/* * ntp_fp.h - definitions for NTP fixed/floating-point arithmetic */ #ifndef NTP_FP_H #define NTP_FP_H #include "ntp_types.h" /* * NTP uses two fixed point formats. The first (l_fp) is the "long" * format and is 64 bits long with the decimal between bits 31 and 32. * This is used for time stamps in the NTP packet header (in network * byte order) and for internal computations of offsets (in local host * byte order). We use the same structure for both signed and unsigned * values, which is a big hack but saves rewriting all the operators * twice. Just to confuse this, we also sometimes just carry the * fractional part in calculations, in both signed and unsigned forms. * Anyway, an l_fp looks like: * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Integral Part | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Fractional Part | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * */ typedef struct { union { u_int32 Xl_ui; int32 Xl_i; } Ul_i; u_int32 l_uf; } l_fp; #define l_ui Ul_i.Xl_ui /* unsigned integral part */ #define l_i Ul_i.Xl_i /* signed integral part */ /* * Fractional precision (of an l_fp) is actually the number of * bits in a long. */ #define FRACTION_PREC (32) /* * The second fixed point format is 32 bits, with the decimal between * bits 15 and 16. There is a signed version (s_fp) and an unsigned * version (u_fp). This is used to represent synchronizing distance * and synchronizing dispersion in the NTP packet header (again, in * network byte order) and internally to hold both distance and * dispersion values (in local byte order). In network byte order * it looks like: * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Integer Part | Fraction Part | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * */ typedef int32 s_fp; typedef u_int32 u_fp; /* * A unit second in fp format. Actually 2**(half_the_bits_in_a_long) */ #define FP_SECOND (0x10000) /* * Byte order conversions */ #define HTONS_FP(x) (htonl(x)) #define NTOHS_FP(x) (ntohl(x)) #define NTOHL_MFP(ni, nf, hi, hf) \ do { \ (hi) = ntohl(ni); \ (hf) = ntohl(nf); \ } while (FALSE) #define HTONL_MFP(hi, hf, ni, nf) \ do { \ (ni) = htonl(hi); \ (nf) = htonl(hf); \ } while (FALSE) #define HTONL_FP(h, n) \ HTONL_MFP((h)->l_ui, (h)->l_uf, (n)->l_ui, (n)->l_uf) #define NTOHL_FP(n, h) \ NTOHL_MFP((n)->l_ui, (n)->l_uf, (h)->l_ui, (h)->l_uf) /* Convert unsigned ts fraction to net order ts */ #define HTONL_UF(uf, nts) \ do { \ (nts)->l_ui = 0; \ (nts)->l_uf = htonl(uf); \ } while (FALSE) /* * Conversions between the two fixed point types */ #define MFPTOFP(x_i, x_f) (((x_i) >= 0x00010000) ? 0x7fffffff : \ (((x_i) <= -0x00010000) ? 0x80000000 : \ (((x_i)<<16) | (((x_f)>>16)&0xffff)))) #define LFPTOFP(v) MFPTOFP((v)->l_i, (v)->l_uf) #define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16) #define FPTOLFP(x, v) (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0) #define MAXLFP(v) ((v)->l_ui = 0x7fffffffu, (v)->l_uf = 0xffffffffu) #define MINLFP(v) ((v)->l_ui = 0x80000000u, (v)->l_uf = 0u) /* * Primitive operations on long fixed point values. If these are * reminiscent of assembler op codes it's only because some may * be replaced by inline assembler for particular machines someday. * These are the (kind of inefficient) run-anywhere versions. */ #define M_NEG(v_i, v_f) /* v = -v */ \ do { \ (v_f) = ~(v_f) + 1u; \ (v_i) = ~(v_i) + ((v_f) == 0); \ } while (FALSE) #define M_NEGM(r_i, r_f, a_i, a_f) /* r = -a */ \ do { \ (r_f) = ~(a_f) + 1u; \ (r_i) = ~(a_i) + ((r_f) == 0); \ } while (FALSE) #define M_ADD(r_i, r_f, a_i, a_f) /* r += a */ \ do { \ u_int32 add_t = (r_f); \ (r_f) += (a_f); \ (r_i) += (a_i) + ((u_int32)(r_f) < add_t); \ } while (FALSE) #define M_ADD3(r_o, r_i, r_f, a_o, a_i, a_f) /* r += a, three word */ \ do { \ u_int32 add_t, add_c; \ add_t = (r_f); \ (r_f) += (a_f); \ add_c = ((u_int32)(r_f) < add_t); \ (r_i) += add_c; \ add_c = ((u_int32)(r_i) < add_c); \ add_t = (r_i); \ (r_i) += (a_i); \ add_c |= ((u_int32)(r_i) < add_t); \ (r_o) += (a_o) + add_c; \ } while (FALSE) #define M_SUB(r_i, r_f, a_i, a_f) /* r -= a */ \ do { \ u_int32 sub_t = (r_f); \ (r_f) -= (a_f); \ (r_i) -= (a_i) + ((u_int32)(r_f) > sub_t); \ } while (FALSE) #define M_RSHIFTU(v_i, v_f) /* v >>= 1, v is unsigned */ \ do { \ (v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31); \ (v_i) = ((u_int32)(v_i) >> 1); \ } while (FALSE) #define M_RSHIFT(v_i, v_f) /* v >>= 1, v is signed */ \ do { \ (v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31); \ (v_i) = ((u_int32)(v_i) >> 1) | ((u_int32)(v_i) & 0x80000000); \ } while (FALSE) #define M_LSHIFT(v_i, v_f) /* v <<= 1 */ \ do { \ (v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31); \ (v_f) = ((u_int32)(v_f) << 1); \ } while (FALSE) #define M_LSHIFT3(v_o, v_i, v_f) /* v <<= 1, with overflow */ \ do { \ (v_o) = ((u_int32)(v_o) << 1) | ((u_int32)(v_i) >> 31); \ (v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31); \ (v_f) = ((u_int32)(v_f) << 1); \ } while (FALSE) #define M_ADDUF(r_i, r_f, uf) /* r += uf, uf is u_int32 fraction */ \ M_ADD((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */ #define M_SUBUF(r_i, r_f, uf) /* r -= uf, uf is u_int32 fraction */ \ M_SUB((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */ #define M_ADDF(r_i, r_f, f) /* r += f, f is a int32 fraction */ \ do { \ int32 add_f = (int32)(f); \ if (add_f >= 0) \ M_ADD((r_i), (r_f), 0, (uint32)( add_f)); \ else \ M_SUB((r_i), (r_f), 0, (uint32)(-add_f)); \ } while(0) #define M_ISNEG(v_i) /* v < 0 */ \ (((v_i) & 0x80000000) != 0) #define M_ISGT(a_i, a_f, b_i, b_f) /* a > b signed */ \ (((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \ ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f)))) #define M_ISGTU(a_i, a_f, b_i, b_f) /* a > b unsigned */ \ (((u_int32)(a_i)) > ((u_int32)(b_i)) || \ ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f)))) #define M_ISHIS(a_i, a_f, b_i, b_f) /* a >= b unsigned */ \ (((u_int32)(a_i)) > ((u_int32)(b_i)) || \ ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f)))) #define M_ISGEQ(a_i, a_f, b_i, b_f) /* a >= b signed */ \ (((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \ ((a_i) == (b_i) && (u_int32)(a_f) >= (u_int32)(b_f))) #define M_ISEQU(a_i, a_f, b_i, b_f) /* a == b unsigned */ \ ((u_int32)(a_i) == (u_int32)(b_i) && (u_int32)(a_f) == (u_int32)(b_f)) /* * Operations on the long fp format */ #define L_ADD(r, a) M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf) #define L_SUB(r, a) M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf) #define L_NEG(v) M_NEG((v)->l_ui, (v)->l_uf) #define L_ADDUF(r, uf) M_ADDUF((r)->l_ui, (r)->l_uf, (uf)) #define L_SUBUF(r, uf) M_SUBUF((r)->l_ui, (r)->l_uf, (uf)) #define L_ADDF(r, f) M_ADDF((r)->l_ui, (r)->l_uf, (f)) #define L_RSHIFT(v) M_RSHIFT((v)->l_i, (v)->l_uf) #define L_RSHIFTU(v) M_RSHIFTU((v)->l_ui, (v)->l_uf) #define L_LSHIFT(v) M_LSHIFT((v)->l_ui, (v)->l_uf) #define L_CLR(v) ((v)->l_ui = (v)->l_uf = 0) #define L_ISNEG(v) M_ISNEG((v)->l_ui) #define L_ISZERO(v) (((v)->l_ui | (v)->l_uf) == 0) #define L_ISGT(a, b) M_ISGT((a)->l_i, (a)->l_uf, (b)->l_i, (b)->l_uf) #define L_ISGTU(a, b) M_ISGTU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf) #define L_ISHIS(a, b) M_ISHIS((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf) #define L_ISGEQ(a, b) M_ISGEQ((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf) #define L_ISEQU(a, b) M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf) /* * s_fp/double and u_fp/double conversions */ #define FRIC 65536.0 /* 2^16 as a double */ #define DTOFP(r) ((s_fp)((r) * FRIC)) #define DTOUFP(r) ((u_fp)((r) * FRIC)) #define FPTOD(r) ((double)(r) / FRIC) /* * l_fp/double conversions */ #define FRAC 4294967296.0 /* 2^32 as a double */ /* * Use 64 bit integers if available. Solaris on SPARC has a problem * compiling parsesolaris.c if ntp_fp.h includes math.h, due to * archaic gets() and printf() prototypes used in Solaris kernel * headers. So far the problem has only been seen with gcc, but it * may also affect Sun compilers, in which case the defined(__GNUC__) * term should be removed. * XSCALE also generates bad code for these, at least with GCC 3.3.5. * This is unrelated to math.h, but the same solution applies. */ #if defined(HAVE_U_INT64) && \ !(defined(__SVR4) && defined(__sun) && \ defined(sparc) && defined(__GNUC__) || \ defined(__arm__) && defined(__XSCALE__) && defined(__GNUC__)) #include /* ldexp() */ #define M_DTOLFP(d, r_ui, r_uf) /* double to l_fp */ \ do { \ double d_tmp; \ u_int64 q_tmp; \ int M_isneg; \ \ d_tmp = (d); \ M_isneg = (d_tmp < 0.); \ if (M_isneg) { \ d_tmp = -d_tmp; \ } \ q_tmp = (u_int64)ldexp(d_tmp, 32); \ if (M_isneg) { \ q_tmp = ~q_tmp + 1; \ } \ (r_uf) = (u_int32)q_tmp; \ (r_ui) = (u_int32)(q_tmp >> 32); \ } while (FALSE) #define M_LFPTOD(r_ui, r_uf, d) /* l_fp to double */ \ do { \ double d_tmp; \ u_int64 q_tmp; \ int M_isneg; \ \ q_tmp = ((u_int64)(r_ui) << 32) + (r_uf); \ M_isneg = M_ISNEG(r_ui); \ if (M_isneg) { \ q_tmp = ~q_tmp + 1; \ } \ d_tmp = ldexp((double)q_tmp, -32); \ if (M_isneg) { \ d_tmp = -d_tmp; \ } \ (d) = d_tmp; \ } while (FALSE) #else /* use only 32 bit unsigned values */ #define M_DTOLFP(d, r_ui, r_uf) /* double to l_fp */ \ do { \ double d_tmp; \ if ((d_tmp = (d)) < 0) { \ (r_ui) = (u_int32)(-d_tmp); \ (r_uf) = (u_int32)(-(d_tmp + (double)(r_ui)) * FRAC); \ M_NEG((r_ui), (r_uf)); \ } else { \ (r_ui) = (u_int32)d_tmp; \ (r_uf) = (u_int32)((d_tmp - (double)(r_ui)) * FRAC); \ } \ } while (0) #define M_LFPTOD(r_ui, r_uf, d) /* l_fp to double */ \ do { \ u_int32 l_thi, l_tlo; \ l_thi = (r_ui); l_tlo = (r_uf); \ if (M_ISNEG(l_thi)) { \ M_NEG(l_thi, l_tlo); \ (d) = -((double)l_thi + (double)l_tlo / FRAC); \ } else { \ (d) = (double)l_thi + (double)l_tlo / FRAC; \ } \ } while (0) #endif #define DTOLFP(d, v) M_DTOLFP((d), (v)->l_ui, (v)->l_uf) #define LFPTOD(v, d) M_LFPTOD((v)->l_ui, (v)->l_uf, (d)) /* * Prototypes */ extern char * dofptoa (u_fp, int, short, int); extern char * dolfptoa (u_int32, u_int32, int, short, int); extern int atolfp (const char *, l_fp *); extern int buftvtots (const char *, l_fp *); extern char * fptoa (s_fp, short); extern char * fptoms (s_fp, short); extern int hextolfp (const char *, l_fp *); extern void gpstolfp (u_int, u_int, unsigned long, l_fp *); extern int mstolfp (const char *, l_fp *); extern char * prettydate (l_fp *); extern char * gmprettydate (l_fp *); extern char * uglydate (l_fp *); extern void mfp_mul (int32 *, u_int32 *, int32, u_int32, int32, u_int32); extern void set_sys_fuzz (double); extern void init_systime (void); extern void get_systime (l_fp *); extern int step_systime (double); extern int adj_systime (double); extern struct tm * ntp2unix_tm (u_int32 ntp, int local); #define lfptoa(fpv, ndec) mfptoa((fpv)->l_ui, (fpv)->l_uf, (ndec)) #define lfptoms(fpv, ndec) mfptoms((fpv)->l_ui, (fpv)->l_uf, (ndec)) #define stoa(addr) socktoa(addr) #define ntoa(addr) stoa(addr) #define sptoa(addr) sockporttoa(addr) #define stohost(addr) socktohost(addr) #define ufptoa(fpv, ndec) dofptoa((fpv), 0, (ndec), 0) #define ufptoms(fpv, ndec) dofptoa((fpv), 0, (ndec), 1) #define ulfptoa(fpv, ndec) dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 0) #define ulfptoms(fpv, ndec) dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 1) #define umfptoa(fpi, fpf, ndec) dolfptoa((fpi), (fpf), 0, (ndec), 0) /* * Optional callback from libntp step_systime() to ntpd. Optional * because other libntp clients like ntpdate don't use it. */ typedef void (*time_stepped_callback)(void); extern time_stepped_callback step_callback; /* * Multi-thread locking for get_systime() * * On most systems, get_systime() is used solely by the main ntpd * thread, but on Windows it's also used by the dedicated I/O thread. * The [Bug 2037] changes to get_systime() have it keep state between * calls to ensure time moves in only one direction, which means its * use on Windows needs to be protected against simultaneous execution * to avoid falsely detecting Lamport violations by ensuring only one * thread at a time is in get_systime(). */ #ifdef SYS_WINNT extern CRITICAL_SECTION get_systime_cs; # define INIT_GET_SYSTIME_CRITSEC() \ InitializeCriticalSection(&get_systime_cs) # define ENTER_GET_SYSTIME_CRITSEC() \ EnterCriticalSection(&get_systime_cs) # define LEAVE_GET_SYSTIME_CRITSEC() \ LeaveCriticalSection(&get_systime_cs) # define INIT_WIN_PRECISE_TIME() \ init_win_precise_time() #else /* !SYS_WINNT follows */ # define INIT_GET_SYSTIME_CRITSEC() \ do {} while (FALSE) # define ENTER_GET_SYSTIME_CRITSEC() \ do {} while (FALSE) # define LEAVE_GET_SYSTIME_CRITSEC() \ do {} while (FALSE) # define INIT_WIN_PRECISE_TIME() \ do {} while (FALSE) #endif #endif /* NTP_FP_H */