/* crypto/aes/aes_ige.c -*- mode:C; c-file-style: "eay" -*- */ /* ==================================================================== * Copyright (c) 2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * */ #include "cryptlib.h" #include #include "aes_locl.h" /* static void hexdump(FILE *f,const char *title,const unsigned char *s,int l) { int n=0; fprintf(f,"%s",title); for( ; n < l ; ++n) { if((n%16) == 0) fprintf(f,"\n%04x",n); fprintf(f," %02x",s[n]); } fprintf(f,"\n"); } */ /* N.B. The IV for this mode is _twice_ the block size */ void AES_ige_encrypt(const unsigned char *in, unsigned char *out, const unsigned long length, const AES_KEY *key, unsigned char *ivec, const int enc) { unsigned long n; unsigned long len = length; unsigned char tmp[AES_BLOCK_SIZE]; unsigned char tmp2[AES_BLOCK_SIZE]; unsigned char prev[AES_BLOCK_SIZE]; const unsigned char *iv = ivec; const unsigned char *iv2 = ivec + AES_BLOCK_SIZE; OPENSSL_assert(in && out && key && ivec); OPENSSL_assert((AES_ENCRYPT == enc)||(AES_DECRYPT == enc)); OPENSSL_assert((length%AES_BLOCK_SIZE) == 0); if (AES_ENCRYPT == enc) { /* XXX: Do a separate case for when in != out (strictly should check for overlap, too) */ while (len >= AES_BLOCK_SIZE) { /* hexdump(stdout, "in", in, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv", iv, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] = in[n] ^ iv[n]; /* hexdump(stdout, "in ^ iv", out, AES_BLOCK_SIZE); */ AES_encrypt(out, out, key); /* hexdump(stdout,"enc", out, AES_BLOCK_SIZE); */ /* hexdump(stdout,"iv2", iv2, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] ^= iv2[n]; /* hexdump(stdout,"out", out, AES_BLOCK_SIZE); */ iv = out; memcpy(prev, in, AES_BLOCK_SIZE); iv2 = prev; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, iv, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2, AES_BLOCK_SIZE); } else { while (len >= AES_BLOCK_SIZE) { memcpy(tmp, in, AES_BLOCK_SIZE); memcpy(tmp2, in, AES_BLOCK_SIZE); /* hexdump(stdout, "in", in, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv2", iv2, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) tmp[n] ^= iv2[n]; /* hexdump(stdout, "in ^ iv2", tmp, AES_BLOCK_SIZE); */ AES_decrypt(tmp, out, key); /* hexdump(stdout, "dec", out, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv", ivec, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] ^= ivec[n]; /* hexdump(stdout, "out", out, AES_BLOCK_SIZE); */ memcpy(ivec, tmp2, AES_BLOCK_SIZE); iv2 = out; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec + AES_BLOCK_SIZE, iv2, AES_BLOCK_SIZE); } } /* * Note that its effectively impossible to do biIGE in anything other * than a single pass, so no provision is made for chaining. */ /* N.B. The IV for this mode is _four times_ the block size */ void AES_bi_ige_encrypt(const unsigned char *in, unsigned char *out, const unsigned long length, const AES_KEY *key, const AES_KEY *key2, const unsigned char *ivec, const int enc) { unsigned long n; unsigned long len = length; unsigned char tmp[AES_BLOCK_SIZE]; unsigned char tmp2[AES_BLOCK_SIZE]; unsigned char tmp3[AES_BLOCK_SIZE]; unsigned char prev[AES_BLOCK_SIZE]; const unsigned char *iv; const unsigned char *iv2; OPENSSL_assert(in && out && key && ivec); OPENSSL_assert((AES_ENCRYPT == enc)||(AES_DECRYPT == enc)); OPENSSL_assert((length%AES_BLOCK_SIZE) == 0); if (AES_ENCRYPT == enc) { /* XXX: Do a separate case for when in != out (strictly should check for overlap, too) */ /* First the forward pass */ iv = ivec; iv2 = ivec + AES_BLOCK_SIZE; while (len >= AES_BLOCK_SIZE) { /* hexdump(stdout, "in", in, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv", iv, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] = in[n] ^ iv[n]; /* hexdump(stdout, "in ^ iv", out, AES_BLOCK_SIZE); */ AES_encrypt(out, out, key); /* hexdump(stdout,"enc", out, AES_BLOCK_SIZE); */ /* hexdump(stdout,"iv2", iv2, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] ^= iv2[n]; /* hexdump(stdout,"out", out, AES_BLOCK_SIZE); */ iv = out; memcpy(prev, in, AES_BLOCK_SIZE); iv2 = prev; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } /* And now backwards */ iv = ivec + AES_BLOCK_SIZE*2; iv2 = ivec + AES_BLOCK_SIZE*3; len = length; while(len >= AES_BLOCK_SIZE) { out -= AES_BLOCK_SIZE; /* hexdump(stdout, "intermediate", out, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv", iv, AES_BLOCK_SIZE); */ /* XXX: reduce copies by alternating between buffers */ memcpy(tmp, out, AES_BLOCK_SIZE); for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] ^= iv[n]; /* hexdump(stdout, "out ^ iv", out, AES_BLOCK_SIZE); */ AES_encrypt(out, out, key); /* hexdump(stdout,"enc", out, AES_BLOCK_SIZE); */ /* hexdump(stdout,"iv2", iv2, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] ^= iv2[n]; /* hexdump(stdout,"out", out, AES_BLOCK_SIZE); */ iv = out; memcpy(prev, tmp, AES_BLOCK_SIZE); iv2 = prev; len -= AES_BLOCK_SIZE; } } else { /* First backwards */ iv = ivec + AES_BLOCK_SIZE*2; iv2 = ivec + AES_BLOCK_SIZE*3; in += length; out += length; while (len >= AES_BLOCK_SIZE) { in -= AES_BLOCK_SIZE; out -= AES_BLOCK_SIZE; memcpy(tmp, in, AES_BLOCK_SIZE); memcpy(tmp2, in, AES_BLOCK_SIZE); /* hexdump(stdout, "in", in, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv2", iv2, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) tmp[n] ^= iv2[n]; /* hexdump(stdout, "in ^ iv2", tmp, AES_BLOCK_SIZE); */ AES_decrypt(tmp, out, key); /* hexdump(stdout, "dec", out, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv", iv, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] ^= iv[n]; /* hexdump(stdout, "out", out, AES_BLOCK_SIZE); */ memcpy(tmp3, tmp2, AES_BLOCK_SIZE); iv = tmp3; iv2 = out; len -= AES_BLOCK_SIZE; } /* And now forwards */ iv = ivec; iv2 = ivec + AES_BLOCK_SIZE; len = length; while (len >= AES_BLOCK_SIZE) { memcpy(tmp, out, AES_BLOCK_SIZE); memcpy(tmp2, out, AES_BLOCK_SIZE); /* hexdump(stdout, "intermediate", out, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv2", iv2, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) tmp[n] ^= iv2[n]; /* hexdump(stdout, "out ^ iv2", tmp, AES_BLOCK_SIZE); */ AES_decrypt(tmp, out, key); /* hexdump(stdout, "dec", out, AES_BLOCK_SIZE); */ /* hexdump(stdout, "iv", ivec, AES_BLOCK_SIZE); */ for(n=0 ; n < AES_BLOCK_SIZE ; ++n) out[n] ^= iv[n]; /* hexdump(stdout, "out", out, AES_BLOCK_SIZE); */ memcpy(tmp3, tmp2, AES_BLOCK_SIZE); iv = tmp3; iv2 = out; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } } }