// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines BugReporter, a utility class for generating // PathDiagnostics. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "BugReporter" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtObjC.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/raw_ostream.h" #include using namespace clang; using namespace ento; STATISTIC(MaxBugClassSize, "The maximum number of bug reports in the same equivalence class"); STATISTIC(MaxValidBugClassSize, "The maximum number of bug reports in the same equivalence class " "where at least one report is valid (not suppressed)"); BugReporterVisitor::~BugReporterVisitor() {} void BugReporterContext::anchor() {} //===----------------------------------------------------------------------===// // Helper routines for walking the ExplodedGraph and fetching statements. //===----------------------------------------------------------------------===// static const Stmt *GetPreviousStmt(const ExplodedNode *N) { for (N = N->getFirstPred(); N; N = N->getFirstPred()) if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) return S; return 0; } static inline const Stmt* GetCurrentOrPreviousStmt(const ExplodedNode *N) { if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) return S; return GetPreviousStmt(N); } //===----------------------------------------------------------------------===// // Diagnostic cleanup. //===----------------------------------------------------------------------===// static PathDiagnosticEventPiece * eventsDescribeSameCondition(PathDiagnosticEventPiece *X, PathDiagnosticEventPiece *Y) { // Prefer diagnostics that come from ConditionBRVisitor over // those that came from TrackConstraintBRVisitor. const void *tagPreferred = ConditionBRVisitor::getTag(); const void *tagLesser = TrackConstraintBRVisitor::getTag(); if (X->getLocation() != Y->getLocation()) return 0; if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) return X; if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) return Y; return 0; } /// An optimization pass over PathPieces that removes redundant diagnostics /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both /// BugReporterVisitors use different methods to generate diagnostics, with /// one capable of emitting diagnostics in some cases but not in others. This /// can lead to redundant diagnostic pieces at the same point in a path. static void removeRedundantMsgs(PathPieces &path) { unsigned N = path.size(); if (N < 2) return; // NOTE: this loop intentionally is not using an iterator. Instead, we // are streaming the path and modifying it in place. This is done by // grabbing the front, processing it, and if we decide to keep it append // it to the end of the path. The entire path is processed in this way. for (unsigned i = 0; i < N; ++i) { IntrusiveRefCntPtr piece(path.front()); path.pop_front(); switch (piece->getKind()) { case clang::ento::PathDiagnosticPiece::Call: removeRedundantMsgs(cast(piece)->path); break; case clang::ento::PathDiagnosticPiece::Macro: removeRedundantMsgs(cast(piece)->subPieces); break; case clang::ento::PathDiagnosticPiece::ControlFlow: break; case clang::ento::PathDiagnosticPiece::Event: { if (i == N-1) break; if (PathDiagnosticEventPiece *nextEvent = dyn_cast(path.front().getPtr())) { PathDiagnosticEventPiece *event = cast(piece); // Check to see if we should keep one of the two pieces. If we // come up with a preference, record which piece to keep, and consume // another piece from the path. if (PathDiagnosticEventPiece *pieceToKeep = eventsDescribeSameCondition(event, nextEvent)) { piece = pieceToKeep; path.pop_front(); ++i; } } break; } } path.push_back(piece); } } /// A map from PathDiagnosticPiece to the LocationContext of the inlined /// function call it represents. typedef llvm::DenseMap LocationContextMap; /// Recursively scan through a path and prune out calls and macros pieces /// that aren't needed. Return true if afterwards the path contains /// "interesting stuff" which means it shouldn't be pruned from the parent path. static bool removeUnneededCalls(PathPieces &pieces, BugReport *R, LocationContextMap &LCM) { bool containsSomethingInteresting = false; const unsigned N = pieces.size(); for (unsigned i = 0 ; i < N ; ++i) { // Remove the front piece from the path. If it is still something we // want to keep once we are done, we will push it back on the end. IntrusiveRefCntPtr piece(pieces.front()); pieces.pop_front(); // Throw away pieces with invalid locations. Note that we can't throw away // calls just yet because they might have something interesting inside them. // If so, their locations will be adjusted as necessary later. if (piece->getKind() != PathDiagnosticPiece::Call && piece->getLocation().asLocation().isInvalid()) continue; switch (piece->getKind()) { case PathDiagnosticPiece::Call: { PathDiagnosticCallPiece *call = cast(piece); // Check if the location context is interesting. assert(LCM.count(&call->path)); if (R->isInteresting(LCM[&call->path])) { containsSomethingInteresting = true; break; } if (!removeUnneededCalls(call->path, R, LCM)) continue; containsSomethingInteresting = true; break; } case PathDiagnosticPiece::Macro: { PathDiagnosticMacroPiece *macro = cast(piece); if (!removeUnneededCalls(macro->subPieces, R, LCM)) continue; containsSomethingInteresting = true; break; } case PathDiagnosticPiece::Event: { PathDiagnosticEventPiece *event = cast(piece); // We never throw away an event, but we do throw it away wholesale // as part of a path if we throw the entire path away. containsSomethingInteresting |= !event->isPrunable(); break; } case PathDiagnosticPiece::ControlFlow: break; } pieces.push_back(piece); } return containsSomethingInteresting; } /// Recursively scan through a path and make sure that all call pieces have /// valid locations. Note that all other pieces with invalid locations should /// have already been pruned out. static void adjustCallLocations(PathPieces &Pieces, PathDiagnosticLocation *LastCallLocation = 0) { for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) { PathDiagnosticCallPiece *Call = dyn_cast(*I); if (!Call) { assert((*I)->getLocation().asLocation().isValid()); continue; } if (LastCallLocation) { if (!Call->callEnter.asLocation().isValid() || Call->getCaller()->isImplicit()) Call->callEnter = *LastCallLocation; if (!Call->callReturn.asLocation().isValid() || Call->getCaller()->isImplicit()) Call->callReturn = *LastCallLocation; } // Recursively clean out the subclass. Keep this call around if // it contains any informative diagnostics. PathDiagnosticLocation *ThisCallLocation; if (Call->callEnterWithin.asLocation().isValid() && !Call->getCallee()->isImplicit()) ThisCallLocation = &Call->callEnterWithin; else ThisCallLocation = &Call->callEnter; assert(ThisCallLocation && "Outermost call has an invalid location"); adjustCallLocations(Call->path, ThisCallLocation); } } //===----------------------------------------------------------------------===// // PathDiagnosticBuilder and its associated routines and helper objects. //===----------------------------------------------------------------------===// namespace { class NodeMapClosure : public BugReport::NodeResolver { InterExplodedGraphMap &M; public: NodeMapClosure(InterExplodedGraphMap &m) : M(m) {} const ExplodedNode *getOriginalNode(const ExplodedNode *N) { return M.lookup(N); } }; class PathDiagnosticBuilder : public BugReporterContext { BugReport *R; PathDiagnosticConsumer *PDC; NodeMapClosure NMC; public: const LocationContext *LC; PathDiagnosticBuilder(GRBugReporter &br, BugReport *r, InterExplodedGraphMap &Backmap, PathDiagnosticConsumer *pdc) : BugReporterContext(br), R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext()) {} PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, const ExplodedNode *N); BugReport *getBugReport() { return R; } Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } ParentMap& getParentMap() { return LC->getParentMap(); } const Stmt *getParent(const Stmt *S) { return getParentMap().getParent(S); } virtual NodeMapClosure& getNodeResolver() { return NMC; } PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive; } bool supportsLogicalOpControlFlow() const { return PDC ? PDC->supportsLogicalOpControlFlow() : true; } }; } // end anonymous namespace PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N)) return PathDiagnosticLocation(S, getSourceManager(), LC); return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), getSourceManager()); } PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, const ExplodedNode *N) { // Slow, but probably doesn't matter. if (os.str().empty()) os << ' '; const PathDiagnosticLocation &Loc = ExecutionContinues(N); if (Loc.asStmt()) os << "Execution continues on line " << getSourceManager().getExpansionLineNumber(Loc.asLocation()) << '.'; else { os << "Execution jumps to the end of the "; const Decl *D = N->getLocationContext()->getDecl(); if (isa(D)) os << "method"; else if (isa(D)) os << "function"; else { assert(isa(D)); os << "anonymous block"; } os << '.'; } return Loc; } static bool IsNested(const Stmt *S, ParentMap &PM) { if (isa(S) && PM.isConsumedExpr(cast(S))) return true; const Stmt *Parent = PM.getParentIgnoreParens(S); if (Parent) switch (Parent->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::DoStmtClass: case Stmt::WhileStmtClass: return true; default: break; } return false; } PathDiagnosticLocation PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { assert(S && "Null Stmt *passed to getEnclosingStmtLocation"); ParentMap &P = getParentMap(); SourceManager &SMgr = getSourceManager(); while (IsNested(S, P)) { const Stmt *Parent = P.getParentIgnoreParens(S); if (!Parent) break; switch (Parent->getStmtClass()) { case Stmt::BinaryOperatorClass: { const BinaryOperator *B = cast(Parent); if (B->isLogicalOp()) return PathDiagnosticLocation(S, SMgr, LC); break; } case Stmt::CompoundStmtClass: case Stmt::StmtExprClass: return PathDiagnosticLocation(S, SMgr, LC); case Stmt::ChooseExprClass: // Similar to '?' if we are referring to condition, just have the edge // point to the entire choose expression. if (cast(Parent)->getCond() == S) return PathDiagnosticLocation(Parent, SMgr, LC); else return PathDiagnosticLocation(S, SMgr, LC); case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: // For '?', if we are referring to condition, just have the edge point // to the entire '?' expression. if (cast(Parent)->getCond() == S) return PathDiagnosticLocation(Parent, SMgr, LC); else return PathDiagnosticLocation(S, SMgr, LC); case Stmt::DoStmtClass: return PathDiagnosticLocation(S, SMgr, LC); case Stmt::ForStmtClass: if (cast(Parent)->getBody() == S) return PathDiagnosticLocation(S, SMgr, LC); break; case Stmt::IfStmtClass: if (cast(Parent)->getCond() != S) return PathDiagnosticLocation(S, SMgr, LC); break; case Stmt::ObjCForCollectionStmtClass: if (cast(Parent)->getBody() == S) return PathDiagnosticLocation(S, SMgr, LC); break; case Stmt::WhileStmtClass: if (cast(Parent)->getCond() != S) return PathDiagnosticLocation(S, SMgr, LC); break; default: break; } S = Parent; } assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); // Special case: DeclStmts can appear in for statement declarations, in which // case the ForStmt is the context. if (isa(S)) { if (const Stmt *Parent = P.getParent(S)) { switch (Parent->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::ObjCForCollectionStmtClass: return PathDiagnosticLocation(Parent, SMgr, LC); default: break; } } } else if (isa(S)) { // Special case: the binary operator represents the initialization // code in a for statement (this can happen when the variable being // initialized is an old variable. if (const ForStmt *FS = dyn_cast_or_null(P.getParentIgnoreParens(S))) { if (FS->getInit() == S) return PathDiagnosticLocation(FS, SMgr, LC); } } return PathDiagnosticLocation(S, SMgr, LC); } //===----------------------------------------------------------------------===// // "Visitors only" path diagnostic generation algorithm. //===----------------------------------------------------------------------===// static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, ArrayRef visitors) { // All path generation skips the very first node (the error node). // This is because there is special handling for the end-of-path note. N = N->getFirstPred(); if (!N) return true; BugReport *R = PDB.getBugReport(); while (const ExplodedNode *Pred = N->getFirstPred()) { for (ArrayRef::iterator I = visitors.begin(), E = visitors.end(); I != E; ++I) { // Visit all the node pairs, but throw the path pieces away. PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R); delete Piece; } N = Pred; } return R->isValid(); } //===----------------------------------------------------------------------===// // "Minimal" path diagnostic generation algorithm. //===----------------------------------------------------------------------===// typedef std::pair StackDiagPair; typedef SmallVector StackDiagVector; static void updateStackPiecesWithMessage(PathDiagnosticPiece *P, StackDiagVector &CallStack) { // If the piece contains a special message, add it to all the call // pieces on the active stack. if (PathDiagnosticEventPiece *ep = dyn_cast(P)) { if (ep->hasCallStackHint()) for (StackDiagVector::iterator I = CallStack.begin(), E = CallStack.end(); I != E; ++I) { PathDiagnosticCallPiece *CP = I->first; const ExplodedNode *N = I->second; std::string stackMsg = ep->getCallStackMessage(N); // The last message on the path to final bug is the most important // one. Since we traverse the path backwards, do not add the message // if one has been previously added. if (!CP->hasCallStackMessage()) CP->setCallStackMessage(stackMsg); } } } static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM); static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, LocationContextMap &LCM, ArrayRef visitors) { SourceManager& SMgr = PDB.getSourceManager(); const LocationContext *LC = PDB.LC; const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin()); StackDiagVector CallStack; while (NextNode) { N = NextNode; PDB.LC = N->getLocationContext(); NextNode = N->getFirstPred(); ProgramPoint P = N->getLocation(); do { if (Optional CE = P.getAs()) { PathDiagnosticCallPiece *C = PathDiagnosticCallPiece::construct(N, *CE, SMgr); // Record the mapping from call piece to LocationContext. LCM[&C->path] = CE->getCalleeContext(); PD.getActivePath().push_front(C); PD.pushActivePath(&C->path); CallStack.push_back(StackDiagPair(C, N)); break; } if (Optional CE = P.getAs()) { // Flush all locations, and pop the active path. bool VisitedEntireCall = PD.isWithinCall(); PD.popActivePath(); // Either we just added a bunch of stuff to the top-level path, or // we have a previous CallExitEnd. If the former, it means that the // path terminated within a function call. We must then take the // current contents of the active path and place it within // a new PathDiagnosticCallPiece. PathDiagnosticCallPiece *C; if (VisitedEntireCall) { C = cast(PD.getActivePath().front()); } else { const Decl *Caller = CE->getLocationContext()->getDecl(); C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); // Record the mapping from call piece to LocationContext. LCM[&C->path] = CE->getCalleeContext(); } C->setCallee(*CE, SMgr); if (!CallStack.empty()) { assert(CallStack.back().first == C); CallStack.pop_back(); } break; } if (Optional BE = P.getAs()) { const CFGBlock *Src = BE->getSrc(); const CFGBlock *Dst = BE->getDst(); const Stmt *T = Src->getTerminator(); if (!T) break; PathDiagnosticLocation Start = PathDiagnosticLocation::createBegin(T, SMgr, N->getLocationContext()); switch (T->getStmtClass()) { default: break; case Stmt::GotoStmtClass: case Stmt::IndirectGotoStmtClass: { const Stmt *S = PathDiagnosticLocation::getNextStmt(N); if (!S) break; std::string sbuf; llvm::raw_string_ostream os(sbuf); const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); break; } case Stmt::SwitchStmtClass: { // Figure out what case arm we took. std::string sbuf; llvm::raw_string_ostream os(sbuf); if (const Stmt *S = Dst->getLabel()) { PathDiagnosticLocation End(S, SMgr, LC); switch (S->getStmtClass()) { default: os << "No cases match in the switch statement. " "Control jumps to line " << End.asLocation().getExpansionLineNumber(); break; case Stmt::DefaultStmtClass: os << "Control jumps to the 'default' case at line " << End.asLocation().getExpansionLineNumber(); break; case Stmt::CaseStmtClass: { os << "Control jumps to 'case "; const CaseStmt *Case = cast(S); const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); // Determine if it is an enum. bool GetRawInt = true; if (const DeclRefExpr *DR = dyn_cast(LHS)) { // FIXME: Maybe this should be an assertion. Are there cases // were it is not an EnumConstantDecl? const EnumConstantDecl *D = dyn_cast(DR->getDecl()); if (D) { GetRawInt = false; os << *D; } } if (GetRawInt) os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); os << ":' at line " << End.asLocation().getExpansionLineNumber(); break; } } PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } else { os << "'Default' branch taken. "; const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } break; } case Stmt::BreakStmtClass: case Stmt::ContinueStmtClass: { std::string sbuf; llvm::raw_string_ostream os(sbuf); PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); break; } // Determine control-flow for ternary '?'. case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "'?' condition is "; if (*(Src->succ_begin()+1) == Dst) os << "false"; else os << "true"; PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); break; } // Determine control-flow for short-circuited '&&' and '||'. case Stmt::BinaryOperatorClass: { if (!PDB.supportsLogicalOpControlFlow()) break; const BinaryOperator *B = cast(T); std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Left side of '"; if (B->getOpcode() == BO_LAnd) { os << "&&" << "' is "; if (*(Src->succ_begin()+1) == Dst) { os << "false"; PathDiagnosticLocation End(B->getLHS(), SMgr, LC); PathDiagnosticLocation Start = PathDiagnosticLocation::createOperatorLoc(B, SMgr); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } else { os << "true"; PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); PathDiagnosticLocation End = PDB.ExecutionContinues(N); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } } else { assert(B->getOpcode() == BO_LOr); os << "||" << "' is "; if (*(Src->succ_begin()+1) == Dst) { os << "false"; PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); PathDiagnosticLocation End = PDB.ExecutionContinues(N); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } else { os << "true"; PathDiagnosticLocation End(B->getLHS(), SMgr, LC); PathDiagnosticLocation Start = PathDiagnosticLocation::createOperatorLoc(B, SMgr); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } } break; } case Stmt::DoStmtClass: { if (*(Src->succ_begin()) == Dst) { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Loop condition is true. "; PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } else { PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, "Loop condition is false. Exiting loop")); } break; } case Stmt::WhileStmtClass: case Stmt::ForStmtClass: { if (*(Src->succ_begin()+1) == Dst) { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Loop condition is false. "; PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, os.str())); } else { PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, "Loop condition is true. Entering loop body")); } break; } case Stmt::IfStmtClass: { PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); if (*(Src->succ_begin()+1) == Dst) PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, "Taking false branch")); else PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( Start, End, "Taking true branch")); break; } } } } while(0); if (NextNode) { // Add diagnostic pieces from custom visitors. BugReport *R = PDB.getBugReport(); for (ArrayRef::iterator I = visitors.begin(), E = visitors.end(); I != E; ++I) { if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) { PD.getActivePath().push_front(p); updateStackPiecesWithMessage(p, CallStack); } } } } if (!PDB.getBugReport()->isValid()) return false; // After constructing the full PathDiagnostic, do a pass over it to compact // PathDiagnosticPieces that occur within a macro. CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager()); return true; } //===----------------------------------------------------------------------===// // "Extensive" PathDiagnostic generation. //===----------------------------------------------------------------------===// static bool IsControlFlowExpr(const Stmt *S) { const Expr *E = dyn_cast(S); if (!E) return false; E = E->IgnoreParenCasts(); if (isa(E)) return true; if (const BinaryOperator *B = dyn_cast(E)) if (B->isLogicalOp()) return true; return false; } namespace { class ContextLocation : public PathDiagnosticLocation { bool IsDead; public: ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) : PathDiagnosticLocation(L), IsDead(isdead) {} void markDead() { IsDead = true; } bool isDead() const { return IsDead; } }; static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, const LocationContext *LC, bool firstCharOnly = false) { if (const Stmt *S = L.asStmt()) { const Stmt *Original = S; while (1) { // Adjust the location for some expressions that are best referenced // by one of their subexpressions. switch (S->getStmtClass()) { default: break; case Stmt::ParenExprClass: case Stmt::GenericSelectionExprClass: S = cast(S)->IgnoreParens(); firstCharOnly = true; continue; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: S = cast(S)->getCond(); firstCharOnly = true; continue; case Stmt::ChooseExprClass: S = cast(S)->getCond(); firstCharOnly = true; continue; case Stmt::BinaryOperatorClass: S = cast(S)->getLHS(); firstCharOnly = true; continue; } break; } if (S != Original) L = PathDiagnosticLocation(S, L.getManager(), LC); } if (firstCharOnly) L = PathDiagnosticLocation::createSingleLocation(L); return L; } class EdgeBuilder { std::vector CLocs; typedef std::vector::iterator iterator; PathDiagnostic &PD; PathDiagnosticBuilder &PDB; PathDiagnosticLocation PrevLoc; bool IsConsumedExpr(const PathDiagnosticLocation &L); bool containsLocation(const PathDiagnosticLocation &Container, const PathDiagnosticLocation &Containee); PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); void popLocation() { if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { // For contexts, we only one the first character as the range. rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true)); } CLocs.pop_back(); } public: EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) : PD(pd), PDB(pdb) { // If the PathDiagnostic already has pieces, add the enclosing statement // of the first piece as a context as well. if (!PD.path.empty()) { PrevLoc = (*PD.path.begin())->getLocation(); if (const Stmt *S = PrevLoc.asStmt()) addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); } } ~EdgeBuilder() { while (!CLocs.empty()) popLocation(); // Finally, add an initial edge from the start location of the first // statement (if it doesn't already exist). PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin( PDB.LC, PDB.getSourceManager()); if (L.isValid()) rawAddEdge(L); } void flushLocations() { while (!CLocs.empty()) popLocation(); PrevLoc = PathDiagnosticLocation(); } void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false, bool IsPostJump = false); void rawAddEdge(PathDiagnosticLocation NewLoc); void addContext(const Stmt *S); void addContext(const PathDiagnosticLocation &L); void addExtendedContext(const Stmt *S); }; } // end anonymous namespace PathDiagnosticLocation EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { if (const Stmt *S = L.asStmt()) { if (IsControlFlowExpr(S)) return L; return PDB.getEnclosingStmtLocation(S); } return L; } bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, const PathDiagnosticLocation &Containee) { if (Container == Containee) return true; if (Container.asDecl()) return true; if (const Stmt *S = Containee.asStmt()) if (const Stmt *ContainerS = Container.asStmt()) { while (S) { if (S == ContainerS) return true; S = PDB.getParent(S); } return false; } // Less accurate: compare using source ranges. SourceRange ContainerR = Container.asRange(); SourceRange ContaineeR = Containee.asRange(); SourceManager &SM = PDB.getSourceManager(); SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin()); SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd()); SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin()); SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd()); unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg); unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd); unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg); unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd); assert(ContainerBegLine <= ContainerEndLine); assert(ContaineeBegLine <= ContaineeEndLine); return (ContainerBegLine <= ContaineeBegLine && ContainerEndLine >= ContaineeEndLine && (ContainerBegLine != ContaineeBegLine || SM.getExpansionColumnNumber(ContainerRBeg) <= SM.getExpansionColumnNumber(ContaineeRBeg)) && (ContainerEndLine != ContaineeEndLine || SM.getExpansionColumnNumber(ContainerREnd) >= SM.getExpansionColumnNumber(ContaineeREnd))); } void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { if (!PrevLoc.isValid()) { PrevLoc = NewLoc; return; } const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC); const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC); if (PrevLocClean.asLocation().isInvalid()) { PrevLoc = NewLoc; return; } if (NewLocClean.asLocation() == PrevLocClean.asLocation()) return; // FIXME: Ignore intra-macro edges for now. if (NewLocClean.asLocation().getExpansionLoc() == PrevLocClean.asLocation().getExpansionLoc()) return; PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean)); PrevLoc = NewLoc; } void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd, bool IsPostJump) { if (!alwaysAdd && NewLoc.asLocation().isMacroID()) return; const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); while (!CLocs.empty()) { ContextLocation &TopContextLoc = CLocs.back(); // Is the top location context the same as the one for the new location? if (TopContextLoc == CLoc) { if (alwaysAdd) { if (IsConsumedExpr(TopContextLoc)) TopContextLoc.markDead(); rawAddEdge(NewLoc); } if (IsPostJump) TopContextLoc.markDead(); return; } if (containsLocation(TopContextLoc, CLoc)) { if (alwaysAdd) { rawAddEdge(NewLoc); if (IsConsumedExpr(CLoc)) { CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true)); return; } } CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump)); return; } // Context does not contain the location. Flush it. popLocation(); } // If we reach here, there is no enclosing context. Just add the edge. rawAddEdge(NewLoc); } bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { if (const Expr *X = dyn_cast_or_null(L.asStmt())) return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); return false; } void EdgeBuilder::addExtendedContext(const Stmt *S) { if (!S) return; const Stmt *Parent = PDB.getParent(S); while (Parent) { if (isa(Parent)) Parent = PDB.getParent(Parent); else break; } if (Parent) { switch (Parent->getStmtClass()) { case Stmt::DoStmtClass: case Stmt::ObjCAtSynchronizedStmtClass: addContext(Parent); default: break; } } addContext(S); } void EdgeBuilder::addContext(const Stmt *S) { if (!S) return; PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC); addContext(L); } void EdgeBuilder::addContext(const PathDiagnosticLocation &L) { while (!CLocs.empty()) { const PathDiagnosticLocation &TopContextLoc = CLocs.back(); // Is the top location context the same as the one for the new location? if (TopContextLoc == L) return; if (containsLocation(TopContextLoc, L)) { CLocs.push_back(L); return; } // Context does not contain the location. Flush it. popLocation(); } CLocs.push_back(L); } // Cone-of-influence: support the reverse propagation of "interesting" symbols // and values by tracing interesting calculations backwards through evaluated // expressions along a path. This is probably overly complicated, but the idea // is that if an expression computed an "interesting" value, the child // expressions are are also likely to be "interesting" as well (which then // propagates to the values they in turn compute). This reverse propagation // is needed to track interesting correlations across function call boundaries, // where formal arguments bind to actual arguments, etc. This is also needed // because the constraint solver sometimes simplifies certain symbolic values // into constants when appropriate, and this complicates reasoning about // interesting values. typedef llvm::DenseSet InterestingExprs; static void reversePropagateIntererstingSymbols(BugReport &R, InterestingExprs &IE, const ProgramState *State, const Expr *Ex, const LocationContext *LCtx) { SVal V = State->getSVal(Ex, LCtx); if (!(R.isInteresting(V) || IE.count(Ex))) return; switch (Ex->getStmtClass()) { default: if (!isa(Ex)) break; // Fall through. case Stmt::BinaryOperatorClass: case Stmt::UnaryOperatorClass: { for (Stmt::const_child_iterator CI = Ex->child_begin(), CE = Ex->child_end(); CI != CE; ++CI) { if (const Expr *child = dyn_cast_or_null(*CI)) { IE.insert(child); SVal ChildV = State->getSVal(child, LCtx); R.markInteresting(ChildV); } break; } } } R.markInteresting(V); } static void reversePropagateInterestingSymbols(BugReport &R, InterestingExprs &IE, const ProgramState *State, const LocationContext *CalleeCtx, const LocationContext *CallerCtx) { // FIXME: Handle non-CallExpr-based CallEvents. const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame(); const Stmt *CallSite = Callee->getCallSite(); if (const CallExpr *CE = dyn_cast_or_null(CallSite)) { if (const FunctionDecl *FD = dyn_cast(CalleeCtx->getDecl())) { FunctionDecl::param_const_iterator PI = FD->param_begin(), PE = FD->param_end(); CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); for (; AI != AE && PI != PE; ++AI, ++PI) { if (const Expr *ArgE = *AI) { if (const ParmVarDecl *PD = *PI) { Loc LV = State->getLValue(PD, CalleeCtx); if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV))) IE.insert(ArgE); } } } } } } //===----------------------------------------------------------------------===// // Functions for determining if a loop was executed 0 times. //===----------------------------------------------------------------------===// /// Return true if the terminator is a loop and the destination is the /// false branch. static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) { switch (Term->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::WhileStmtClass: case Stmt::ObjCForCollectionStmtClass: break; default: // Note that we intentionally do not include do..while here. return false; } // Did we take the false branch? const CFGBlock *Src = BE->getSrc(); assert(Src->succ_size() == 2); return (*(Src->succ_begin()+1) == BE->getDst()); } static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) { while (SubS) { if (SubS == S) return true; SubS = PM.getParent(SubS); } return false; } static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term, const ExplodedNode *N) { while (N) { Optional SP = N->getLocation().getAs(); if (SP) { const Stmt *S = SP->getStmt(); if (!isContainedByStmt(PM, Term, S)) return S; } N = N->getFirstPred(); } return 0; } static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) { const Stmt *LoopBody = 0; switch (Term->getStmtClass()) { case Stmt::ForStmtClass: { const ForStmt *FS = cast(Term); if (isContainedByStmt(PM, FS->getInc(), S)) return true; LoopBody = FS->getBody(); break; } case Stmt::ObjCForCollectionStmtClass: { const ObjCForCollectionStmt *FC = cast(Term); LoopBody = FC->getBody(); break; } case Stmt::WhileStmtClass: LoopBody = cast(Term)->getBody(); break; default: return false; } return isContainedByStmt(PM, LoopBody, S); } //===----------------------------------------------------------------------===// // Top-level logic for generating extensive path diagnostics. //===----------------------------------------------------------------------===// static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, LocationContextMap &LCM, ArrayRef visitors) { EdgeBuilder EB(PD, PDB); const SourceManager& SM = PDB.getSourceManager(); StackDiagVector CallStack; InterestingExprs IE; const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin()); while (NextNode) { N = NextNode; NextNode = N->getFirstPred(); ProgramPoint P = N->getLocation(); do { if (Optional PS = P.getAs()) { if (const Expr *Ex = PS->getStmtAs()) reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, N->getState().getPtr(), Ex, N->getLocationContext()); } if (Optional CE = P.getAs()) { const Stmt *S = CE->getCalleeContext()->getCallSite(); if (const Expr *Ex = dyn_cast_or_null(S)) { reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, N->getState().getPtr(), Ex, N->getLocationContext()); } PathDiagnosticCallPiece *C = PathDiagnosticCallPiece::construct(N, *CE, SM); LCM[&C->path] = CE->getCalleeContext(); EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true); EB.flushLocations(); PD.getActivePath().push_front(C); PD.pushActivePath(&C->path); CallStack.push_back(StackDiagPair(C, N)); break; } // Pop the call hierarchy if we are done walking the contents // of a function call. if (Optional CE = P.getAs()) { // Add an edge to the start of the function. const Decl *D = CE->getCalleeContext()->getDecl(); PathDiagnosticLocation pos = PathDiagnosticLocation::createBegin(D, SM); EB.addEdge(pos); // Flush all locations, and pop the active path. bool VisitedEntireCall = PD.isWithinCall(); EB.flushLocations(); PD.popActivePath(); PDB.LC = N->getLocationContext(); // Either we just added a bunch of stuff to the top-level path, or // we have a previous CallExitEnd. If the former, it means that the // path terminated within a function call. We must then take the // current contents of the active path and place it within // a new PathDiagnosticCallPiece. PathDiagnosticCallPiece *C; if (VisitedEntireCall) { C = cast(PD.getActivePath().front()); } else { const Decl *Caller = CE->getLocationContext()->getDecl(); C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); LCM[&C->path] = CE->getCalleeContext(); } C->setCallee(*CE, SM); EB.addContext(C->getLocation()); if (!CallStack.empty()) { assert(CallStack.back().first == C); CallStack.pop_back(); } break; } // Note that is important that we update the LocationContext // after looking at CallExits. CallExit basically adds an // edge in the *caller*, so we don't want to update the LocationContext // too soon. PDB.LC = N->getLocationContext(); // Block edges. if (Optional BE = P.getAs()) { // Does this represent entering a call? If so, look at propagating // interesting symbols across call boundaries. if (NextNode) { const LocationContext *CallerCtx = NextNode->getLocationContext(); const LocationContext *CalleeCtx = PDB.LC; if (CallerCtx != CalleeCtx) { reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, N->getState().getPtr(), CalleeCtx, CallerCtx); } } // Are we jumping to the head of a loop? Add a special diagnostic. if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { PathDiagnosticLocation L(Loop, SM, PDB.LC); const CompoundStmt *CS = NULL; if (const ForStmt *FS = dyn_cast(Loop)) CS = dyn_cast(FS->getBody()); else if (const WhileStmt *WS = dyn_cast(Loop)) CS = dyn_cast(WS->getBody()); PathDiagnosticEventPiece *p = new PathDiagnosticEventPiece(L, "Looping back to the head of the loop"); p->setPrunable(true); EB.addEdge(p->getLocation(), true); PD.getActivePath().push_front(p); if (CS) { PathDiagnosticLocation BL = PathDiagnosticLocation::createEndBrace(CS, SM); EB.addEdge(BL); } } const CFGBlock *BSrc = BE->getSrc(); ParentMap &PM = PDB.getParentMap(); if (const Stmt *Term = BSrc->getTerminator()) { // Are we jumping past the loop body without ever executing the // loop (because the condition was false)? if (isLoopJumpPastBody(Term, &*BE) && !isInLoopBody(PM, getStmtBeforeCond(PM, BSrc->getTerminatorCondition(), N), Term)) { PathDiagnosticLocation L(Term, SM, PDB.LC); PathDiagnosticEventPiece *PE = new PathDiagnosticEventPiece(L, "Loop body executed 0 times"); PE->setPrunable(true); EB.addEdge(PE->getLocation(), true); PD.getActivePath().push_front(PE); } // In any case, add the terminator as the current statement // context for control edges. EB.addContext(Term); } break; } if (Optional BE = P.getAs()) { Optional First = BE->getFirstElement(); if (Optional S = First ? First->getAs() : None) { const Stmt *stmt = S->getStmt(); if (IsControlFlowExpr(stmt)) { // Add the proper context for '&&', '||', and '?'. EB.addContext(stmt); } else EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt()); } break; } } while (0); if (!NextNode) continue; // Add pieces from custom visitors. BugReport *R = PDB.getBugReport(); for (ArrayRef::iterator I = visitors.begin(), E = visitors.end(); I != E; ++I) { if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) { const PathDiagnosticLocation &Loc = p->getLocation(); EB.addEdge(Loc, true); PD.getActivePath().push_front(p); updateStackPiecesWithMessage(p, CallStack); if (const Stmt *S = Loc.asStmt()) EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); } } } return PDB.getBugReport()->isValid(); } /// \brief Adds a sanitized control-flow diagnostic edge to a path. static void addEdgeToPath(PathPieces &path, PathDiagnosticLocation &PrevLoc, PathDiagnosticLocation NewLoc, const LocationContext *LC) { if (!NewLoc.isValid()) return; SourceLocation NewLocL = NewLoc.asLocation(); if (NewLocL.isInvalid() || NewLocL.isMacroID()) return; if (!PrevLoc.isValid()) { PrevLoc = NewLoc; return; } // FIXME: ignore intra-macro edges for now. if (NewLoc.asLocation().getExpansionLoc() == PrevLoc.asLocation().getExpansionLoc()) return; path.push_front(new PathDiagnosticControlFlowPiece(NewLoc, PrevLoc)); PrevLoc = NewLoc; } static bool GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, LocationContextMap &LCM, ArrayRef visitors) { BugReport *report = PDB.getBugReport(); const SourceManager& SM = PDB.getSourceManager(); StackDiagVector CallStack; InterestingExprs IE; // Record the last location for a given visited stack frame. llvm::DenseMap PrevLocMap; const ExplodedNode *NextNode = N->getFirstPred(); while (NextNode) { N = NextNode; NextNode = N->getFirstPred(); ProgramPoint P = N->getLocation(); const LocationContext *LC = N->getLocationContext(); assert(!LCM[&PD.getActivePath()] || LCM[&PD.getActivePath()] == LC); LCM[&PD.getActivePath()] = LC; PathDiagnosticLocation &PrevLoc = PrevLocMap[LC->getCurrentStackFrame()]; do { if (Optional PS = P.getAs()) { // For expressions, make sure we propagate the // interesting symbols correctly. if (const Expr *Ex = PS->getStmtAs()) reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, N->getState().getPtr(), Ex, N->getLocationContext()); PathDiagnosticLocation L = PathDiagnosticLocation(PS->getStmt(), SM, LC); addEdgeToPath(PD.getActivePath(), PrevLoc, L, LC); break; } // Have we encountered an exit from a function call? if (Optional CE = P.getAs()) { const Stmt *S = CE->getCalleeContext()->getCallSite(); // Propagate the interesting symbols accordingly. if (const Expr *Ex = dyn_cast_or_null(S)) { reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, N->getState().getPtr(), Ex, N->getLocationContext()); } // We are descending into a call (backwards). Construct // a new call piece to contain the path pieces for that call. PathDiagnosticCallPiece *C = PathDiagnosticCallPiece::construct(N, *CE, SM); // Record the location context for this call piece. LCM[&C->path] = CE->getCalleeContext(); // Add the edge to the return site. addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, LC); // Make the contents of the call the active path for now. PD.pushActivePath(&C->path); CallStack.push_back(StackDiagPair(C, N)); break; } // Have we encountered an entrance to a call? It may be // the case that we have not encountered a matching // call exit before this point. This means that the path // terminated within the call itself. if (Optional CE = P.getAs()) { // Add an edge to the start of the function. const Decl *D = CE->getCalleeContext()->getDecl(); addEdgeToPath(PD.getActivePath(), PrevLoc, PathDiagnosticLocation::createBegin(D, SM), LC); // Did we visit an entire call? bool VisitedEntireCall = PD.isWithinCall(); PD.popActivePath(); PathDiagnosticCallPiece *C; if (VisitedEntireCall) { C = cast(PD.getActivePath().front()); } else { const Decl *Caller = CE->getLocationContext()->getDecl(); C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); LCM[&C->path] = CE->getCalleeContext(); } C->setCallee(*CE, SM); if (!CallStack.empty()) { assert(CallStack.back().first == C); CallStack.pop_back(); } break; } // Block edges. if (Optional BE = P.getAs()) { // Does this represent entering a call? If so, look at propagating // interesting symbols across call boundaries. if (NextNode) { const LocationContext *CallerCtx = NextNode->getLocationContext(); const LocationContext *CalleeCtx = PDB.LC; if (CallerCtx != CalleeCtx) { reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, N->getState().getPtr(), CalleeCtx, CallerCtx); } } // Are we jumping to the head of a loop? Add a special diagnostic. if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { PathDiagnosticLocation L(Loop, SM, PDB.LC); const CompoundStmt *CS = NULL; if (const ForStmt *FS = dyn_cast(Loop)) CS = dyn_cast(FS->getBody()); else if (const WhileStmt *WS = dyn_cast(Loop)) CS = dyn_cast(WS->getBody()); PathDiagnosticEventPiece *p = new PathDiagnosticEventPiece(L, "Looping back to the head " "of the loop"); p->setPrunable(true); addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), LC); PD.getActivePath().push_front(p); if (CS) { addEdgeToPath(PD.getActivePath(), PrevLoc, PathDiagnosticLocation::createEndBrace(CS, SM), LC); } } const CFGBlock *BSrc = BE->getSrc(); ParentMap &PM = PDB.getParentMap(); if (const Stmt *Term = BSrc->getTerminator()) { // Are we jumping past the loop body without ever executing the // loop (because the condition was false)? if (isLoopJumpPastBody(Term, &*BE) && !isInLoopBody(PM, getStmtBeforeCond(PM, BSrc->getTerminatorCondition(), N), Term)) { PathDiagnosticLocation L(Term, SM, PDB.LC); PathDiagnosticEventPiece *PE = new PathDiagnosticEventPiece(L, "Loop body executed 0 times"); PE->setPrunable(true); addEdgeToPath(PD.getActivePath(), PrevLoc, PE->getLocation(), LC); PD.getActivePath().push_front(PE); } } break; } } while (0); if (!NextNode) continue; // Add pieces from custom visitors. for (ArrayRef::iterator I = visitors.begin(), E = visitors.end(); I != E; ++I) { if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) { addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), LC); PD.getActivePath().push_front(p); updateStackPiecesWithMessage(p, CallStack); } } } return report->isValid(); } const Stmt *getLocStmt(PathDiagnosticLocation L) { if (!L.isValid()) return 0; return L.asStmt(); } const Stmt *getStmtParent(const Stmt *S, ParentMap &PM) { if (!S) return 0; return PM.getParentIgnoreParens(S); } #if 0 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { // Note that we intentionally to do not handle || and && here. switch (S->getStmtClass()) { case Stmt::ForStmtClass: return cast(S)->getCond() == Cond; case Stmt::WhileStmtClass: return cast(S)->getCond() == Cond; case Stmt::DoStmtClass: return cast(S)->getCond() == Cond; case Stmt::ChooseExprClass: return cast(S)->getCond() == Cond; case Stmt::IndirectGotoStmtClass: return cast(S)->getTarget() == Cond; case Stmt::SwitchStmtClass: return cast(S)->getCond() == Cond; case Stmt::BinaryConditionalOperatorClass: return cast(S)->getCond() == Cond; case Stmt::ConditionalOperatorClass: return cast(S)->getCond() == Cond; case Stmt::ObjCForCollectionStmtClass: return cast(S)->getElement() == Cond; default: return false; } } #endif typedef llvm::DenseSet ControlFlowBarrierSet; typedef llvm::DenseSet OptimizedCallsSet; static bool isBarrier(ControlFlowBarrierSet &CFBS, const PathDiagnosticControlFlowPiece *P) { return CFBS.count(P); } static bool optimizeEdges(PathPieces &path, SourceManager &SM, ControlFlowBarrierSet &CFBS, OptimizedCallsSet &OCS, LocationContextMap &LCM) { bool hasChanges = false; const LocationContext *LC = LCM[&path]; assert(LC); bool isFirst = true; for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { bool wasFirst = isFirst; isFirst = false; // Optimize subpaths. if (PathDiagnosticCallPiece *CallI = dyn_cast(*I)){ // Record the fact that a call has been optimized so we only do the // effort once. if (!OCS.count(CallI)) { while (optimizeEdges(CallI->path, SM, CFBS, OCS, LCM)) {} OCS.insert(CallI); } ++I; continue; } // Pattern match the current piece and its successor. PathDiagnosticControlFlowPiece *PieceI = dyn_cast(*I); if (!PieceI) { ++I; continue; } ParentMap &PM = LC->getParentMap(); const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); const Stmt *level1 = getStmtParent(s1Start, PM); const Stmt *level2 = getStmtParent(s1End, PM); if (wasFirst) { #if 0 // Apply the "first edge" case for Rule V. here. if (s1Start && level1 && isConditionForTerminator(level1, s1Start)) { PathDiagnosticLocation NewLoc(level2, SM, LC); PieceI->setStartLocation(NewLoc); CFBS.insert(PieceI); return true; } #endif // Apply the "first edge" case for Rule III. here. if (!isBarrier(CFBS, PieceI) && level1 && level2 && level2 == PM.getParent(level1)) { path.erase(I); // Since we are erasing the current edge at the start of the // path, just return now so we start analyzing the start of the path // again. return true; } } PathPieces::iterator NextI = I; ++NextI; if (NextI == E) break; PathDiagnosticControlFlowPiece *PieceNextI = dyn_cast(*NextI); if (!PieceNextI) { ++I; continue; } const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); const Stmt *level3 = getStmtParent(s2Start, PM); const Stmt *level4 = getStmtParent(s2End, PM); // Rule I. // // If we have two consecutive control edges whose end/begin locations // are at the same level (e.g. statements or top-level expressions within // a compound statement, or siblings share a single ancestor expression), // then merge them if they have no interesting intermediate event. // // For example: // // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. // // NOTE: this will be limited later in cases where we add barriers // to prevent this optimization. // if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { PieceI->setEndLocation(PieceNextI->getEndLocation()); path.erase(NextI); hasChanges = true; continue; } // Rule II. // // If we have two consecutive control edges where we decend to a // subexpression and then pop out merge them. // // NOTE: this will be limited later in cases where we add barriers // to prevent this optimization. // // For example: // // (1.1 -> 1.1.1) -> (1.1.1 -> 1.2) becomes (1.1 -> 1.2). if (level1 && level2 && level1 == level4 && level2 == level3 && PM.getParentIgnoreParens(level2) == level1) { PieceI->setEndLocation(PieceNextI->getEndLocation()); path.erase(NextI); hasChanges = true; continue; } // Rule III. // // Eliminate unnecessary edges where we descend to a subexpression from // a statement at the same level as our parent. // // NOTE: this will be limited later in cases where we add barriers // to prevent this optimization. // // For example: // // (1.1 -> 1.1.1) -> (1.1.1 -> X) becomes (1.1 -> X). // if (level1 && level2 && level1 == PM.getParentIgnoreParens(level2)) { PieceI->setEndLocation(PieceNextI->getEndLocation()); path.erase(NextI); hasChanges = true; continue; } // Rule IV. // // Eliminate unnecessary edges where we ascend from a subexpression to // a statement at the same level as our parent. // // NOTE: this will be limited later in cases where we add barriers // to prevent this optimization. // // For example: // // (X -> 1.1.1) -> (1.1.1 -> 1.1) becomes (X -> 1.1). // [first edge] (1.1.1 -> 1.1) -> eliminate // if (level2 && level4 && level2 == level3 && level4 == PM.getParent(level2)){ PieceI->setEndLocation(PieceNextI->getEndLocation()); path.erase(NextI); hasChanges = true; continue; } #if 0 // Rule V. // // Replace terminator conditions with terminators when the condition // itself has no control-flow. // // For example: // // (X -> condition) -> (condition -> Y) becomes (X -> term) -> (term -> Y) // [first edge] (condition -> Y) becomes (term -> Y) // // This applies to 'if', 'for', 'while', 'do .. while', 'switch'... // if (!isBarrier(CFBS, PieceNextI) && s1End && s1End == s2Start && level2) { if (isConditionForTerminator(level2, s1End)) { PathDiagnosticLocation NewLoc(level2, SM, LC); PieceI->setEndLocation(NewLoc); PieceNextI->setStartLocation(NewLoc); CFBS.insert(PieceI); hasChanges = true; continue; } } #endif // No changes at this index? Move to the next one. ++I; } // No changes. return hasChanges; } //===----------------------------------------------------------------------===// // Methods for BugType and subclasses. //===----------------------------------------------------------------------===// BugType::~BugType() { } void BugType::FlushReports(BugReporter &BR) {} void BuiltinBug::anchor() {} //===----------------------------------------------------------------------===// // Methods for BugReport and subclasses. //===----------------------------------------------------------------------===// void BugReport::NodeResolver::anchor() {} void BugReport::addVisitor(BugReporterVisitor* visitor) { if (!visitor) return; llvm::FoldingSetNodeID ID; visitor->Profile(ID); void *InsertPos; if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { delete visitor; return; } CallbacksSet.InsertNode(visitor, InsertPos); Callbacks.push_back(visitor); ++ConfigurationChangeToken; } BugReport::~BugReport() { for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) { delete *I; } while (!interestingSymbols.empty()) { popInterestingSymbolsAndRegions(); } } const Decl *BugReport::getDeclWithIssue() const { if (DeclWithIssue) return DeclWithIssue; const ExplodedNode *N = getErrorNode(); if (!N) return 0; const LocationContext *LC = N->getLocationContext(); return LC->getCurrentStackFrame()->getDecl(); } void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { hash.AddPointer(&BT); hash.AddString(Description); PathDiagnosticLocation UL = getUniqueingLocation(); if (UL.isValid()) { UL.Profile(hash); } else if (Location.isValid()) { Location.Profile(hash); } else { assert(ErrorNode); hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); } for (SmallVectorImpl::const_iterator I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { const SourceRange range = *I; if (!range.isValid()) continue; hash.AddInteger(range.getBegin().getRawEncoding()); hash.AddInteger(range.getEnd().getRawEncoding()); } } void BugReport::markInteresting(SymbolRef sym) { if (!sym) return; // If the symbol wasn't already in our set, note a configuration change. if (getInterestingSymbols().insert(sym).second) ++ConfigurationChangeToken; if (const SymbolMetadata *meta = dyn_cast(sym)) getInterestingRegions().insert(meta->getRegion()); } void BugReport::markInteresting(const MemRegion *R) { if (!R) return; // If the base region wasn't already in our set, note a configuration change. R = R->getBaseRegion(); if (getInterestingRegions().insert(R).second) ++ConfigurationChangeToken; if (const SymbolicRegion *SR = dyn_cast(R)) getInterestingSymbols().insert(SR->getSymbol()); } void BugReport::markInteresting(SVal V) { markInteresting(V.getAsRegion()); markInteresting(V.getAsSymbol()); } void BugReport::markInteresting(const LocationContext *LC) { if (!LC) return; InterestingLocationContexts.insert(LC); } bool BugReport::isInteresting(SVal V) { return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol()); } bool BugReport::isInteresting(SymbolRef sym) { if (!sym) return false; // We don't currently consider metadata symbols to be interesting // even if we know their region is interesting. Is that correct behavior? return getInterestingSymbols().count(sym); } bool BugReport::isInteresting(const MemRegion *R) { if (!R) return false; R = R->getBaseRegion(); bool b = getInterestingRegions().count(R); if (b) return true; if (const SymbolicRegion *SR = dyn_cast(R)) return getInterestingSymbols().count(SR->getSymbol()); return false; } bool BugReport::isInteresting(const LocationContext *LC) { if (!LC) return false; return InterestingLocationContexts.count(LC); } void BugReport::lazyInitializeInterestingSets() { if (interestingSymbols.empty()) { interestingSymbols.push_back(new Symbols()); interestingRegions.push_back(new Regions()); } } BugReport::Symbols &BugReport::getInterestingSymbols() { lazyInitializeInterestingSets(); return *interestingSymbols.back(); } BugReport::Regions &BugReport::getInterestingRegions() { lazyInitializeInterestingSets(); return *interestingRegions.back(); } void BugReport::pushInterestingSymbolsAndRegions() { interestingSymbols.push_back(new Symbols(getInterestingSymbols())); interestingRegions.push_back(new Regions(getInterestingRegions())); } void BugReport::popInterestingSymbolsAndRegions() { delete interestingSymbols.back(); interestingSymbols.pop_back(); delete interestingRegions.back(); interestingRegions.pop_back(); } const Stmt *BugReport::getStmt() const { if (!ErrorNode) return 0; ProgramPoint ProgP = ErrorNode->getLocation(); const Stmt *S = NULL; if (Optional BE = ProgP.getAs()) { CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); if (BE->getBlock() == &Exit) S = GetPreviousStmt(ErrorNode); } if (!S) S = PathDiagnosticLocation::getStmt(ErrorNode); return S; } std::pair BugReport::getRanges() { // If no custom ranges, add the range of the statement corresponding to // the error node. if (Ranges.empty()) { if (const Expr *E = dyn_cast_or_null(getStmt())) addRange(E->getSourceRange()); else return std::make_pair(ranges_iterator(), ranges_iterator()); } // User-specified absence of range info. if (Ranges.size() == 1 && !Ranges.begin()->isValid()) return std::make_pair(ranges_iterator(), ranges_iterator()); return std::make_pair(Ranges.begin(), Ranges.end()); } PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { if (ErrorNode) { assert(!Location.isValid() && "Either Location or ErrorNode should be specified but not both."); return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM); } else { assert(Location.isValid()); return Location; } return PathDiagnosticLocation(); } //===----------------------------------------------------------------------===// // Methods for BugReporter and subclasses. //===----------------------------------------------------------------------===// BugReportEquivClass::~BugReportEquivClass() { } GRBugReporter::~GRBugReporter() { } BugReporterData::~BugReporterData() {} ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } ProgramStateManager& GRBugReporter::getStateManager() { return Eng.getStateManager(); } BugReporter::~BugReporter() { FlushReports(); // Free the bug reports we are tracking. typedef std::vector ContTy; for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end(); I != E; ++I) { delete *I; } } void BugReporter::FlushReports() { if (BugTypes.isEmpty()) return; // First flush the warnings for each BugType. This may end up creating new // warnings and new BugTypes. // FIXME: Only NSErrorChecker needs BugType's FlushReports. // Turn NSErrorChecker into a proper checker and remove this. SmallVector bugTypes; for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) bugTypes.push_back(*I); for (SmallVector::iterator I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I) const_cast(*I)->FlushReports(*this); // We need to flush reports in deterministic order to ensure the order // of the reports is consistent between runs. typedef std::vector ContVecTy; for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end(); EI != EE; ++EI){ BugReportEquivClass& EQ = **EI; FlushReport(EQ); } // BugReporter owns and deletes only BugTypes created implicitly through // EmitBasicReport. // FIXME: There are leaks from checkers that assume that the BugTypes they // create will be destroyed by the BugReporter. for (llvm::StringMap::iterator I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I) delete I->second; // Remove all references to the BugType objects. BugTypes = F.getEmptySet(); } //===----------------------------------------------------------------------===// // PathDiagnostics generation. //===----------------------------------------------------------------------===// namespace { /// A wrapper around a report graph, which contains only a single path, and its /// node maps. class ReportGraph { public: InterExplodedGraphMap BackMap; OwningPtr Graph; const ExplodedNode *ErrorNode; size_t Index; }; /// A wrapper around a trimmed graph and its node maps. class TrimmedGraph { InterExplodedGraphMap InverseMap; typedef llvm::DenseMap PriorityMapTy; PriorityMapTy PriorityMap; typedef std::pair NodeIndexPair; SmallVector ReportNodes; OwningPtr G; /// A helper class for sorting ExplodedNodes by priority. template class PriorityCompare { const PriorityMapTy &PriorityMap; public: PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); PriorityMapTy::const_iterator E = PriorityMap.end(); if (LI == E) return Descending; if (RI == E) return !Descending; return Descending ? LI->second > RI->second : LI->second < RI->second; } bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const { return (*this)(LHS.first, RHS.first); } }; public: TrimmedGraph(const ExplodedGraph *OriginalGraph, ArrayRef Nodes); bool popNextReportGraph(ReportGraph &GraphWrapper); }; } TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph, ArrayRef Nodes) { // The trimmed graph is created in the body of the constructor to ensure // that the DenseMaps have been initialized already. InterExplodedGraphMap ForwardMap; G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap)); // Find the (first) error node in the trimmed graph. We just need to consult // the node map which maps from nodes in the original graph to nodes // in the new graph. llvm::SmallPtrSet RemainingNodes; for (unsigned i = 0, count = Nodes.size(); i < count; ++i) { if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) { ReportNodes.push_back(std::make_pair(NewNode, i)); RemainingNodes.insert(NewNode); } } assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); // Perform a forward BFS to find all the shortest paths. std::queue WS; assert(G->num_roots() == 1); WS.push(*G->roots_begin()); unsigned Priority = 0; while (!WS.empty()) { const ExplodedNode *Node = WS.front(); WS.pop(); PriorityMapTy::iterator PriorityEntry; bool IsNew; llvm::tie(PriorityEntry, IsNew) = PriorityMap.insert(std::make_pair(Node, Priority)); ++Priority; if (!IsNew) { assert(PriorityEntry->second <= Priority); continue; } if (RemainingNodes.erase(Node)) if (RemainingNodes.empty()) break; for (ExplodedNode::const_pred_iterator I = Node->succ_begin(), E = Node->succ_end(); I != E; ++I) WS.push(*I); } // Sort the error paths from longest to shortest. std::sort(ReportNodes.begin(), ReportNodes.end(), PriorityCompare(PriorityMap)); } bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) { if (ReportNodes.empty()) return false; const ExplodedNode *OrigN; llvm::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val(); assert(PriorityMap.find(OrigN) != PriorityMap.end() && "error node not accessible from root"); // Create a new graph with a single path. This is the graph // that will be returned to the caller. ExplodedGraph *GNew = new ExplodedGraph(); GraphWrapper.Graph.reset(GNew); GraphWrapper.BackMap.clear(); // Now walk from the error node up the BFS path, always taking the // predeccessor with the lowest number. ExplodedNode *Succ = 0; while (true) { // Create the equivalent node in the new graph with the same state // and location. ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(), OrigN->isSink()); // Store the mapping to the original node. InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN); assert(IMitr != InverseMap.end() && "No mapping to original node."); GraphWrapper.BackMap[NewN] = IMitr->second; // Link up the new node with the previous node. if (Succ) Succ->addPredecessor(NewN, *GNew); else GraphWrapper.ErrorNode = NewN; Succ = NewN; // Are we at the final node? if (OrigN->pred_empty()) { GNew->addRoot(NewN); break; } // Find the next predeccessor node. We choose the node that is marked // with the lowest BFS number. OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), PriorityCompare(PriorityMap)); } return true; } /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object /// and collapses PathDiagosticPieces that are expanded by macros. static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) { typedef std::vector, SourceLocation> > MacroStackTy; typedef std::vector > PiecesTy; MacroStackTy MacroStack; PiecesTy Pieces; for (PathPieces::const_iterator I = path.begin(), E = path.end(); I!=E; ++I) { PathDiagnosticPiece *piece = I->getPtr(); // Recursively compact calls. if (PathDiagnosticCallPiece *call=dyn_cast(piece)){ CompactPathDiagnostic(call->path, SM); } // Get the location of the PathDiagnosticPiece. const FullSourceLoc Loc = piece->getLocation().asLocation(); // Determine the instantiation location, which is the location we group // related PathDiagnosticPieces. SourceLocation InstantiationLoc = Loc.isMacroID() ? SM.getExpansionLoc(Loc) : SourceLocation(); if (Loc.isFileID()) { MacroStack.clear(); Pieces.push_back(piece); continue; } assert(Loc.isMacroID()); // Is the PathDiagnosticPiece within the same macro group? if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { MacroStack.back().first->subPieces.push_back(piece); continue; } // We aren't in the same group. Are we descending into a new macro // or are part of an old one? IntrusiveRefCntPtr MacroGroup; SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? SM.getExpansionLoc(Loc) : SourceLocation(); // Walk the entire macro stack. while (!MacroStack.empty()) { if (InstantiationLoc == MacroStack.back().second) { MacroGroup = MacroStack.back().first; break; } if (ParentInstantiationLoc == MacroStack.back().second) { MacroGroup = MacroStack.back().first; break; } MacroStack.pop_back(); } if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { // Create a new macro group and add it to the stack. PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece( PathDiagnosticLocation::createSingleLocation(piece->getLocation())); if (MacroGroup) MacroGroup->subPieces.push_back(NewGroup); else { assert(InstantiationLoc.isFileID()); Pieces.push_back(NewGroup); } MacroGroup = NewGroup; MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); } // Finally, add the PathDiagnosticPiece to the group. MacroGroup->subPieces.push_back(piece); } // Now take the pieces and construct a new PathDiagnostic. path.clear(); for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) path.push_back(*I); } bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD, PathDiagnosticConsumer &PC, ArrayRef &bugReports) { assert(!bugReports.empty()); bool HasValid = false; bool HasInvalid = false; SmallVector errorNodes; for (ArrayRef::iterator I = bugReports.begin(), E = bugReports.end(); I != E; ++I) { if ((*I)->isValid()) { HasValid = true; errorNodes.push_back((*I)->getErrorNode()); } else { // Keep the errorNodes list in sync with the bugReports list. HasInvalid = true; errorNodes.push_back(0); } } // If all the reports have been marked invalid by a previous path generation, // we're done. if (!HasValid) return false; typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme; PathGenerationScheme ActiveScheme = PC.getGenerationScheme(); if (ActiveScheme == PathDiagnosticConsumer::Extensive) { AnalyzerOptions &options = getEngine().getAnalysisManager().options; if (options.getBooleanOption("path-diagnostics-alternate", false)) { ActiveScheme = PathDiagnosticConsumer::AlternateExtensive; } } TrimmedGraph TrimG(&getGraph(), errorNodes); ReportGraph ErrorGraph; while (TrimG.popNextReportGraph(ErrorGraph)) { // Find the BugReport with the original location. assert(ErrorGraph.Index < bugReports.size()); BugReport *R = bugReports[ErrorGraph.Index]; assert(R && "No original report found for sliced graph."); assert(R->isValid() && "Report selected by trimmed graph marked invalid."); // Start building the path diagnostic... PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC); const ExplodedNode *N = ErrorGraph.ErrorNode; // Register additional node visitors. R->addVisitor(new NilReceiverBRVisitor()); R->addVisitor(new ConditionBRVisitor()); R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor()); BugReport::VisitorList visitors; unsigned origReportConfigToken, finalReportConfigToken; LocationContextMap LCM; // While generating diagnostics, it's possible the visitors will decide // new symbols and regions are interesting, or add other visitors based on // the information they find. If they do, we need to regenerate the path // based on our new report configuration. do { // Get a clean copy of all the visitors. for (BugReport::visitor_iterator I = R->visitor_begin(), E = R->visitor_end(); I != E; ++I) visitors.push_back((*I)->clone()); // Clear out the active path from any previous work. PD.resetPath(); origReportConfigToken = R->getConfigurationChangeToken(); // Generate the very last diagnostic piece - the piece is visible before // the trace is expanded. PathDiagnosticPiece *LastPiece = 0; for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end(); I != E; ++I) { if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) { assert (!LastPiece && "There can only be one final piece in a diagnostic."); LastPiece = Piece; } } if (ActiveScheme != PathDiagnosticConsumer::None) { if (!LastPiece) LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R); assert(LastPiece); PD.setEndOfPath(LastPiece); } // Make sure we get a clean location context map so we don't // hold onto old mappings. LCM.clear(); switch (ActiveScheme) { case PathDiagnosticConsumer::AlternateExtensive: GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); break; case PathDiagnosticConsumer::Extensive: GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); break; case PathDiagnosticConsumer::Minimal: GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors); break; case PathDiagnosticConsumer::None: GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors); break; } // Clean up the visitors we used. llvm::DeleteContainerPointers(visitors); // Did anything change while generating this path? finalReportConfigToken = R->getConfigurationChangeToken(); } while (finalReportConfigToken != origReportConfigToken); if (!R->isValid()) continue; // Finally, prune the diagnostic path of uninteresting stuff. if (!PD.path.empty()) { // Remove messages that are basically the same. removeRedundantMsgs(PD.getMutablePieces()); if (R->shouldPrunePath() && getEngine().getAnalysisManager().options.shouldPrunePaths()) { bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM); assert(stillHasNotes); (void)stillHasNotes; } adjustCallLocations(PD.getMutablePieces()); if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) { ControlFlowBarrierSet CFBS; OptimizedCallsSet OCS; while (optimizeEdges(PD.getMutablePieces(), getSourceManager(), CFBS, OCS, LCM)) {} } } // We found a report and didn't suppress it. return true; } // We suppressed all the reports in this equivalence class. assert(!HasInvalid && "Inconsistent suppression"); (void)HasInvalid; return false; } void BugReporter::Register(BugType *BT) { BugTypes = F.add(BugTypes, BT); } void BugReporter::emitReport(BugReport* R) { // Compute the bug report's hash to determine its equivalence class. llvm::FoldingSetNodeID ID; R->Profile(ID); // Lookup the equivance class. If there isn't one, create it. BugType& BT = R->getBugType(); Register(&BT); void *InsertPos; BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); if (!EQ) { EQ = new BugReportEquivClass(R); EQClasses.InsertNode(EQ, InsertPos); EQClassesVector.push_back(EQ); } else EQ->AddReport(R); } //===----------------------------------------------------------------------===// // Emitting reports in equivalence classes. //===----------------------------------------------------------------------===// namespace { struct FRIEC_WLItem { const ExplodedNode *N; ExplodedNode::const_succ_iterator I, E; FRIEC_WLItem(const ExplodedNode *n) : N(n), I(N->succ_begin()), E(N->succ_end()) {} }; } static BugReport * FindReportInEquivalenceClass(BugReportEquivClass& EQ, SmallVectorImpl &bugReports) { BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); assert(I != E); BugType& BT = I->getBugType(); // If we don't need to suppress any of the nodes because they are // post-dominated by a sink, simply add all the nodes in the equivalence class // to 'Nodes'. Any of the reports will serve as a "representative" report. if (!BT.isSuppressOnSink()) { BugReport *R = I; for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { const ExplodedNode *N = I->getErrorNode(); if (N) { R = I; bugReports.push_back(R); } } return R; } // For bug reports that should be suppressed when all paths are post-dominated // by a sink node, iterate through the reports in the equivalence class // until we find one that isn't post-dominated (if one exists). We use a // DFS traversal of the ExplodedGraph to find a non-sink node. We could write // this as a recursive function, but we don't want to risk blowing out the // stack for very long paths. BugReport *exampleReport = 0; for (; I != E; ++I) { const ExplodedNode *errorNode = I->getErrorNode(); if (!errorNode) continue; if (errorNode->isSink()) { llvm_unreachable( "BugType::isSuppressSink() should not be 'true' for sink end nodes"); } // No successors? By definition this nodes isn't post-dominated by a sink. if (errorNode->succ_empty()) { bugReports.push_back(I); if (!exampleReport) exampleReport = I; continue; } // At this point we know that 'N' is not a sink and it has at least one // successor. Use a DFS worklist to find a non-sink end-of-path node. typedef FRIEC_WLItem WLItem; typedef SmallVector DFSWorkList; llvm::DenseMap Visited; DFSWorkList WL; WL.push_back(errorNode); Visited[errorNode] = 1; while (!WL.empty()) { WLItem &WI = WL.back(); assert(!WI.N->succ_empty()); for (; WI.I != WI.E; ++WI.I) { const ExplodedNode *Succ = *WI.I; // End-of-path node? if (Succ->succ_empty()) { // If we found an end-of-path node that is not a sink. if (!Succ->isSink()) { bugReports.push_back(I); if (!exampleReport) exampleReport = I; WL.clear(); break; } // Found a sink? Continue on to the next successor. continue; } // Mark the successor as visited. If it hasn't been explored, // enqueue it to the DFS worklist. unsigned &mark = Visited[Succ]; if (!mark) { mark = 1; WL.push_back(Succ); break; } } // The worklist may have been cleared at this point. First // check if it is empty before checking the last item. if (!WL.empty() && &WL.back() == &WI) WL.pop_back(); } } // ExampleReport will be NULL if all the nodes in the equivalence class // were post-dominated by sinks. return exampleReport; } void BugReporter::FlushReport(BugReportEquivClass& EQ) { SmallVector bugReports; BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports); if (exampleReport) { const PathDiagnosticConsumers &C = getPathDiagnosticConsumers(); for (PathDiagnosticConsumers::const_iterator I=C.begin(), E=C.end(); I != E; ++I) { FlushReport(exampleReport, **I, bugReports); } } } void BugReporter::FlushReport(BugReport *exampleReport, PathDiagnosticConsumer &PD, ArrayRef bugReports) { // FIXME: Make sure we use the 'R' for the path that was actually used. // Probably doesn't make a difference in practice. BugType& BT = exampleReport->getBugType(); OwningPtr D(new PathDiagnostic(exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(), exampleReport->getDescription(), exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(), exampleReport->getUniqueingLocation(), exampleReport->getUniqueingDecl())); MaxBugClassSize = std::max(bugReports.size(), static_cast(MaxBugClassSize)); // Generate the full path diagnostic, using the generation scheme // specified by the PathDiagnosticConsumer. Note that we have to generate // path diagnostics even for consumers which do not support paths, because // the BugReporterVisitors may mark this bug as a false positive. if (!bugReports.empty()) if (!generatePathDiagnostic(*D.get(), PD, bugReports)) return; MaxValidBugClassSize = std::max(bugReports.size(), static_cast(MaxValidBugClassSize)); // If the path is empty, generate a single step path with the location // of the issue. if (D->path.empty()) { PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager()); PathDiagnosticPiece *piece = new PathDiagnosticEventPiece(L, exampleReport->getDescription()); BugReport::ranges_iterator Beg, End; llvm::tie(Beg, End) = exampleReport->getRanges(); for ( ; Beg != End; ++Beg) piece->addRange(*Beg); D->setEndOfPath(piece); } // Get the meta data. const BugReport::ExtraTextList &Meta = exampleReport->getExtraText(); for (BugReport::ExtraTextList::const_iterator i = Meta.begin(), e = Meta.end(); i != e; ++i) { D->addMeta(*i); } PD.HandlePathDiagnostic(D.take()); } void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, StringRef name, StringRef category, StringRef str, PathDiagnosticLocation Loc, SourceRange* RBeg, unsigned NumRanges) { // 'BT' is owned by BugReporter. BugType *BT = getBugTypeForName(name, category); BugReport *R = new BugReport(*BT, str, Loc); R->setDeclWithIssue(DeclWithIssue); for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg); emitReport(R); } BugType *BugReporter::getBugTypeForName(StringRef name, StringRef category) { SmallString<136> fullDesc; llvm::raw_svector_ostream(fullDesc) << name << ":" << category; llvm::StringMapEntry & entry = StrBugTypes.GetOrCreateValue(fullDesc); BugType *BT = entry.getValue(); if (!BT) { BT = new BugType(name, category); entry.setValue(BT); } return BT; }