#include "config.h" //some unused features are still in the wrapper, unconverted #include "ntp_types.h" #include "ntp_fp.h" #include "timevalops.h" #include #include "unity.h" #define TEST_ASSERT_EQUAL_timeval(a, b) { \ TEST_ASSERT_EQUAL_MESSAGE(a.tv_sec, b.tv_sec, "Field tv_sec"); \ TEST_ASSERT_EQUAL_MESSAGE(a.tv_usec, b.tv_usec, "Field tv_usec"); \ } static u_int32 my_tick_to_tsf(u_int32 ticks); static u_int32 my_tsf_to_tick(u_int32 tsf); // that's it... typedef struct { long usec; u_int32 frac; } lfpfracdata ; struct timeval timeval_init( time_t hi, long lo); const bool timeval_isValid(struct timeval V); l_fp l_fp_init(int32 i, u_int32 f); bool AssertTimevalClose(const struct timeval m, const struct timeval n, const struct timeval limit); bool AssertFpClose(const l_fp m, const l_fp n, const l_fp limit); void setUp(void); void test_Helpers1(void); void test_Normalise(void); void test_SignNoFrac(void); void test_SignWithFrac(void); void test_CmpFracEQ(void); void test_CmpFracGT(void); void test_CmpFracLT(void); void test_AddFullNorm(void); void test_AddFullOflow1(void); void test_AddUsecNorm(void); void test_AddUsecOflow1(void); void test_SubFullNorm(void); void test_SubFullOflow(void); void test_SubUsecNorm(void); void test_SubUsecOflow(void); void test_Neg(void); void test_AbsNoFrac(void); void test_AbsWithFrac(void); void test_Helpers2(void); void test_ToLFPbittest(void); void test_ToLFPrelPos(void); void test_ToLFPrelNeg(void); void test_ToLFPabs(void); void test_FromLFPbittest(void); void test_FromLFPrelPos(void); void test_FromLFPrelNeg(void); void test_LFProundtrip(void); void test_ToString(void); //**********************************MY CUSTOM FUNCTIONS*********************** void setUp(void) { init_lib(); return; } struct timeval timeval_init(time_t hi, long lo) { struct timeval V; V.tv_sec = hi; V.tv_usec = lo; return V; } const bool timeval_isValid(struct timeval V) { return V.tv_usec >= 0 && V.tv_usec < 1000000; } l_fp l_fp_init(int32 i, u_int32 f) { l_fp temp; temp.l_i = i; temp.l_uf = f; return temp; } bool AssertTimevalClose(const struct timeval m, const struct timeval n, const struct timeval limit) { struct timeval diff; diff = abs_tval(sub_tval(m, n)); if (cmp_tval(limit, diff) >= 0) return TRUE; else { printf("m_expr which is %ld.%lu \nand\nn_expr which is %ld.%lu\nare not close; diff=%ld.%luusec\n", m.tv_sec, m.tv_usec, n.tv_sec, n.tv_usec, diff.tv_sec, diff.tv_usec); //I don't have variables m_expr and n_expr in unity, those are command line arguments which only getst has!!! return FALSE; } } bool AssertFpClose(const l_fp m, const l_fp n, const l_fp limit) { l_fp diff; if (L_ISGEQ(&m, &n)) { diff = m; L_SUB(&diff, &n); } else { diff = n; L_SUB(&diff, &m); } if (L_ISGEQ(&limit, &diff)) { return TRUE; } else { printf("m_expr which is %s \nand\nn_expr which is %s\nare not close; diff=%susec\n", lfptoa(&m, 10), lfptoa(&n, 10), lfptoa(&diff, 10)); //printf("m_expr which is %d.%d \nand\nn_expr which is %d.%d\nare not close; diff=%d.%dusec\n", m.l_uf, m.Ul_i, n.l_uf, n.Ul_i, diff.l_uf, diff.Ul_i); return FALSE; } } //--------------------------------------------------- static const lfpfracdata fdata[] = { { 0, 0x00000000 }, { 7478, 0x01ea1405 }, { 22077, 0x05a6d699 }, { 125000, 0x20000000 }, { 180326, 0x2e29d841 }, { 207979, 0x353e1c9b }, { 250000, 0x40000000 }, { 269509, 0x44fe8ab5 }, { 330441, 0x5497c808 }, { 333038, 0x5541fa76 }, { 375000, 0x60000000 }, { 394734, 0x650d4995 }, { 446327, 0x72427c7c }, { 500000, 0x80000000 }, { 517139, 0x846338b4 }, { 571953, 0x926b8306 }, { 587353, 0x965cc426 }, { 625000, 0xa0000000 }, { 692136, 0xb12fd32c }, { 750000, 0xc0000000 }, { 834068, 0xd5857aff }, { 848454, 0xd9344806 }, { 854222, 0xdaae4b02 }, { 861465, 0xdc88f862 }, { 875000, 0xe0000000 }, { 910661, 0xe921144d }, { 922162, 0xec12cf10 }, { 942190, 0xf1335d25 } }; u_int32 my_tick_to_tsf(u_int32 ticks) { // convert microseconds to l_fp fractional units, using double // precision float calculations or, if available, 64bit integer // arithmetic. This should give the precise fraction, rounded to // the nearest representation. #ifdef HAVE_U_INT64 return (u_int32)((( ((u_int64)(ticks)) << 32) + 500000) / 1000000); //I put too much () when casting just to be safe #else return (u_int32)( ((double)(ticks)) * 4294.967296 + 0.5); #endif // And before you ask: if ticks >= 1000000, the result is // truncated nonsense, so don't use it out-of-bounds. } u_int32 my_tsf_to_tick(u_int32 tsf) { // Inverse operation: converts fraction to microseconds. #ifdef HAVE_U_INT64 return (u_int32)( ((u_int64)(tsf) * 1000000 + 0x80000000) >> 32); //CHECK ME!!! #else return (u_int32)(double(tsf) / 4294.967296 + 0.5); #endif // Beware: The result might be 10^6 due to rounding! } //*******************************END OF CUSTOM FUNCTIONS********************* // --------------------------------------------------------------------- // test support stuff - part1 // --------------------------------------------------------------------- void test_Helpers1(void) { struct timeval x; for (x.tv_sec = -2; x.tv_sec < 3; x.tv_sec++) { x.tv_usec = -1; TEST_ASSERT_FALSE(timeval_isValid(x)); x.tv_usec = 0; TEST_ASSERT_TRUE(timeval_isValid(x)); x.tv_usec = 999999; TEST_ASSERT_TRUE(timeval_isValid(x)); x.tv_usec = 1000000; TEST_ASSERT_FALSE(timeval_isValid(x)); } return; } //---------------------------------------------------------------------- // test normalisation //---------------------------------------------------------------------- void test_Normalise(void) { long ns; for (ns = -2000000000; ns <= 2000000000; ns += 10000000) { struct timeval x = timeval_init(0, ns); x = normalize_tval(x); TEST_ASSERT_TRUE(timeval_isValid(x)); } return; } //---------------------------------------------------------------------- // test classification //---------------------------------------------------------------------- void test_SignNoFrac(void) { int i; // sign test, no fraction for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 0); int E = (i > 0) - (i < 0); int r = test_tval(a); TEST_ASSERT_EQUAL(E, r); } return; } void test_SignWithFrac(void) { // sign test, with fraction int i; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 10); int E = (i >= 0) - (i < 0); int r = test_tval(a); TEST_ASSERT_EQUAL(E, r); } return; } //---------------------------------------------------------------------- // test compare //---------------------------------------------------------------------- void test_CmpFracEQ(void) { int i, j; // fractions are equal for (i = -4; i <= 4; ++i) for (j = -4; j <= 4; ++j) { struct timeval a = timeval_init(i, 200); struct timeval b = timeval_init(j, 200); int E = (i > j) - (i < j); int r = cmp_tval_denorm(a, b); TEST_ASSERT_EQUAL(E, r); } return; } void test_CmpFracGT(void) { // fraction a bigger fraction b int i, j; for (i = -4; i <= 4; ++i) for (j = -4; j <= 4; ++j) { struct timeval a = timeval_init( i , 999800); struct timeval b = timeval_init( j , 200); int E = (i >= j) - (i < j); int r = cmp_tval_denorm(a, b); TEST_ASSERT_EQUAL(E, r); } return; } void test_CmpFracLT(void) { // fraction a less fraction b int i, j; for (i = -4; i <= 4; ++i) for (j = -4; j <= 4; ++j) { struct timeval a = timeval_init(i, 200); struct timeval b = timeval_init(j, 999800); int E = (i > j) - (i <= j); int r = cmp_tval_denorm(a, b); TEST_ASSERT_EQUAL(E, r); } return; } //---------------------------------------------------------------------- // Test addition (sum) //---------------------------------------------------------------------- void test_AddFullNorm(void) { int i, j; for (i = -4; i <= 4; ++i) for (j = -4; j <= 4; ++j) { struct timeval a = timeval_init(i, 200); struct timeval b = timeval_init(j, 400); struct timeval E = timeval_init(i + j, 200 + 400); struct timeval c; c = add_tval(a, b); TEST_ASSERT_EQUAL_timeval(E, c); } return; } void test_AddFullOflow1(void) { int i, j; for (i = -4; i <= 4; ++i) for (j = -4; j <= 4; ++j) { struct timeval a = timeval_init(i, 200); struct timeval b = timeval_init(j, 999900); struct timeval E = timeval_init(i + j + 1, 100); struct timeval c; c = add_tval(a, b); TEST_ASSERT_EQUAL_timeval(E, c); } return; } void test_AddUsecNorm(void) { int i; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 200); struct timeval E = timeval_init(i, 600); struct timeval c; c = add_tval_us(a, 600 - 200); TEST_ASSERT_EQUAL_timeval(E, c); } return; } void test_AddUsecOflow1(void) { int i; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 200); struct timeval E = timeval_init(i + 1, 100); struct timeval c; c = add_tval_us(a, MICROSECONDS - 100); TEST_ASSERT_EQUAL_timeval(E, c); } return; } //---------------------------------------------------------------------- // test subtraction (difference) //---------------------------------------------------------------------- void test_SubFullNorm(void) { int i, j; for (i = -4; i <= 4; ++i) for (j = -4; j <= 4; ++j) { struct timeval a = timeval_init(i, 600); struct timeval b = timeval_init(j, 400); struct timeval E = timeval_init(i - j, 600 - 400); struct timeval c; c = sub_tval(a, b); TEST_ASSERT_EQUAL_timeval(E, c); } return; } void test_SubFullOflow(void) { int i, j; for (i = -4; i <= 4; ++i) for (j = -4; j <= 4; ++j) { struct timeval a = timeval_init(i, 100); struct timeval b = timeval_init(j, 999900); struct timeval E = timeval_init(i - j - 1, 200); struct timeval c; c = sub_tval(a, b); TEST_ASSERT_EQUAL_timeval(E, c); } return; } void test_SubUsecNorm(void) { int i = -4; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 600); struct timeval E = timeval_init(i, 200); struct timeval c; c = sub_tval_us(a, 600 - 200); TEST_ASSERT_EQUAL_timeval(E, c); } return; } void test_SubUsecOflow(void) { int i = -4; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 100); struct timeval E = timeval_init(i - 1, 200); struct timeval c; c = sub_tval_us(a, MICROSECONDS - 100); TEST_ASSERT_EQUAL_timeval(E, c); } return; } //---------------------------------------------------------------------- // test negation //---------------------------------------------------------------------- void test_Neg(void) { int i = -4; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 100); struct timeval b; struct timeval c; b = neg_tval(a); c = add_tval(a, b); TEST_ASSERT_EQUAL(0, test_tval(c)); } return; } //---------------------------------------------------------------------- // test abs value //---------------------------------------------------------------------- void test_AbsNoFrac(void) { int i = -4; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 0); struct timeval b; b = abs_tval(a); TEST_ASSERT_EQUAL((i != 0), test_tval(b)); } return; } void test_AbsWithFrac(void) { int i = -4; for (i = -4; i <= 4; ++i) { struct timeval a = timeval_init(i, 100); struct timeval b; b = abs_tval(a); TEST_ASSERT_EQUAL(1, test_tval(b)); } return; } // --------------------------------------------------------------------- // test support stuff -- part 2 // --------------------------------------------------------------------- void test_Helpers2(void) { struct timeval limit = timeval_init(0, 2); struct timeval x, y; long i; for (x.tv_sec = -2; x.tv_sec < 3; x.tv_sec++) { for (x.tv_usec = 1; x.tv_usec < 1000000; x.tv_usec += 499999) { for (i = -4; i < 5; ++i) { y = x; y.tv_usec += i; if (i >= -2 && i <= 2) { TEST_ASSERT_TRUE(AssertTimevalClose(x, y, limit));//ASSERT_PRED_FORMAT2(isClose, x, y); } else { TEST_ASSERT_FALSE(AssertTimevalClose(x, y, limit)); } } } } return; } // and the global predicate instances we're using here //static l_fp lfpClose = l_fp_init(0, 1); //static AssertFpClose FpClose(0, 1); //static struct timeval timevalClose = timeval_init(0, 1); //static AssertTimevalClose TimevalClose(0, 1); //---------------------------------------------------------------------- // conversion to l_fp //---------------------------------------------------------------------- void test_ToLFPbittest(void) { l_fp lfpClose = l_fp_init(0, 1); u_int32 i = 0; for (i = 0; i < 1000000; ++i) { struct timeval a = timeval_init(1, i); l_fp E = l_fp_init(1, my_tick_to_tsf(i)); l_fp r; r = tval_intv_to_lfp(a); TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose)); //ASSERT_PRED_FORMAT2(FpClose, E, r); } return; } void test_ToLFPrelPos(void) { l_fp lfpClose = l_fp_init(0, 1); int i = 0; for (i = 0; i < COUNTOF(fdata); ++i) { struct timeval a = timeval_init(1, fdata[i].usec); l_fp E = l_fp_init(1, fdata[i].frac); l_fp r; r = tval_intv_to_lfp(a); TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose)); } return; } void test_ToLFPrelNeg(void) { l_fp lfpClose = l_fp_init(0, 1); int i = 0; for (i = 0; i < COUNTOF(fdata); ++i) { struct timeval a = timeval_init(-1, fdata[i].usec); l_fp E = l_fp_init(~0, fdata[i].frac); l_fp r; r = tval_intv_to_lfp(a); TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose)); } return; } void test_ToLFPabs(void) { l_fp lfpClose = l_fp_init(0, 1); int i = 0; for (i = 0; i < COUNTOF(fdata); ++i) { struct timeval a = timeval_init(1, fdata[i].usec); l_fp E = l_fp_init(1 + JAN_1970, fdata[i].frac); l_fp r; r = tval_stamp_to_lfp(a); TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose)); } return; } //---------------------------------------------------------------------- // conversion from l_fp //---------------------------------------------------------------------- void test_FromLFPbittest(void) { struct timeval timevalClose = timeval_init(0, 1); // Not *exactly* a bittest, because 2**32 tests would take a // really long time even on very fast machines! So we do test // every 1000 fractional units. u_int32 tsf = 0; for (tsf = 0; tsf < ~((u_int32)(1000)); tsf += 1000) { struct timeval E = timeval_init(1, my_tsf_to_tick(tsf)); l_fp a = l_fp_init(1, tsf); struct timeval r; r = lfp_intv_to_tval(a); // The conversion might be off by one microsecond when // comparing to calculated value. TEST_ASSERT_TRUE(AssertTimevalClose(E, r, timevalClose)); } return; } void test_FromLFPrelPos(void) { struct timeval timevalClose = timeval_init(0, 1); int i = 0; for (i = 0; i < COUNTOF(fdata); ++i) { l_fp a = l_fp_init(1, fdata[i].frac); struct timeval E = timeval_init(1, fdata[i].usec); struct timeval r; r = lfp_intv_to_tval(a); TEST_ASSERT_TRUE(AssertTimevalClose(E, r, timevalClose)); } return; } void test_FromLFPrelNeg(void) { struct timeval timevalClose = timeval_init(0, 1); int i = 0; for (i = 0; i < COUNTOF(fdata); ++i) { l_fp a = l_fp_init(~0, fdata[i].frac); struct timeval E = timeval_init(-1, fdata[i].usec); struct timeval r; r = lfp_intv_to_tval(a); TEST_ASSERT_TRUE(AssertTimevalClose(E, r, timevalClose)); } return; } // usec -> frac -> usec roundtrip, using a prime start and increment void test_LFProundtrip(void) { int32_t t = -1; u_int32 i = 5; for (t = -1; t < 2; ++t) for (i = 5; i < 1000000; i += 11) { struct timeval E = timeval_init(t, i); l_fp a; struct timeval r; a = tval_intv_to_lfp(E); r = lfp_intv_to_tval(a); TEST_ASSERT_EQUAL_timeval(E, r); } return; } //---------------------------------------------------------------------- // string formatting //---------------------------------------------------------------------- void test_ToString(void) { static const struct { time_t sec; long usec; const char * repr; } data [] = { { 0, 0, "0.000000" }, { 2, 0, "2.000000" }, {-2, 0, "-2.000000" }, { 0, 1, "0.000001" }, { 0,-1, "-0.000001" }, { 1,-1, "0.999999" }, {-1, 1, "-0.999999" }, {-1,-1, "-1.000001" }, }; int i; for (i = 0; i < COUNTOF(data); ++i) { struct timeval a = timeval_init(data[i].sec, data[i].usec); const char * E = data[i].repr; const char * r = tvaltoa(a); TEST_ASSERT_EQUAL_STRING(E, r); } return; } // -*- EOF -*-