASTDeclReader::RedeclarableResult ASTDeclReader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) { RedeclarableResult Redecl = VisitRedeclarable(D); // Make sure we've allocated the Common pointer first. We do this before // VisitTemplateDecl so that getCommonPtr() can be used during initialization. RedeclarableTemplateDecl *CanonD = D->getCanonicalDecl(); if (!CanonD->Common) { CanonD->Common = CanonD->newCommon(Reader.getContext()); Reader.PendingDefinitions.insert(CanonD); } D->Common = CanonD->Common; // If this is the first declaration of the template, fill in the information // for the 'common' pointer. if (ThisDeclID == Redecl.getFirstID()) { if (RedeclarableTemplateDecl *RTD = ReadDeclAs(Record, Idx)) { assert(RTD->getKind() == D->getKind() && "InstantiatedFromMemberTemplate kind mismatch"); D->setInstantiatedFromMemberTemplate(RTD); if (Record[Idx++]) D->setMemberSpecialization(); } } VisitTemplateDecl(D); D->IdentifierNamespace = Record[Idx++]; mergeRedeclarable(D, Redecl); return Redecl; } void ASTDeclReader::VisitClassTemplateDecl(ClassTemplateDecl *D) { RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D); if (ThisDeclID == Redecl.getFirstID()) { // This ClassTemplateDecl owns a CommonPtr; read it to keep track of all of // the specializations. SmallVector SpecIDs; SpecIDs.push_back(0); // Specializations. unsigned Size = Record[Idx++]; SpecIDs[0] += Size; for (unsigned I = 0; I != Size; ++I) SpecIDs.push_back(ReadDeclID(Record, Idx)); // Partial specializations. Size = Record[Idx++]; SpecIDs[0] += Size; for (unsigned I = 0; I != Size; ++I) SpecIDs.push_back(ReadDeclID(Record, Idx)); ClassTemplateDecl::Common *CommonPtr = D->getCommonPtr(); if (SpecIDs[0]) { typedef serialization::DeclID DeclID; // FIXME: Append specializations! CommonPtr->LazySpecializations = new (Reader.getContext()) DeclID [SpecIDs.size()]; memcpy(CommonPtr->LazySpecializations, SpecIDs.data(), SpecIDs.size() * sizeof(DeclID)); } CommonPtr->InjectedClassNameType = Reader.readType(F, Record, Idx); } } void ASTDeclReader::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { VisitCXXRecordDecl(D); ASTContext &C = Reader.getContext(); if (Decl *InstD = ReadDecl(Record, Idx)) { if (ClassTemplateDecl *CTD = dyn_cast(InstD)) { D->SpecializedTemplate = CTD; } else { SmallVector TemplArgs; Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx); TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size()); ClassTemplateSpecializationDecl::SpecializedPartialSpecialization *PS = new (C) ClassTemplateSpecializationDecl:: SpecializedPartialSpecialization(); PS->PartialSpecialization = cast(InstD); PS->TemplateArgs = ArgList; D->SpecializedTemplate = PS; } } // Explicit info. if (TypeSourceInfo *TyInfo = GetTypeSourceInfo(Record, Idx)) { ClassTemplateSpecializationDecl::ExplicitSpecializationInfo *ExplicitInfo = new (C) ClassTemplateSpecializationDecl::ExplicitSpecializationInfo; ExplicitInfo->TypeAsWritten = TyInfo; ExplicitInfo->ExternLoc = ReadSourceLocation(Record, Idx); ExplicitInfo->TemplateKeywordLoc = ReadSourceLocation(Record, Idx); D->ExplicitInfo = ExplicitInfo; } SmallVector TemplArgs; Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx); D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size()); D->PointOfInstantiation = ReadSourceLocation(Record, Idx); D->SpecializationKind = (TemplateSpecializationKind)Record[Idx++]; bool writtenAsCanonicalDecl = Record[Idx++]; if (writtenAsCanonicalDecl) { ClassTemplateDecl *CanonPattern = ReadDeclAs(Record,Idx); if (D->isCanonicalDecl()) { // It's kept in the folding set. if (ClassTemplatePartialSpecializationDecl *Partial = dyn_cast(D)) { CanonPattern->getCommonPtr()->PartialSpecializations.GetOrInsertNode(Partial); } else { CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D); } } } } void ASTDeclReader::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { VisitClassTemplateSpecializationDecl(D); ASTContext &C = Reader.getContext(); D->TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx); unsigned NumArgs = Record[Idx++]; if (NumArgs) { D->NumArgsAsWritten = NumArgs; D->ArgsAsWritten = new (C) TemplateArgumentLoc[NumArgs]; for (unsigned i=0; i != NumArgs; ++i) D->ArgsAsWritten[i] = Reader.ReadTemplateArgumentLoc(F, Record, Idx); } D->SequenceNumber = Record[Idx++]; // These are read/set from/to the first declaration. if (D->getPreviousDecl() == 0) { D->InstantiatedFromMember.setPointer( ReadDeclAs(Record, Idx)); D->InstantiatedFromMember.setInt(Record[Idx++]); } } void ASTDeclReader::VisitClassScopeFunctionSpecializationDecl( ClassScopeFunctionSpecializationDecl *D) { VisitDecl(D); D->Specialization = ReadDeclAs(Record, Idx); } void ASTDeclReader::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D); if (ThisDeclID == Redecl.getFirstID()) { // This FunctionTemplateDecl owns a CommonPtr; read it. // Read the function specialization declarations. // FunctionTemplateDecl's FunctionTemplateSpecializationInfos are filled // when reading the specialized FunctionDecl. unsigned NumSpecs = Record[Idx++]; while (NumSpecs--) (void)ReadDecl(Record, Idx); } } void ASTDeclReader::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) { VisitTypeDecl(D); D->setDeclaredWithTypename(Record[Idx++]); bool Inherited = Record[Idx++]; TypeSourceInfo *DefArg = GetTypeSourceInfo(Record, Idx); D->setDefaultArgument(DefArg, Inherited); } void ASTDeclReader::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { VisitDeclaratorDecl(D); // TemplateParmPosition. D->setDepth(Record[Idx++]); D->setPosition(Record[Idx++]); if (D->isExpandedParameterPack()) { void **Data = reinterpret_cast(D + 1); for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { Data[2*I] = Reader.readType(F, Record, Idx).getAsOpaquePtr(); Data[2*I + 1] = GetTypeSourceInfo(Record, Idx); } } else { // Rest of NonTypeTemplateParmDecl. D->ParameterPack = Record[Idx++]; if (Record[Idx++]) { Expr *DefArg = Reader.ReadExpr(F); bool Inherited = Record[Idx++]; D->setDefaultArgument(DefArg, Inherited); } } } void ASTDeclReader::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) { VisitTemplateDecl(D); // TemplateParmPosition. D->setDepth(Record[Idx++]); D->setPosition(Record[Idx++]); if (D->isExpandedParameterPack()) { void **Data = reinterpret_cast(D + 1); for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); I != N; ++I) Data[I] = Reader.ReadTemplateParameterList(F, Record, Idx); } else { // Rest of TemplateTemplateParmDecl. TemplateArgumentLoc Arg = Reader.ReadTemplateArgumentLoc(F, Record, Idx); bool IsInherited = Record[Idx++]; D->setDefaultArgument(Arg, IsInherited); D->ParameterPack = Record[Idx++]; } } void ASTDeclReader::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { VisitRedeclarableTemplateDecl(D); } void ASTDeclReader::VisitStaticAssertDecl(StaticAssertDecl *D) { VisitDecl(D); D->AssertExprAndFailed.setPointer(Reader.ReadExpr(F)); D->AssertExprAndFailed.setInt(Record[Idx++]); D->Message = cast(Reader.ReadExpr(F)); D->RParenLoc = ReadSourceLocation(Record, Idx); } void ASTDeclReader::VisitEmptyDecl(EmptyDecl *D) { VisitDecl(D); } std::pair ASTDeclReader::VisitDeclContext(DeclContext *DC) { uint64_t LexicalOffset = Record[Idx++]; uint64_t VisibleOffset = Record[Idx++]; return std::make_pair(LexicalOffset, VisibleOffset); } template ASTDeclReader::RedeclarableResult ASTDeclReader::VisitRedeclarable(Redeclarable *D) { DeclID FirstDeclID = ReadDeclID(Record, Idx); // 0 indicates that this declaration was the only declaration of its entity, // and is used for space optimization. if (FirstDeclID == 0) FirstDeclID = ThisDeclID; T *FirstDecl = cast_or_null(Reader.GetDecl(FirstDeclID)); if (FirstDecl != D) { // We delay loading of the redeclaration chain to avoid deeply nested calls. // We temporarily set the first (canonical) declaration as the previous one // which is the one that matters and mark the real previous DeclID to be // loaded & attached later on. D->RedeclLink = Redeclarable::PreviousDeclLink(FirstDecl); } // Note that this declaration has been deserialized. Reader.RedeclsDeserialized.insert(static_cast(D)); // The result structure takes care to note that we need to load the // other declaration chains for this ID. return RedeclarableResult(Reader, FirstDeclID, static_cast(D)->getKind()); } /// \brief Attempts to merge the given declaration (D) with another declaration /// of the same entity. template void ASTDeclReader::mergeRedeclarable(Redeclarable *D, RedeclarableResult &Redecl) { // If modules are not available, there is no reason to perform this merge. if (!Reader.getContext().getLangOpts().Modules) return; if (FindExistingResult ExistingRes = findExisting(static_cast(D))) { if (T *Existing = ExistingRes) { T *ExistingCanon = Existing->getCanonicalDecl(); T *DCanon = static_cast(D)->getCanonicalDecl(); if (ExistingCanon != DCanon) { // Have our redeclaration link point back at the canonical declaration // of the existing declaration, so that this declaration has the // appropriate canonical declaration. D->RedeclLink = Redeclarable::PreviousDeclLink(ExistingCanon); // When we merge a namespace, update its pointer to the first namespace. if (NamespaceDecl *Namespace = dyn_cast(static_cast(D))) { Namespace->AnonOrFirstNamespaceAndInline.setPointer( static_cast(static_cast(ExistingCanon))); } // Don't introduce DCanon into the set of pending declaration chains. Redecl.suppress(); // Introduce ExistingCanon into the set of pending declaration chains, // if in fact it came from a module file. if (ExistingCanon->isFromASTFile()) { GlobalDeclID ExistingCanonID = ExistingCanon->getGlobalID(); assert(ExistingCanonID && "Unrecorded canonical declaration ID?"); if (Reader.PendingDeclChainsKnown.insert(ExistingCanonID)) Reader.PendingDeclChains.push_back(ExistingCanonID); } // If this declaration was the canonical declaration, make a note of // that. We accept the linear algorithm here because the number of // unique canonical declarations of an entity should always be tiny. if (DCanon == static_cast(D)) { SmallVectorImpl &Merged = Reader.MergedDecls[ExistingCanon]; if (std::find(Merged.begin(), Merged.end(), Redecl.getFirstID()) == Merged.end()) Merged.push_back(Redecl.getFirstID()); // If ExistingCanon did not come from a module file, introduce the // first declaration that *does* come from a module file to the // set of pending declaration chains, so that we merge this // declaration. if (!ExistingCanon->isFromASTFile() && Reader.PendingDeclChainsKnown.insert(Redecl.getFirstID())) Reader.PendingDeclChains.push_back(Merged[0]); } } } } } void ASTDeclReader::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) { VisitDecl(D); unsigned NumVars = D->varlist_size(); SmallVector Vars; Vars.reserve(NumVars); for (unsigned i = 0; i != NumVars; ++i) { Vars.push_back(cast(Reader.ReadExpr(F))); } D->setVars(Vars); } //===----------------------------------------------------------------------===// // Attribute Reading //===----------------------------------------------------------------------===// /// \brief Reads attributes from the current stream position. void ASTReader::ReadAttributes(ModuleFile &F, AttrVec &Attrs, const RecordData &Record, unsigned &Idx) { for (unsigned i = 0, e = Record[Idx++]; i != e; ++i) { Attr *New = 0; attr::Kind Kind = (attr::Kind)Record[Idx++]; SourceRange Range = ReadSourceRange(F, Record, Idx); #include "clang/Serialization/AttrPCHRead.inc" assert(New && "Unable to decode attribute?"); Attrs.push_back(New); } } //===----------------------------------------------------------------------===// // ASTReader Implementation //===----------------------------------------------------------------------===// /// \brief Note that we have loaded the declaration with the given /// Index. /// /// This routine notes that this declaration has already been loaded, /// so that future GetDecl calls will return this declaration rather /// than trying to load a new declaration. inline void ASTReader::LoadedDecl(unsigned Index, Decl *D) { assert(!DeclsLoaded[Index] && "Decl loaded twice?"); DeclsLoaded[Index] = D; } /// \brief Determine whether the consumer will be interested in seeing /// this declaration (via HandleTopLevelDecl). /// /// This routine should return true for anything that might affect /// code generation, e.g., inline function definitions, Objective-C /// declarations with metadata, etc. static bool isConsumerInterestedIn(Decl *D, bool HasBody) { // An ObjCMethodDecl is never considered as "interesting" because its // implementation container always is. if (isa(D) || isa(D) || isa(D)) return true; if (VarDecl *Var = dyn_cast(D)) return Var->isFileVarDecl() && Var->isThisDeclarationADefinition() == VarDecl::Definition; if (FunctionDecl *Func = dyn_cast(D)) return Func->doesThisDeclarationHaveABody() || HasBody; return false; } /// \brief Get the correct cursor and offset for loading a declaration. ASTReader::RecordLocation ASTReader::DeclCursorForID(DeclID ID, unsigned &RawLocation) { // See if there's an override. DeclReplacementMap::iterator It = ReplacedDecls.find(ID); if (It != ReplacedDecls.end()) { RawLocation = It->second.RawLoc; return RecordLocation(It->second.Mod, It->second.Offset); } GlobalDeclMapType::iterator I = GlobalDeclMap.find(ID); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); ModuleFile *M = I->second; const DeclOffset & DOffs = M->DeclOffsets[ID - M->BaseDeclID - NUM_PREDEF_DECL_IDS]; RawLocation = DOffs.Loc; return RecordLocation(M, DOffs.BitOffset); } ASTReader::RecordLocation ASTReader::getLocalBitOffset(uint64_t GlobalOffset) { ContinuousRangeMap::iterator I = GlobalBitOffsetsMap.find(GlobalOffset); assert(I != GlobalBitOffsetsMap.end() && "Corrupted global bit offsets map"); return RecordLocation(I->second, GlobalOffset - I->second->GlobalBitOffset); } uint64_t ASTReader::getGlobalBitOffset(ModuleFile &M, uint32_t LocalOffset) { return LocalOffset + M.GlobalBitOffset; } /// \brief Determine whether the two declarations refer to the same entity. static bool isSameEntity(NamedDecl *X, NamedDecl *Y) { assert(X->getDeclName() == Y->getDeclName() && "Declaration name mismatch!"); if (X == Y) return true; // Must be in the same context. if (!X->getDeclContext()->getRedeclContext()->Equals( Y->getDeclContext()->getRedeclContext())) return false; // Two typedefs refer to the same entity if they have the same underlying // type. if (TypedefNameDecl *TypedefX = dyn_cast(X)) if (TypedefNameDecl *TypedefY = dyn_cast(Y)) return X->getASTContext().hasSameType(TypedefX->getUnderlyingType(), TypedefY->getUnderlyingType()); // Must have the same kind. if (X->getKind() != Y->getKind()) return false; // Objective-C classes and protocols with the same name always match. if (isa(X) || isa(X)) return true; // Compatible tags match. if (TagDecl *TagX = dyn_cast(X)) { TagDecl *TagY = cast(Y); return (TagX->getTagKind() == TagY->getTagKind()) || ((TagX->getTagKind() == TTK_Struct || TagX->getTagKind() == TTK_Class || TagX->getTagKind() == TTK_Interface) && (TagY->getTagKind() == TTK_Struct || TagY->getTagKind() == TTK_Class || TagY->getTagKind() == TTK_Interface)); } // Functions with the same type and linkage match. // FIXME: This needs to cope with function templates, merging of //prototyped/non-prototyped functions, etc. if (FunctionDecl *FuncX = dyn_cast(X)) { FunctionDecl *FuncY = cast(Y); return (FuncX->getLinkage() == FuncY->getLinkage()) && FuncX->getASTContext().hasSameType(FuncX->getType(), FuncY->getType()); } // Variables with the same type and linkage match. if (VarDecl *VarX = dyn_cast(X)) { VarDecl *VarY = cast(Y); return (VarX->getLinkage() == VarY->getLinkage()) && VarX->getASTContext().hasSameType(VarX->getType(), VarY->getType()); } // Namespaces with the same name and inlinedness match. if (NamespaceDecl *NamespaceX = dyn_cast(X)) { NamespaceDecl *NamespaceY = cast(Y); return NamespaceX->isInline() == NamespaceY->isInline(); } // Identical template names and kinds match. if (isa(X)) return true; // FIXME: Many other cases to implement. return false; } ASTDeclReader::FindExistingResult::~FindExistingResult() { if (!AddResult || Existing) return; if (New->getDeclContext()->getRedeclContext()->isTranslationUnit() && Reader.SemaObj) { Reader.SemaObj->IdResolver.tryAddTopLevelDecl(New, New->getDeclName()); } else { DeclContext *DC = New->getLexicalDeclContext(); if (DC->isNamespace()) DC->addDecl(New); } } ASTDeclReader::FindExistingResult ASTDeclReader::findExisting(NamedDecl *D) { DeclarationName Name = D->getDeclName(); if (!Name) { // Don't bother trying to find unnamed declarations. FindExistingResult Result(Reader, D, /*Existing=*/0); Result.suppress(); return Result; } DeclContext *DC = D->getDeclContext()->getRedeclContext(); if (!DC->isFileContext()) return FindExistingResult(Reader); if (DC->isTranslationUnit() && Reader.SemaObj) { IdentifierResolver &IdResolver = Reader.SemaObj->IdResolver; // Temporarily consider the identifier to be up-to-date. We don't want to // cause additional lookups here. class UpToDateIdentifierRAII { IdentifierInfo *II; bool WasOutToDate; public: explicit UpToDateIdentifierRAII(IdentifierInfo *II) : II(II), WasOutToDate(false) { if (II) { WasOutToDate = II->isOutOfDate(); if (WasOutToDate) II->setOutOfDate(false); } } ~UpToDateIdentifierRAII() { if (WasOutToDate) II->setOutOfDate(true); } } UpToDate(Name.getAsIdentifierInfo()); for (IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); I != IEnd; ++I) { if (isSameEntity(*I, D)) return FindExistingResult(Reader, D, *I); } } if (DC->isNamespace()) { DeclContext::lookup_result R = DC->lookup(Name); for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { if (isSameEntity(*I, D)) return FindExistingResult(Reader, D, *I); } } return FindExistingResult(Reader, D, /*Existing=*/0); } void ASTDeclReader::attachPreviousDecl(Decl *D, Decl *previous) { assert(D && previous); if (TagDecl *TD = dyn_cast(D)) { TD->RedeclLink.setNext(cast(previous)); } else if (FunctionDecl *FD = dyn_cast(D)) { FD->RedeclLink.setNext(cast(previous)); } else if (VarDecl *VD = dyn_cast(D)) { VD->RedeclLink.setNext(cast(previous)); } else if (TypedefNameDecl *TD = dyn_cast(D)) { TD->RedeclLink.setNext(cast(previous)); } else if (ObjCInterfaceDecl *ID = dyn_cast(D)) { ID->RedeclLink.setNext(cast(previous)); } else if (ObjCProtocolDecl *PD = dyn_cast(D)) { PD->RedeclLink.setNext(cast(previous)); } else if (NamespaceDecl *ND = dyn_cast(D)) { ND->RedeclLink.setNext(cast(previous)); } else { RedeclarableTemplateDecl *TD = cast(D); TD->RedeclLink.setNext(cast(previous)); } } void ASTDeclReader::attachLatestDecl(Decl *D, Decl *Latest) { assert(D && Latest); if (TagDecl *TD = dyn_cast(D)) { TD->RedeclLink = Redeclarable::LatestDeclLink(cast(Latest)); } else if (FunctionDecl *FD = dyn_cast(D)) { FD->RedeclLink = Redeclarable::LatestDeclLink(cast(Latest)); } else if (VarDecl *VD = dyn_cast(D)) { VD->RedeclLink = Redeclarable::LatestDeclLink(cast(Latest)); } else if (TypedefNameDecl *TD = dyn_cast(D)) { TD->RedeclLink = Redeclarable::LatestDeclLink( cast(Latest)); } else if (ObjCInterfaceDecl *ID = dyn_cast(D)) { ID->RedeclLink = Redeclarable::LatestDeclLink( cast(Latest)); } else if (ObjCProtocolDecl *PD = dyn_cast(D)) { PD->RedeclLink = Redeclarable::LatestDeclLink( cast(Latest)); } else if (NamespaceDecl *ND = dyn_cast(D)) { ND->RedeclLink = Redeclarable::LatestDeclLink( cast(Latest)); } else { RedeclarableTemplateDecl *TD = cast(D); TD->RedeclLink = Redeclarable::LatestDeclLink( cast(Latest)); } } ASTReader::MergedDeclsMap::iterator ASTReader::combineStoredMergedDecls(Decl *Canon, GlobalDeclID CanonID) { // If we don't have any stored merged declarations, just look in the // merged declarations set. StoredMergedDeclsMap::iterator StoredPos = StoredMergedDecls.find(CanonID); if (StoredPos == StoredMergedDecls.end()) return MergedDecls.find(Canon); // Append the stored merged declarations to the merged declarations set. MergedDeclsMap::iterator Pos = MergedDecls.find(Canon); if (Pos == MergedDecls.end()) Pos = MergedDecls.insert(std::make_pair(Canon, SmallVector())).first; Pos->second.append(StoredPos->second.begin(), StoredPos->second.end()); StoredMergedDecls.erase(StoredPos); // Sort and uniquify the set of merged declarations. llvm::array_pod_sort(Pos->second.begin(), Pos->second.end()); Pos->second.erase(std::unique(Pos->second.begin(), Pos->second.end()), Pos->second.end()); return Pos; } void ASTReader::loadAndAttachPreviousDecl(Decl *D, serialization::DeclID ID) { Decl *previous = GetDecl(ID); ASTDeclReader::attachPreviousDecl(D, previous); } /// \brief Read the declaration at the given offset from the AST file. Decl *ASTReader::ReadDeclRecord(DeclID ID) { unsigned Index = ID - NUM_PREDEF_DECL_IDS; unsigned RawLocation = 0; RecordLocation Loc = DeclCursorForID(ID, RawLocation); llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor; // Keep track of where we are in the stream, then jump back there // after reading this declaration. SavedStreamPosition SavedPosition(DeclsCursor); ReadingKindTracker ReadingKind(Read_Decl, *this); // Note that we are loading a declaration record. Deserializing ADecl(this); DeclsCursor.JumpToBit(Loc.Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); unsigned Idx = 0; ASTDeclReader Reader(*this, *Loc.F, ID, RawLocation, Record,Idx); Decl *D = 0; switch ((DeclCode)DeclsCursor.readRecord(Code, Record)) { case DECL_CONTEXT_LEXICAL: case DECL_CONTEXT_VISIBLE: llvm_unreachable("Record cannot be de-serialized with ReadDeclRecord"); case DECL_TYPEDEF: D = TypedefDecl::CreateDeserialized(Context, ID); break; case DECL_TYPEALIAS: D = TypeAliasDecl::CreateDeserialized(Context, ID); break; case DECL_ENUM: D = EnumDecl::CreateDeserialized(Context, ID); break; case DECL_RECORD: D = RecordDecl::CreateDeserialized(Context, ID); break; case DECL_ENUM_CONSTANT: D = EnumConstantDecl::CreateDeserialized(Context, ID); break; case DECL_FUNCTION: D = FunctionDecl::CreateDeserialized(Context, ID); break; case DECL_LINKAGE_SPEC: D = LinkageSpecDecl::CreateDeserialized(Context, ID); break; case DECL_LABEL: D = LabelDecl::CreateDeserialized(Context, ID); break; case DECL_NAMESPACE: D = NamespaceDecl::CreateDeserialized(Context, ID); break; case DECL_NAMESPACE_ALIAS: D = NamespaceAliasDecl::CreateDeserialized(Context, ID); break; case DECL_USING: D = UsingDecl::CreateDeserialized(Context, ID); break; case DECL_USING_SHADOW: D = UsingShadowDecl::CreateDeserialized(Context, ID); break; case DECL_USING_DIRECTIVE: D = UsingDirectiveDecl::CreateDeserialized(Context, ID); break; case DECL_UNRESOLVED_USING_VALUE: D = UnresolvedUsingValueDecl::CreateDeserialized(Context, ID); break; case DECL_UNRESOLVED_USING_TYPENAME: D = UnresolvedUsingTypenameDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_RECORD: D = CXXRecordDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_METHOD: D = CXXMethodDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_CONSTRUCTOR: D = CXXConstructorDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_DESTRUCTOR: D = CXXDestructorDecl::CreateDeserialized(Context, ID); break; case DECL_CXX_CONVERSION: D = CXXConversionDecl::CreateDeserialized(Context, ID); break; case DECL_ACCESS_SPEC: D = AccessSpecDecl::CreateDeserialized(Context, ID); break; case DECL_FRIEND: D = FriendDecl::CreateDeserialized(Context, ID, Record[Idx++]); break; case DECL_FRIEND_TEMPLATE: D = FriendTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_TEMPLATE: D = ClassTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_TEMPLATE_SPECIALIZATION: D = ClassTemplateSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION: D = ClassTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_CLASS_SCOPE_FUNCTION_SPECIALIZATION: D = ClassScopeFunctionSpecializationDecl::CreateDeserialized(Context, ID); break; case DECL_FUNCTION_TEMPLATE: D = FunctionTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_TEMPLATE_TYPE_PARM: D = TemplateTypeParmDecl::CreateDeserialized(Context, ID); break; case DECL_NON_TYPE_TEMPLATE_PARM: D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID); break; case DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK: D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID, Record[Idx++]); break; case DECL_TEMPLATE_TEMPLATE_PARM: D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID); break; case DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK: D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID, Record[Idx++]); break; case DECL_TYPE_ALIAS_TEMPLATE: D = TypeAliasTemplateDecl::CreateDeserialized(Context, ID); break; case DECL_STATIC_ASSERT: D = StaticAssertDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_METHOD: D = ObjCMethodDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_INTERFACE: D = ObjCInterfaceDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_IVAR: D = ObjCIvarDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_PROTOCOL: D = ObjCProtocolDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_AT_DEFS_FIELD: D = ObjCAtDefsFieldDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_CATEGORY: D = ObjCCategoryDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_CATEGORY_IMPL: D = ObjCCategoryImplDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_IMPLEMENTATION: D = ObjCImplementationDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_COMPATIBLE_ALIAS: D = ObjCCompatibleAliasDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_PROPERTY: D = ObjCPropertyDecl::CreateDeserialized(Context, ID); break; case DECL_OBJC_PROPERTY_IMPL: D = ObjCPropertyImplDecl::CreateDeserialized(Context, ID); break; case DECL_FIELD: D = FieldDecl::CreateDeserialized(Context, ID); break; case DECL_INDIRECTFIELD: D = IndirectFieldDecl::CreateDeserialized(Context, ID); break; case DECL_VAR: D = VarDecl::CreateDeserialized(Context, ID); break; case DECL_IMPLICIT_PARAM: D = ImplicitParamDecl::CreateDeserialized(Context, ID); break; case DECL_PARM_VAR: D = ParmVarDecl::CreateDeserialized(Context, ID); break; case DECL_FILE_SCOPE_ASM: D = FileScopeAsmDecl::CreateDeserialized(Context, ID); break; case DECL_BLOCK: D = BlockDecl::CreateDeserialized(Context, ID); break; case DECL_MS_PROPERTY: D = MSPropertyDecl::CreateDeserialized(Context, ID); break; case DECL_CAPTURED: D = CapturedDecl::CreateDeserialized(Context, ID, Record[Idx++]); break; case DECL_CXX_BASE_SPECIFIERS: Error("attempt to read a C++ base-specifier record as a declaration"); return 0; case DECL_IMPORT: // Note: last entry of the ImportDecl record is the number of stored source // locations. D = ImportDecl::CreateDeserialized(Context, ID, Record.back()); break; case DECL_OMP_THREADPRIVATE: D = OMPThreadPrivateDecl::CreateDeserialized(Context, ID, Record[Idx++]); break; case DECL_EMPTY: D = EmptyDecl::CreateDeserialized(Context, ID); break; } assert(D && "Unknown declaration reading AST file"); LoadedDecl(Index, D); // Set the DeclContext before doing any deserialization, to make sure internal // calls to Decl::getASTContext() by Decl's methods will find the // TranslationUnitDecl without crashing. D->setDeclContext(Context.getTranslationUnitDecl()); Reader.Visit(D); // If this declaration is also a declaration context, get the // offsets for its tables of lexical and visible declarations. if (DeclContext *DC = dyn_cast(D)) { // FIXME: This should really be // DeclContext *LookupDC = DC->getPrimaryContext(); // but that can walk the redeclaration chain, which might not work yet. DeclContext *LookupDC = DC; if (isa(DC)) LookupDC = DC->getPrimaryContext(); std::pair Offsets = Reader.VisitDeclContext(DC); if (Offsets.first || Offsets.second) { if (Offsets.first != 0) DC->setHasExternalLexicalStorage(true); if (Offsets.second != 0) LookupDC->setHasExternalVisibleStorage(true); if (ReadDeclContextStorage(*Loc.F, DeclsCursor, Offsets, Loc.F->DeclContextInfos[DC])) return 0; } // Now add the pending visible updates for this decl context, if it has any. DeclContextVisibleUpdatesPending::iterator I = PendingVisibleUpdates.find(ID); if (I != PendingVisibleUpdates.end()) { // There are updates. This means the context has external visible // storage, even if the original stored version didn't. LookupDC->setHasExternalVisibleStorage(true); DeclContextVisibleUpdates &U = I->second; for (DeclContextVisibleUpdates::iterator UI = U.begin(), UE = U.end(); UI != UE; ++UI) { DeclContextInfo &Info = UI->second->DeclContextInfos[DC]; delete Info.NameLookupTableData; Info.NameLookupTableData = UI->first; } PendingVisibleUpdates.erase(I); } } assert(Idx == Record.size()); // Load any relevant update records. loadDeclUpdateRecords(ID, D); // Load the categories after recursive loading is finished. if (ObjCInterfaceDecl *Class = dyn_cast(D)) if (Class->isThisDeclarationADefinition()) loadObjCCategories(ID, Class); // If we have deserialized a declaration that has a definition the // AST consumer might need to know about, queue it. // We don't pass it to the consumer immediately because we may be in recursive // loading, and some declarations may still be initializing. if (isConsumerInterestedIn(D, Reader.hasPendingBody())) InterestingDecls.push_back(D); return D; } void ASTReader::loadDeclUpdateRecords(serialization::DeclID ID, Decl *D) { // The declaration may have been modified by files later in the chain. // If this is the case, read the record containing the updates from each file // and pass it to ASTDeclReader to make the modifications. DeclUpdateOffsetsMap::iterator UpdI = DeclUpdateOffsets.find(ID); if (UpdI != DeclUpdateOffsets.end()) { FileOffsetsTy &UpdateOffsets = UpdI->second; for (FileOffsetsTy::iterator I = UpdateOffsets.begin(), E = UpdateOffsets.end(); I != E; ++I) { ModuleFile *F = I->first; uint64_t Offset = I->second; llvm::BitstreamCursor &Cursor = F->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Offset); RecordData Record; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record); (void)RecCode; assert(RecCode == DECL_UPDATES && "Expected DECL_UPDATES record!"); unsigned Idx = 0; ASTDeclReader Reader(*this, *F, ID, 0, Record, Idx); Reader.UpdateDecl(D, *F, Record); } } } namespace { struct CompareLocalRedeclarationsInfoToID { bool operator()(const LocalRedeclarationsInfo &X, DeclID Y) { return X.FirstID < Y; } bool operator()(DeclID X, const LocalRedeclarationsInfo &Y) { return X < Y.FirstID; } bool operator()(const LocalRedeclarationsInfo &X, const LocalRedeclarationsInfo &Y) { return X.FirstID < Y.FirstID; } bool operator()(DeclID X, DeclID Y) { return X < Y; } }; /// \brief Module visitor class that finds all of the redeclarations of a /// class RedeclChainVisitor { ASTReader &Reader; SmallVectorImpl &SearchDecls; llvm::SmallPtrSet &Deserialized; GlobalDeclID CanonID; SmallVector Chain; public: RedeclChainVisitor(ASTReader &Reader, SmallVectorImpl &SearchDecls, llvm::SmallPtrSet &Deserialized, GlobalDeclID CanonID) : Reader(Reader), SearchDecls(SearchDecls), Deserialized(Deserialized), CanonID(CanonID) { for (unsigned I = 0, N = SearchDecls.size(); I != N; ++I) addToChain(Reader.GetDecl(SearchDecls[I])); } static bool visit(ModuleFile &M, bool Preorder, void *UserData) { if (Preorder) return false; return static_cast(UserData)->visit(M); } void addToChain(Decl *D) { if (!D) return; if (Deserialized.erase(D)) Chain.push_back(D); } void searchForID(ModuleFile &M, GlobalDeclID GlobalID) { // Map global ID of the first declaration down to the local ID // used in this module file. DeclID ID = Reader.mapGlobalIDToModuleFileGlobalID(M, GlobalID); if (!ID) return; // Perform a binary search to find the local redeclarations for this // declaration (if any). const LocalRedeclarationsInfo *Result = std::lower_bound(M.RedeclarationsMap, M.RedeclarationsMap + M.LocalNumRedeclarationsInMap, ID, CompareLocalRedeclarationsInfoToID()); if (Result == M.RedeclarationsMap + M.LocalNumRedeclarationsInMap || Result->FirstID != ID) { // If we have a previously-canonical singleton declaration that was // merged into another redeclaration chain, create a trivial chain // for this single declaration so that it will get wired into the // complete redeclaration chain. if (GlobalID != CanonID && GlobalID - NUM_PREDEF_DECL_IDS >= M.BaseDeclID && GlobalID - NUM_PREDEF_DECL_IDS < M.BaseDeclID + M.LocalNumDecls) { addToChain(Reader.GetDecl(GlobalID)); } return; } // Dig out all of the redeclarations. unsigned Offset = Result->Offset; unsigned N = M.RedeclarationChains[Offset]; M.RedeclarationChains[Offset++] = 0; // Don't try to deserialize again for (unsigned I = 0; I != N; ++I) addToChain(Reader.GetLocalDecl(M, M.RedeclarationChains[Offset++])); } bool visit(ModuleFile &M) { // Visit each of the declarations. for (unsigned I = 0, N = SearchDecls.size(); I != N; ++I) searchForID(M, SearchDecls[I]); return false; } ArrayRef getChain() const { return Chain; } }; } void ASTReader::loadPendingDeclChain(serialization::GlobalDeclID ID) { Decl *D = GetDecl(ID); Decl *CanonDecl = D->getCanonicalDecl(); // Determine the set of declaration IDs we'll be searching for. SmallVector SearchDecls; GlobalDeclID CanonID = 0; if (D == CanonDecl) { SearchDecls.push_back(ID); // Always first. CanonID = ID; } MergedDeclsMap::iterator MergedPos = combineStoredMergedDecls(CanonDecl, ID); if (MergedPos != MergedDecls.end()) SearchDecls.append(MergedPos->second.begin(), MergedPos->second.end()); // Build up the list of redeclarations. RedeclChainVisitor Visitor(*this, SearchDecls, RedeclsDeserialized, CanonID); ModuleMgr.visitDepthFirst(&RedeclChainVisitor::visit, &Visitor); // Retrieve the chains. ArrayRef Chain = Visitor.getChain(); if (Chain.empty()) return; // Hook up the chains. Decl *MostRecent = CanonDecl->getMostRecentDecl(); for (unsigned I = 0, N = Chain.size(); I != N; ++I) { if (Chain[I] == CanonDecl) continue; ASTDeclReader::attachPreviousDecl(Chain[I], MostRecent); MostRecent = Chain[I]; } ASTDeclReader::attachLatestDecl(CanonDecl, MostRecent); } namespace { struct CompareObjCCategoriesInfo { bool operator()(const ObjCCategoriesInfo &X, DeclID Y) { return X.DefinitionID < Y; } bool operator()(DeclID X, const ObjCCategoriesInfo &Y) { return X < Y.DefinitionID; } bool operator()(const ObjCCategoriesInfo &X, const ObjCCategoriesInfo &Y) { return X.DefinitionID < Y.DefinitionID; } bool operator()(DeclID X, DeclID Y) { return X < Y; } }; /// \brief Given an ObjC interface, goes through the modules and links to the /// interface all the categories for it. class ObjCCategoriesVisitor { ASTReader &Reader; serialization::GlobalDeclID InterfaceID; ObjCInterfaceDecl *Interface; llvm::SmallPtrSet &Deserialized; unsigned PreviousGeneration; ObjCCategoryDecl *Tail; llvm::DenseMap NameCategoryMap; void add(ObjCCategoryDecl *Cat) { // Only process each category once. if (!Deserialized.erase(Cat)) return; // Check for duplicate categories. if (Cat->getDeclName()) { ObjCCategoryDecl *&Existing = NameCategoryMap[Cat->getDeclName()]; if (Existing && Reader.getOwningModuleFile(Existing) != Reader.getOwningModuleFile(Cat)) { // FIXME: We should not warn for duplicates in diamond: // // MT // // / \ // // ML MR // // \ / // // MB // // // If there are duplicates in ML/MR, there will be warning when // creating MB *and* when importing MB. We should not warn when // importing. Reader.Diag(Cat->getLocation(), diag::warn_dup_category_def) << Interface->getDeclName() << Cat->getDeclName(); Reader.Diag(Existing->getLocation(), diag::note_previous_definition); } else if (!Existing) { // Record this category. Existing = Cat; } } // Add this category to the end of the chain. if (Tail) ASTDeclReader::setNextObjCCategory(Tail, Cat); else Interface->setCategoryListRaw(Cat); Tail = Cat; } public: ObjCCategoriesVisitor(ASTReader &Reader, serialization::GlobalDeclID InterfaceID, ObjCInterfaceDecl *Interface, llvm::SmallPtrSet &Deserialized, unsigned PreviousGeneration) : Reader(Reader), InterfaceID(InterfaceID), Interface(Interface), Deserialized(Deserialized), PreviousGeneration(PreviousGeneration), Tail(0) { // Populate the name -> category map with the set of known categories. for (ObjCInterfaceDecl::known_categories_iterator Cat = Interface->known_categories_begin(), CatEnd = Interface->known_categories_end(); Cat != CatEnd; ++Cat) { if (Cat->getDeclName()) NameCategoryMap[Cat->getDeclName()] = *Cat; // Keep track of the tail of the category list. Tail = *Cat; } } static bool visit(ModuleFile &M, void *UserData) { return static_cast(UserData)->visit(M); } bool visit(ModuleFile &M) { // If we've loaded all of the category information we care about from // this module file, we're done. if (M.Generation <= PreviousGeneration) return true; // Map global ID of the definition down to the local ID used in this // module file. If there is no such mapping, we'll find nothing here // (or in any module it imports). DeclID LocalID = Reader.mapGlobalIDToModuleFileGlobalID(M, InterfaceID); if (!LocalID) return true; // Perform a binary search to find the local redeclarations for this // declaration (if any). const ObjCCategoriesInfo *Result = std::lower_bound(M.ObjCCategoriesMap, M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap, LocalID, CompareObjCCategoriesInfo()); if (Result == M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap || Result->DefinitionID != LocalID) { // We didn't find anything. If the class definition is in this module // file, then the module files it depends on cannot have any categories, // so suppress further lookup. return Reader.isDeclIDFromModule(InterfaceID, M); } // We found something. Dig out all of the categories. unsigned Offset = Result->Offset; unsigned N = M.ObjCCategories[Offset]; M.ObjCCategories[Offset++] = 0; // Don't try to deserialize again for (unsigned I = 0; I != N; ++I) add(cast_or_null( Reader.GetLocalDecl(M, M.ObjCCategories[Offset++]))); return true; } }; } void ASTReader::loadObjCCategories(serialization::GlobalDeclID ID, ObjCInterfaceDecl *D, unsigned PreviousGeneration) { ObjCCategoriesVisitor Visitor(*this, ID, D, CategoriesDeserialized, PreviousGeneration); ModuleMgr.visit(ObjCCategoriesVisitor::visit, &Visitor); } void ASTDeclReader::UpdateDecl(Decl *D, ModuleFile &ModuleFile, const RecordData &Record) { unsigned Idx = 0; while (Idx < Record.size()) { switch ((DeclUpdateKind)Record[Idx++]) { case UPD_CXX_ADDED_IMPLICIT_MEMBER: cast(D)->addedMember(Reader.ReadDecl(ModuleFile, Record, Idx)); break; case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION: // It will be added to the template's specializations set when loaded. (void)Reader.ReadDecl(ModuleFile, Record, Idx); break; case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: { NamespaceDecl *Anon = Reader.ReadDeclAs(ModuleFile, Record, Idx); // Each module has its own anonymous namespace, which is disjoint from // any other module's anonymous namespaces, so don't attach the anonymous // namespace at all. if (ModuleFile.Kind != MK_Module) { if (TranslationUnitDecl *TU = dyn_cast(D)) TU->setAnonymousNamespace(Anon); else cast(D)->setAnonymousNamespace(Anon); } break; } case UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER: cast(D)->getMemberSpecializationInfo()->setPointOfInstantiation( Reader.ReadSourceLocation(ModuleFile, Record, Idx)); break; } } }