/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #ifdef _KERNEL /* Including sys/bus.h is just too hard, so I declare what I need here. */ extern void devctl_notify(const char *__system, const char *__subsystem, const char *__type, const char *__data); #endif /* * This general routine is responsible for generating all the different ZFS * ereports. The payload is dependent on the class, and which arguments are * supplied to the function: * * EREPORT POOL VDEV IO * block X X X * data X X * device X X * pool X * * If we are in a loading state, all errors are chained together by the same * SPA-wide ENA (Error Numeric Association). * * For isolated I/O requests, we get the ENA from the zio_t. The propagation * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want * to chain together all ereports associated with a logical piece of data. For * read I/Os, there are basically three 'types' of I/O, which form a roughly * layered diagram: * * +---------------+ * | Aggregate I/O | No associated logical data or device * +---------------+ * | * V * +---------------+ Reads associated with a piece of logical data. * | Read I/O | This includes reads on behalf of RAID-Z, * +---------------+ mirrors, gang blocks, retries, etc. * | * V * +---------------+ Reads associated with a particular device, but * | Physical I/O | no logical data. Issued as part of vdev caching * +---------------+ and I/O aggregation. * * Note that 'physical I/O' here is not the same terminology as used in the rest * of ZIO. Typically, 'physical I/O' simply means that there is no attached * blockpointer. But I/O with no associated block pointer can still be related * to a logical piece of data (i.e. RAID-Z requests). * * Purely physical I/O always have unique ENAs. They are not related to a * particular piece of logical data, and therefore cannot be chained together. * We still generate an ereport, but the DE doesn't correlate it with any * logical piece of data. When such an I/O fails, the delegated I/O requests * will issue a retry, which will trigger the 'real' ereport with the correct * ENA. * * We keep track of the ENA for a ZIO chain through the 'io_logical' member. * When a new logical I/O is issued, we set this to point to itself. Child I/Os * then inherit this pointer, so that when it is first set subsequent failures * will use the same ENA. For vdev cache fill and queue aggregation I/O, * this pointer is set to NULL, and no ereport will be generated (since it * doesn't actually correspond to any particular device or piece of data, * and the caller will always retry without caching or queueing anyway). */ void zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, uint64_t stateoroffset, uint64_t size) { #ifdef _KERNEL char buf[1024]; struct sbuf sb; struct timespec ts; int state; /* * If we are doing a spa_tryimport(), ignore errors. */ if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) return; /* * If we are in the middle of opening a pool, and the previous attempt * failed, don't bother logging any new ereports - we're just going to * get the same diagnosis anyway. */ if (spa->spa_load_state != SPA_LOAD_NONE && spa->spa_last_open_failed) return; if (zio != NULL) { /* * If this is not a read or write zio, ignore the error. This * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. */ if (zio->io_type != ZIO_TYPE_READ && zio->io_type != ZIO_TYPE_WRITE) return; /* * Ignore any errors from speculative I/Os, as failure is an * expected result. */ if (zio->io_flags & ZIO_FLAG_SPECULATIVE) return; /* * If the vdev has already been marked as failing due to a * failed probe, then ignore any subsequent I/O errors, as the * DE will automatically fault the vdev on the first such * failure. */ if (vd != NULL && (!vdev_readable(vd) || !vdev_writeable(vd)) && strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) != 0) return; } nanotime(&ts); sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); sbuf_printf(&sb, "time=%ju.%ld", (uintmax_t)ts.tv_sec, ts.tv_nsec); /* * Serialize ereport generation */ mutex_enter(&spa->spa_errlist_lock); #if 0 /* * Determine the ENA to use for this event. If we are in a loading * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use * a root zio-wide ENA. Otherwise, simply use a unique ENA. */ if (spa->spa_load_state != SPA_LOAD_NONE) { #if 0 if (spa->spa_ena == 0) spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); #endif ena = spa->spa_ena; } else if (zio != NULL && zio->io_logical != NULL) { #if 0 if (zio->io_logical->io_ena == 0) zio->io_logical->io_ena = fm_ena_generate(0, FM_ENA_FMT1); #endif ena = zio->io_logical->io_ena; } else { #if 0 ena = fm_ena_generate(0, FM_ENA_FMT1); #else ena = 0; #endif } #endif /* * Construct the full class, detector, and other standard FMA fields. */ sbuf_printf(&sb, " ereport_version=%u", FM_EREPORT_VERSION); sbuf_printf(&sb, " class=%s.%s", ZFS_ERROR_CLASS, subclass); sbuf_printf(&sb, " zfs_scheme_version=%u", FM_ZFS_SCHEME_VERSION); /* * Construct the per-ereport payload, depending on which parameters are * passed in. */ /* * If we are importing a faulted pool, then we treat it like an open, * not an import. Otherwise, the DE will ignore all faults during * import, since the default behavior is to mark the devices as * persistently unavailable, not leave them in the faulted state. */ state = spa->spa_import_faulted ? SPA_LOAD_OPEN : spa->spa_load_state; /* * Generic payload members common to all ereports. */ sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)); sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)); sbuf_printf(&sb, " %s=%d", FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, state); if (spa != NULL) { sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? FM_EREPORT_FAILMODE_WAIT : spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC); } if (vd != NULL) { vdev_t *pvd = vd->vdev_parent; sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid); sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, vd->vdev_ops->vdev_op_type); if (vd->vdev_path) sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path); if (vd->vdev_devid) sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid); if (pvd != NULL) { sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, pvd->vdev_guid); sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, pvd->vdev_ops->vdev_op_type); if (pvd->vdev_path) sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, pvd->vdev_path); if (pvd->vdev_devid) sbuf_printf(&sb, " %s=%s", FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, pvd->vdev_devid); } } if (zio != NULL) { /* * Payload common to all I/Os. */ sbuf_printf(&sb, " %s=%u", FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, zio->io_error); /* * If the 'size' parameter is non-zero, it indicates this is a * RAID-Z or other I/O where the physical offset and length are * provided for us, instead of within the zio_t. */ if (vd != NULL) { if (size) { sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, stateoroffset); sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, size); } else { sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, zio->io_offset); sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, zio->io_size); } } /* * Payload for I/Os with corresponding logical information. */ if (zio->io_logical != NULL) { sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, zio->io_logical->io_bookmark.zb_object); sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, zio->io_logical->io_bookmark.zb_level); sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, zio->io_logical->io_bookmark.zb_blkid); } } else if (vd != NULL) { /* * If we have a vdev but no zio, this is a device fault, and the * 'stateoroffset' parameter indicates the previous state of the * vdev. */ sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, stateoroffset); } mutex_exit(&spa->spa_errlist_lock); sbuf_finish(&sb); devctl_notify("ZFS", spa->spa_name, subclass, sbuf_data(&sb)); if (sbuf_overflowed(&sb)) printf("ZFS WARNING: sbuf overflowed\n"); sbuf_delete(&sb); #endif } static void zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) { #ifdef _KERNEL char buf[1024]; char class[64]; struct sbuf sb; struct timespec ts; nanotime(&ts); sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); sbuf_printf(&sb, "time=%ju.%ld", (uintmax_t)ts.tv_sec, ts.tv_nsec); snprintf(class, sizeof(class), "%s.%s.%s", FM_RSRC_RESOURCE, ZFS_ERROR_CLASS, name); sbuf_printf(&sb, " %s=%hhu", FM_VERSION, FM_RSRC_VERSION); sbuf_printf(&sb, " %s=%s", FM_CLASS, class); sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)); if (vd) sbuf_printf(&sb, " %s=%ju", FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid); sbuf_finish(&sb); ZFS_LOG(1, "%s", sbuf_data(&sb)); devctl_notify("ZFS", spa->spa_name, class, sbuf_data(&sb)); if (sbuf_overflowed(&sb)) printf("ZFS WARNING: sbuf overflowed\n"); sbuf_delete(&sb); #endif } /* * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev * has been removed from the system. This will cause the DE to ignore any * recent I/O errors, inferring that they are due to the asynchronous device * removal. */ void zfs_post_remove(spa_t *spa, vdev_t *vd) { zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); } /* * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool * has the 'autoreplace' property set, and therefore any broken vdevs will be * handled by higher level logic, and no vdev fault should be generated. */ void zfs_post_autoreplace(spa_t *spa, vdev_t *vd) { zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); }