/*- * Copyright (c) 2009 The FreeBSD Foundation * All rights reserved. * * This software was developed by Pawel Jakub Dawidek under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "control.h" #include "hast.h" #include "hast_proto.h" #include "hastd.h" #include "metadata.h" #include "proto.h" #include "pjdlog.h" #include "subr.h" #include "synch.h" struct hio { /* * Number of components we are still waiting for. * When this field goes to 0, we can send the request back to the * kernel. Each component has to decrease this counter by one * even on failure. */ unsigned int hio_countdown; /* * Each component has a place to store its own error. * Once the request is handled by all components we can decide if the * request overall is successful or not. */ int *hio_errors; /* * Structure used to comunicate with GEOM Gate class. */ struct g_gate_ctl_io hio_ggio; TAILQ_ENTRY(hio) *hio_next; }; #define hio_free_next hio_next[0] #define hio_done_next hio_next[0] /* * Free list holds unused structures. When free list is empty, we have to wait * until some in-progress requests are freed. */ static TAILQ_HEAD(, hio) hio_free_list; static pthread_mutex_t hio_free_list_lock; static pthread_cond_t hio_free_list_cond; /* * There is one send list for every component. One requests is placed on all * send lists - each component gets the same request, but each component is * responsible for managing his own send list. */ static TAILQ_HEAD(, hio) *hio_send_list; static pthread_mutex_t *hio_send_list_lock; static pthread_cond_t *hio_send_list_cond; /* * There is one recv list for every component, although local components don't * use recv lists as local requests are done synchronously. */ static TAILQ_HEAD(, hio) *hio_recv_list; static pthread_mutex_t *hio_recv_list_lock; static pthread_cond_t *hio_recv_list_cond; /* * Request is placed on done list by the slowest component (the one that * decreased hio_countdown from 1 to 0). */ static TAILQ_HEAD(, hio) hio_done_list; static pthread_mutex_t hio_done_list_lock; static pthread_cond_t hio_done_list_cond; /* * Structure below are for interaction with sync thread. */ static bool sync_inprogress; static pthread_mutex_t sync_lock; static pthread_cond_t sync_cond; /* * The lock below allows to synchornize access to remote connections. */ static pthread_rwlock_t *hio_remote_lock; static pthread_mutex_t hio_guard_lock; static pthread_cond_t hio_guard_cond; /* * Lock to synchronize metadata updates. Also synchronize access to * hr_primary_localcnt and hr_primary_remotecnt fields. */ static pthread_mutex_t metadata_lock; /* * Maximum number of outstanding I/O requests. */ #define HAST_HIO_MAX 256 /* * Number of components. At this point there are only two components: local * and remote, but in the future it might be possible to use multiple local * and remote components. */ #define HAST_NCOMPONENTS 2 /* * Number of seconds to sleep before next reconnect try. */ #define RECONNECT_SLEEP 5 #define ISCONNECTED(res, no) \ ((res)->hr_remotein != NULL && (res)->hr_remoteout != NULL) #define QUEUE_INSERT1(hio, name, ncomp) do { \ bool _wakeup; \ \ mtx_lock(&hio_##name##_list_lock[(ncomp)]); \ _wakeup = TAILQ_EMPTY(&hio_##name##_list[(ncomp)]); \ TAILQ_INSERT_TAIL(&hio_##name##_list[(ncomp)], (hio), \ hio_next[(ncomp)]); \ mtx_unlock(&hio_##name##_list_lock[ncomp]); \ if (_wakeup) \ cv_signal(&hio_##name##_list_cond[(ncomp)]); \ } while (0) #define QUEUE_INSERT2(hio, name) do { \ bool _wakeup; \ \ mtx_lock(&hio_##name##_list_lock); \ _wakeup = TAILQ_EMPTY(&hio_##name##_list); \ TAILQ_INSERT_TAIL(&hio_##name##_list, (hio), hio_##name##_next);\ mtx_unlock(&hio_##name##_list_lock); \ if (_wakeup) \ cv_signal(&hio_##name##_list_cond); \ } while (0) #define QUEUE_TAKE1(hio, name, ncomp) do { \ mtx_lock(&hio_##name##_list_lock[(ncomp)]); \ while (((hio) = TAILQ_FIRST(&hio_##name##_list[(ncomp)])) == NULL) { \ cv_wait(&hio_##name##_list_cond[(ncomp)], \ &hio_##name##_list_lock[(ncomp)]); \ } \ TAILQ_REMOVE(&hio_##name##_list[(ncomp)], (hio), \ hio_next[(ncomp)]); \ mtx_unlock(&hio_##name##_list_lock[(ncomp)]); \ } while (0) #define QUEUE_TAKE2(hio, name) do { \ mtx_lock(&hio_##name##_list_lock); \ while (((hio) = TAILQ_FIRST(&hio_##name##_list)) == NULL) { \ cv_wait(&hio_##name##_list_cond, \ &hio_##name##_list_lock); \ } \ TAILQ_REMOVE(&hio_##name##_list, (hio), hio_##name##_next); \ mtx_unlock(&hio_##name##_list_lock); \ } while (0) #define SYNCREQ(hio) do { \ (hio)->hio_ggio.gctl_unit = -1; \ (hio)->hio_ggio.gctl_seq = 1; \ } while (0) #define ISSYNCREQ(hio) ((hio)->hio_ggio.gctl_unit == -1) #define SYNCREQDONE(hio) do { (hio)->hio_ggio.gctl_unit = -2; } while (0) #define ISSYNCREQDONE(hio) ((hio)->hio_ggio.gctl_unit == -2) static struct hast_resource *gres; static pthread_mutex_t range_lock; static struct rangelocks *range_regular; static bool range_regular_wait; static pthread_cond_t range_regular_cond; static struct rangelocks *range_sync; static bool range_sync_wait; static pthread_cond_t range_sync_cond; static void *ggate_recv_thread(void *arg); static void *local_send_thread(void *arg); static void *remote_send_thread(void *arg); static void *remote_recv_thread(void *arg); static void *ggate_send_thread(void *arg); static void *sync_thread(void *arg); static void *guard_thread(void *arg); static void sighandler(int sig); static void cleanup(struct hast_resource *res) { int rerrno; /* Remember errno. */ rerrno = errno; /* * Close descriptor to /dev/hast/ * to work-around race in the kernel. */ close(res->hr_localfd); /* Destroy ggate provider if we created one. */ if (res->hr_ggateunit >= 0) { struct g_gate_ctl_destroy ggiod; ggiod.gctl_version = G_GATE_VERSION; ggiod.gctl_unit = res->hr_ggateunit; ggiod.gctl_force = 1; if (ioctl(res->hr_ggatefd, G_GATE_CMD_DESTROY, &ggiod) < 0) { pjdlog_warning("Unable to destroy hast/%s device", res->hr_provname); } res->hr_ggateunit = -1; } /* Restore errno. */ errno = rerrno; } static void primary_exit(int exitcode, const char *fmt, ...) { va_list ap; assert(exitcode != EX_OK); va_start(ap, fmt); pjdlogv_errno(LOG_ERR, fmt, ap); va_end(ap); cleanup(gres); exit(exitcode); } static void primary_exitx(int exitcode, const char *fmt, ...) { va_list ap; va_start(ap, fmt); pjdlogv(exitcode == EX_OK ? LOG_INFO : LOG_ERR, fmt, ap); va_end(ap); cleanup(gres); exit(exitcode); } static int hast_activemap_flush(struct hast_resource *res) { const unsigned char *buf; size_t size; buf = activemap_bitmap(res->hr_amp, &size); assert(buf != NULL); assert((size % res->hr_local_sectorsize) == 0); if (pwrite(res->hr_localfd, buf, size, METADATA_SIZE) != (ssize_t)size) { KEEP_ERRNO(pjdlog_errno(LOG_ERR, "Unable to flush activemap to disk")); return (-1); } return (0); } static void init_environment(struct hast_resource *res __unused) { struct hio *hio; unsigned int ii, ncomps; /* * In the future it might be per-resource value. */ ncomps = HAST_NCOMPONENTS; /* * Allocate memory needed by lists. */ hio_send_list = malloc(sizeof(hio_send_list[0]) * ncomps); if (hio_send_list == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for send lists.", sizeof(hio_send_list[0]) * ncomps); } hio_send_list_lock = malloc(sizeof(hio_send_list_lock[0]) * ncomps); if (hio_send_list_lock == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for send list locks.", sizeof(hio_send_list_lock[0]) * ncomps); } hio_send_list_cond = malloc(sizeof(hio_send_list_cond[0]) * ncomps); if (hio_send_list_cond == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for send list condition variables.", sizeof(hio_send_list_cond[0]) * ncomps); } hio_recv_list = malloc(sizeof(hio_recv_list[0]) * ncomps); if (hio_recv_list == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for recv lists.", sizeof(hio_recv_list[0]) * ncomps); } hio_recv_list_lock = malloc(sizeof(hio_recv_list_lock[0]) * ncomps); if (hio_recv_list_lock == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for recv list locks.", sizeof(hio_recv_list_lock[0]) * ncomps); } hio_recv_list_cond = malloc(sizeof(hio_recv_list_cond[0]) * ncomps); if (hio_recv_list_cond == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for recv list condition variables.", sizeof(hio_recv_list_cond[0]) * ncomps); } hio_remote_lock = malloc(sizeof(hio_remote_lock[0]) * ncomps); if (hio_remote_lock == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for remote connections locks.", sizeof(hio_remote_lock[0]) * ncomps); } /* * Initialize lists, their locks and theirs condition variables. */ TAILQ_INIT(&hio_free_list); mtx_init(&hio_free_list_lock); cv_init(&hio_free_list_cond); for (ii = 0; ii < HAST_NCOMPONENTS; ii++) { TAILQ_INIT(&hio_send_list[ii]); mtx_init(&hio_send_list_lock[ii]); cv_init(&hio_send_list_cond[ii]); TAILQ_INIT(&hio_recv_list[ii]); mtx_init(&hio_recv_list_lock[ii]); cv_init(&hio_recv_list_cond[ii]); rw_init(&hio_remote_lock[ii]); } TAILQ_INIT(&hio_done_list); mtx_init(&hio_done_list_lock); cv_init(&hio_done_list_cond); mtx_init(&hio_guard_lock); cv_init(&hio_guard_cond); mtx_init(&metadata_lock); /* * Allocate requests pool and initialize requests. */ for (ii = 0; ii < HAST_HIO_MAX; ii++) { hio = malloc(sizeof(*hio)); if (hio == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for hio request.", sizeof(*hio)); } hio->hio_countdown = 0; hio->hio_errors = malloc(sizeof(hio->hio_errors[0]) * ncomps); if (hio->hio_errors == NULL) { primary_exitx(EX_TEMPFAIL, "Unable allocate %zu bytes of memory for hio errors.", sizeof(hio->hio_errors[0]) * ncomps); } hio->hio_next = malloc(sizeof(hio->hio_next[0]) * ncomps); if (hio->hio_next == NULL) { primary_exitx(EX_TEMPFAIL, "Unable allocate %zu bytes of memory for hio_next field.", sizeof(hio->hio_next[0]) * ncomps); } hio->hio_ggio.gctl_version = G_GATE_VERSION; hio->hio_ggio.gctl_data = malloc(MAXPHYS); if (hio->hio_ggio.gctl_data == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate %zu bytes of memory for gctl_data.", MAXPHYS); } hio->hio_ggio.gctl_length = MAXPHYS; hio->hio_ggio.gctl_error = 0; TAILQ_INSERT_HEAD(&hio_free_list, hio, hio_free_next); } /* * Turn on signals handling. */ signal(SIGINT, sighandler); signal(SIGTERM, sighandler); } static void init_local(struct hast_resource *res) { unsigned char *buf; size_t mapsize; if (metadata_read(res, true) < 0) exit(EX_NOINPUT); mtx_init(&res->hr_amp_lock); if (activemap_init(&res->hr_amp, res->hr_datasize, res->hr_extentsize, res->hr_local_sectorsize, res->hr_keepdirty) < 0) { primary_exit(EX_TEMPFAIL, "Unable to create activemap"); } mtx_init(&range_lock); cv_init(&range_regular_cond); if (rangelock_init(&range_regular) < 0) primary_exit(EX_TEMPFAIL, "Unable to create regular range lock"); cv_init(&range_sync_cond); if (rangelock_init(&range_sync) < 0) primary_exit(EX_TEMPFAIL, "Unable to create sync range lock"); mapsize = activemap_ondisk_size(res->hr_amp); buf = calloc(1, mapsize); if (buf == NULL) { primary_exitx(EX_TEMPFAIL, "Unable to allocate buffer for activemap."); } if (pread(res->hr_localfd, buf, mapsize, METADATA_SIZE) != (ssize_t)mapsize) { primary_exit(EX_NOINPUT, "Unable to read activemap"); } activemap_copyin(res->hr_amp, buf, mapsize); free(buf); if (res->hr_resuid != 0) return; /* * We're using provider for the first time, so we have to generate * resource unique identifier and initialize local and remote counts. */ arc4random_buf(&res->hr_resuid, sizeof(res->hr_resuid)); res->hr_primary_localcnt = 1; res->hr_primary_remotecnt = 0; if (metadata_write(res) < 0) exit(EX_NOINPUT); } static bool init_remote(struct hast_resource *res, struct proto_conn **inp, struct proto_conn **outp) { struct proto_conn *in, *out; struct nv *nvout, *nvin; const unsigned char *token; unsigned char *map; const char *errmsg; int32_t extentsize; int64_t datasize; uint32_t mapsize; size_t size; assert((inp == NULL && outp == NULL) || (inp != NULL && outp != NULL)); in = out = NULL; /* Prepare outgoing connection with remote node. */ if (proto_client(res->hr_remoteaddr, &out) < 0) { primary_exit(EX_TEMPFAIL, "Unable to create connection to %s", res->hr_remoteaddr); } /* Try to connect, but accept failure. */ if (proto_connect(out) < 0) { pjdlog_errno(LOG_WARNING, "Unable to connect to %s", res->hr_remoteaddr); goto close; } /* Error in setting timeout is not critical, but why should it fail? */ if (proto_timeout(out, res->hr_timeout) < 0) pjdlog_errno(LOG_WARNING, "Unable to set connection timeout"); /* * First handshake step. * Setup outgoing connection with remote node. */ nvout = nv_alloc(); nv_add_string(nvout, res->hr_name, "resource"); if (nv_error(nvout) != 0) { pjdlog_common(LOG_WARNING, 0, nv_error(nvout), "Unable to allocate header for connection with %s", res->hr_remoteaddr); nv_free(nvout); goto close; } if (hast_proto_send(res, out, nvout, NULL, 0) < 0) { pjdlog_errno(LOG_WARNING, "Unable to send handshake header to %s", res->hr_remoteaddr); nv_free(nvout); goto close; } nv_free(nvout); if (hast_proto_recv_hdr(out, &nvin) < 0) { pjdlog_errno(LOG_WARNING, "Unable to receive handshake header from %s", res->hr_remoteaddr); goto close; } errmsg = nv_get_string(nvin, "errmsg"); if (errmsg != NULL) { pjdlog_warning("%s", errmsg); nv_free(nvin); goto close; } token = nv_get_uint8_array(nvin, &size, "token"); if (token == NULL) { pjdlog_warning("Handshake header from %s has no 'token' field.", res->hr_remoteaddr); nv_free(nvin); goto close; } if (size != sizeof(res->hr_token)) { pjdlog_warning("Handshake header from %s contains 'token' of wrong size (got %zu, expected %zu).", res->hr_remoteaddr, size, sizeof(res->hr_token)); nv_free(nvin); goto close; } bcopy(token, res->hr_token, sizeof(res->hr_token)); nv_free(nvin); /* * Second handshake step. * Setup incoming connection with remote node. */ if (proto_client(res->hr_remoteaddr, &in) < 0) { pjdlog_errno(LOG_WARNING, "Unable to create connection to %s", res->hr_remoteaddr); } /* Try to connect, but accept failure. */ if (proto_connect(in) < 0) { pjdlog_errno(LOG_WARNING, "Unable to connect to %s", res->hr_remoteaddr); goto close; } /* Error in setting timeout is not critical, but why should it fail? */ if (proto_timeout(in, res->hr_timeout) < 0) pjdlog_errno(LOG_WARNING, "Unable to set connection timeout"); nvout = nv_alloc(); nv_add_string(nvout, res->hr_name, "resource"); nv_add_uint8_array(nvout, res->hr_token, sizeof(res->hr_token), "token"); nv_add_uint64(nvout, res->hr_resuid, "resuid"); nv_add_uint64(nvout, res->hr_primary_localcnt, "localcnt"); nv_add_uint64(nvout, res->hr_primary_remotecnt, "remotecnt"); if (nv_error(nvout) != 0) { pjdlog_common(LOG_WARNING, 0, nv_error(nvout), "Unable to allocate header for connection with %s", res->hr_remoteaddr); nv_free(nvout); goto close; } if (hast_proto_send(res, in, nvout, NULL, 0) < 0) { pjdlog_errno(LOG_WARNING, "Unable to send handshake header to %s", res->hr_remoteaddr); nv_free(nvout); goto close; } nv_free(nvout); if (hast_proto_recv_hdr(out, &nvin) < 0) { pjdlog_errno(LOG_WARNING, "Unable to receive handshake header from %s", res->hr_remoteaddr); goto close; } errmsg = nv_get_string(nvin, "errmsg"); if (errmsg != NULL) { pjdlog_warning("%s", errmsg); nv_free(nvin); goto close; } datasize = nv_get_int64(nvin, "datasize"); if (datasize != res->hr_datasize) { pjdlog_warning("Data size differs between nodes (local=%jd, remote=%jd).", (intmax_t)res->hr_datasize, (intmax_t)datasize); nv_free(nvin); goto close; } extentsize = nv_get_int32(nvin, "extentsize"); if (extentsize != res->hr_extentsize) { pjdlog_warning("Extent size differs between nodes (local=%zd, remote=%zd).", (ssize_t)res->hr_extentsize, (ssize_t)extentsize); nv_free(nvin); goto close; } res->hr_secondary_localcnt = nv_get_uint64(nvin, "localcnt"); res->hr_secondary_remotecnt = nv_get_uint64(nvin, "remotecnt"); res->hr_syncsrc = nv_get_uint8(nvin, "syncsrc"); map = NULL; mapsize = nv_get_uint32(nvin, "mapsize"); if (mapsize > 0) { map = malloc(mapsize); if (map == NULL) { pjdlog_error("Unable to allocate memory for remote activemap (mapsize=%ju).", (uintmax_t)mapsize); nv_free(nvin); goto close; } /* * Remote node have some dirty extents on its own, lets * download its activemap. */ if (hast_proto_recv_data(res, out, nvin, map, mapsize) < 0) { pjdlog_errno(LOG_ERR, "Unable to receive remote activemap"); nv_free(nvin); free(map); goto close; } /* * Merge local and remote bitmaps. */ activemap_merge(res->hr_amp, map, mapsize); free(map); /* * Now that we merged bitmaps from both nodes, flush it to the * disk before we start to synchronize. */ (void)hast_activemap_flush(res); } pjdlog_info("Connected to %s.", res->hr_remoteaddr); if (inp != NULL && outp != NULL) { *inp = in; *outp = out; } else { res->hr_remotein = in; res->hr_remoteout = out; } return (true); close: proto_close(out); if (in != NULL) proto_close(in); return (false); } static void sync_start(void) { mtx_lock(&sync_lock); sync_inprogress = true; mtx_unlock(&sync_lock); cv_signal(&sync_cond); } static void init_ggate(struct hast_resource *res) { struct g_gate_ctl_create ggiocreate; struct g_gate_ctl_cancel ggiocancel; /* * We communicate with ggate via /dev/ggctl. Open it. */ res->hr_ggatefd = open("/dev/" G_GATE_CTL_NAME, O_RDWR); if (res->hr_ggatefd < 0) primary_exit(EX_OSFILE, "Unable to open /dev/" G_GATE_CTL_NAME); /* * Create provider before trying to connect, as connection failure * is not critical, but may take some time. */ ggiocreate.gctl_version = G_GATE_VERSION; ggiocreate.gctl_mediasize = res->hr_datasize; ggiocreate.gctl_sectorsize = res->hr_local_sectorsize; ggiocreate.gctl_flags = 0; ggiocreate.gctl_maxcount = G_GATE_MAX_QUEUE_SIZE; ggiocreate.gctl_timeout = 0; ggiocreate.gctl_unit = G_GATE_NAME_GIVEN; snprintf(ggiocreate.gctl_name, sizeof(ggiocreate.gctl_name), "hast/%s", res->hr_provname); bzero(ggiocreate.gctl_info, sizeof(ggiocreate.gctl_info)); if (ioctl(res->hr_ggatefd, G_GATE_CMD_CREATE, &ggiocreate) == 0) { pjdlog_info("Device hast/%s created.", res->hr_provname); res->hr_ggateunit = ggiocreate.gctl_unit; return; } if (errno != EEXIST) { primary_exit(EX_OSERR, "Unable to create hast/%s device", res->hr_provname); } pjdlog_debug(1, "Device hast/%s already exists, we will try to take it over.", res->hr_provname); /* * If we received EEXIST, we assume that the process who created the * provider died and didn't clean up. In that case we will start from * where he left of. */ ggiocancel.gctl_version = G_GATE_VERSION; ggiocancel.gctl_unit = G_GATE_NAME_GIVEN; snprintf(ggiocancel.gctl_name, sizeof(ggiocancel.gctl_name), "hast/%s", res->hr_provname); if (ioctl(res->hr_ggatefd, G_GATE_CMD_CANCEL, &ggiocancel) == 0) { pjdlog_info("Device hast/%s recovered.", res->hr_provname); res->hr_ggateunit = ggiocancel.gctl_unit; return; } primary_exit(EX_OSERR, "Unable to take over hast/%s device", res->hr_provname); } void hastd_primary(struct hast_resource *res) { pthread_t td; pid_t pid; int error; gres = res; /* * Create communication channel between parent and child. */ if (proto_client("socketpair://", &res->hr_ctrl) < 0) { KEEP_ERRNO((void)pidfile_remove(pfh)); primary_exit(EX_OSERR, "Unable to create control sockets between parent and child"); } pid = fork(); if (pid < 0) { KEEP_ERRNO((void)pidfile_remove(pfh)); primary_exit(EX_TEMPFAIL, "Unable to fork"); } if (pid > 0) { /* This is parent. */ res->hr_workerpid = pid; return; } (void)pidfile_close(pfh); setproctitle("%s (primary)", res->hr_name); init_local(res); if (init_remote(res, NULL, NULL)) sync_start(); init_ggate(res); init_environment(res); error = pthread_create(&td, NULL, ggate_recv_thread, res); assert(error == 0); error = pthread_create(&td, NULL, local_send_thread, res); assert(error == 0); error = pthread_create(&td, NULL, remote_send_thread, res); assert(error == 0); error = pthread_create(&td, NULL, remote_recv_thread, res); assert(error == 0); error = pthread_create(&td, NULL, ggate_send_thread, res); assert(error == 0); error = pthread_create(&td, NULL, sync_thread, res); assert(error == 0); error = pthread_create(&td, NULL, ctrl_thread, res); assert(error == 0); (void)guard_thread(res); } static void reqlog(int loglevel, int debuglevel, struct g_gate_ctl_io *ggio, const char *fmt, ...) { char msg[1024]; va_list ap; int len; va_start(ap, fmt); len = vsnprintf(msg, sizeof(msg), fmt, ap); va_end(ap); if ((size_t)len < sizeof(msg)) { switch (ggio->gctl_cmd) { case BIO_READ: (void)snprintf(msg + len, sizeof(msg) - len, "READ(%ju, %ju).", (uintmax_t)ggio->gctl_offset, (uintmax_t)ggio->gctl_length); break; case BIO_DELETE: (void)snprintf(msg + len, sizeof(msg) - len, "DELETE(%ju, %ju).", (uintmax_t)ggio->gctl_offset, (uintmax_t)ggio->gctl_length); break; case BIO_FLUSH: (void)snprintf(msg + len, sizeof(msg) - len, "FLUSH."); break; case BIO_WRITE: (void)snprintf(msg + len, sizeof(msg) - len, "WRITE(%ju, %ju).", (uintmax_t)ggio->gctl_offset, (uintmax_t)ggio->gctl_length); break; default: (void)snprintf(msg + len, sizeof(msg) - len, "UNKNOWN(%u).", (unsigned int)ggio->gctl_cmd); break; } } pjdlog_common(loglevel, debuglevel, -1, "%s", msg); } static void remote_close(struct hast_resource *res, int ncomp) { rw_wlock(&hio_remote_lock[ncomp]); /* * A race is possible between dropping rlock and acquiring wlock - * another thread can close connection in-between. */ if (!ISCONNECTED(res, ncomp)) { assert(res->hr_remotein == NULL); assert(res->hr_remoteout == NULL); rw_unlock(&hio_remote_lock[ncomp]); return; } assert(res->hr_remotein != NULL); assert(res->hr_remoteout != NULL); pjdlog_debug(2, "Closing old incoming connection to %s.", res->hr_remoteaddr); proto_close(res->hr_remotein); res->hr_remotein = NULL; pjdlog_debug(2, "Closing old outgoing connection to %s.", res->hr_remoteaddr); proto_close(res->hr_remoteout); res->hr_remoteout = NULL; rw_unlock(&hio_remote_lock[ncomp]); /* * Stop synchronization if in-progress. */ mtx_lock(&sync_lock); if (sync_inprogress) sync_inprogress = false; mtx_unlock(&sync_lock); /* * Wake up guard thread, so it can immediately start reconnect. */ mtx_lock(&hio_guard_lock); cv_signal(&hio_guard_cond); mtx_unlock(&hio_guard_lock); } /* * Thread receives ggate I/O requests from the kernel and passes them to * appropriate threads: * WRITE - always goes to both local_send and remote_send threads * READ (when the block is up-to-date on local component) - * only local_send thread * READ (when the block isn't up-to-date on local component) - * only remote_send thread * DELETE - always goes to both local_send and remote_send threads * FLUSH - always goes to both local_send and remote_send threads */ static void * ggate_recv_thread(void *arg) { struct hast_resource *res = arg; struct g_gate_ctl_io *ggio; struct hio *hio; unsigned int ii, ncomp, ncomps; int error; ncomps = HAST_NCOMPONENTS; for (;;) { pjdlog_debug(2, "ggate_recv: Taking free request."); QUEUE_TAKE2(hio, free); pjdlog_debug(2, "ggate_recv: (%p) Got free request.", hio); ggio = &hio->hio_ggio; ggio->gctl_unit = res->hr_ggateunit; ggio->gctl_length = MAXPHYS; ggio->gctl_error = 0; pjdlog_debug(2, "ggate_recv: (%p) Waiting for request from the kernel.", hio); if (ioctl(res->hr_ggatefd, G_GATE_CMD_START, ggio) < 0) { if (sigexit_received) pthread_exit(NULL); primary_exit(EX_OSERR, "G_GATE_CMD_START failed"); } error = ggio->gctl_error; switch (error) { case 0: break; case ECANCELED: /* Exit gracefully. */ if (!sigexit_received) { pjdlog_debug(2, "ggate_recv: (%p) Received cancel from the kernel.", hio); pjdlog_info("Received cancel from the kernel, exiting."); } pthread_exit(NULL); case ENOMEM: /* * Buffer too small? Impossible, we allocate MAXPHYS * bytes - request can't be bigger than that. */ /* FALLTHROUGH */ case ENXIO: default: primary_exitx(EX_OSERR, "G_GATE_CMD_START failed: %s.", strerror(error)); } for (ii = 0; ii < ncomps; ii++) hio->hio_errors[ii] = EINVAL; reqlog(LOG_DEBUG, 2, ggio, "ggate_recv: (%p) Request received from the kernel: ", hio); /* * Inform all components about new write request. * For read request prefer local component unless the given * range is out-of-date, then use remote component. */ switch (ggio->gctl_cmd) { case BIO_READ: pjdlog_debug(2, "ggate_recv: (%p) Moving request to the send queue.", hio); refcount_init(&hio->hio_countdown, 1); mtx_lock(&metadata_lock); if (res->hr_syncsrc == HAST_SYNCSRC_UNDEF || res->hr_syncsrc == HAST_SYNCSRC_PRIMARY) { /* * This range is up-to-date on local component, * so handle request locally. */ /* Local component is 0 for now. */ ncomp = 0; } else /* if (res->hr_syncsrc == HAST_SYNCSRC_SECONDARY) */ { assert(res->hr_syncsrc == HAST_SYNCSRC_SECONDARY); /* * This range is out-of-date on local component, * so send request to the remote node. */ /* Remote component is 1 for now. */ ncomp = 1; } mtx_unlock(&metadata_lock); QUEUE_INSERT1(hio, send, ncomp); break; case BIO_WRITE: for (;;) { mtx_lock(&range_lock); if (rangelock_islocked(range_sync, ggio->gctl_offset, ggio->gctl_length)) { pjdlog_debug(2, "regular: Range offset=%jd length=%zu locked.", (intmax_t)ggio->gctl_offset, (size_t)ggio->gctl_length); range_regular_wait = true; cv_wait(&range_regular_cond, &range_lock); range_regular_wait = false; mtx_unlock(&range_lock); continue; } if (rangelock_add(range_regular, ggio->gctl_offset, ggio->gctl_length) < 0) { mtx_unlock(&range_lock); pjdlog_debug(2, "regular: Range offset=%jd length=%zu is already locked, waiting.", (intmax_t)ggio->gctl_offset, (size_t)ggio->gctl_length); sleep(1); continue; } mtx_unlock(&range_lock); break; } mtx_lock(&res->hr_amp_lock); if (activemap_write_start(res->hr_amp, ggio->gctl_offset, ggio->gctl_length)) { (void)hast_activemap_flush(res); } mtx_unlock(&res->hr_amp_lock); /* FALLTHROUGH */ case BIO_DELETE: case BIO_FLUSH: pjdlog_debug(2, "ggate_recv: (%p) Moving request to the send queues.", hio); refcount_init(&hio->hio_countdown, ncomps); for (ii = 0; ii < ncomps; ii++) QUEUE_INSERT1(hio, send, ii); break; } } /* NOTREACHED */ return (NULL); } /* * Thread reads from or writes to local component. * If local read fails, it redirects it to remote_send thread. */ static void * local_send_thread(void *arg) { struct hast_resource *res = arg; struct g_gate_ctl_io *ggio; struct hio *hio; unsigned int ncomp, rncomp; ssize_t ret; /* Local component is 0 for now. */ ncomp = 0; /* Remote component is 1 for now. */ rncomp = 1; for (;;) { pjdlog_debug(2, "local_send: Taking request."); QUEUE_TAKE1(hio, send, ncomp); pjdlog_debug(2, "local_send: (%p) Got request.", hio); ggio = &hio->hio_ggio; switch (ggio->gctl_cmd) { case BIO_READ: ret = pread(res->hr_localfd, ggio->gctl_data, ggio->gctl_length, ggio->gctl_offset + res->hr_localoff); if (ret == ggio->gctl_length) hio->hio_errors[ncomp] = 0; else { /* * If READ failed, try to read from remote node. */ QUEUE_INSERT1(hio, send, rncomp); continue; } break; case BIO_WRITE: ret = pwrite(res->hr_localfd, ggio->gctl_data, ggio->gctl_length, ggio->gctl_offset + res->hr_localoff); if (ret < 0) hio->hio_errors[ncomp] = errno; else if (ret != ggio->gctl_length) hio->hio_errors[ncomp] = EIO; else hio->hio_errors[ncomp] = 0; break; case BIO_DELETE: ret = g_delete(res->hr_localfd, ggio->gctl_offset + res->hr_localoff, ggio->gctl_length); if (ret < 0) hio->hio_errors[ncomp] = errno; else hio->hio_errors[ncomp] = 0; break; case BIO_FLUSH: ret = g_flush(res->hr_localfd); if (ret < 0) hio->hio_errors[ncomp] = errno; else hio->hio_errors[ncomp] = 0; break; } if (refcount_release(&hio->hio_countdown)) { if (ISSYNCREQ(hio)) { mtx_lock(&sync_lock); SYNCREQDONE(hio); mtx_unlock(&sync_lock); cv_signal(&sync_cond); } else { pjdlog_debug(2, "local_send: (%p) Moving request to the done queue.", hio); QUEUE_INSERT2(hio, done); } } } /* NOTREACHED */ return (NULL); } /* * Thread sends request to secondary node. */ static void * remote_send_thread(void *arg) { struct hast_resource *res = arg; struct g_gate_ctl_io *ggio; struct hio *hio; struct nv *nv; unsigned int ncomp; bool wakeup; uint64_t offset, length; uint8_t cmd; void *data; /* Remote component is 1 for now. */ ncomp = 1; for (;;) { pjdlog_debug(2, "remote_send: Taking request."); QUEUE_TAKE1(hio, send, ncomp); pjdlog_debug(2, "remote_send: (%p) Got request.", hio); ggio = &hio->hio_ggio; switch (ggio->gctl_cmd) { case BIO_READ: cmd = HIO_READ; data = NULL; offset = ggio->gctl_offset; length = ggio->gctl_length; break; case BIO_WRITE: cmd = HIO_WRITE; data = ggio->gctl_data; offset = ggio->gctl_offset; length = ggio->gctl_length; break; case BIO_DELETE: cmd = HIO_DELETE; data = NULL; offset = ggio->gctl_offset; length = ggio->gctl_length; break; case BIO_FLUSH: cmd = HIO_FLUSH; data = NULL; offset = 0; length = 0; break; default: assert(!"invalid condition"); abort(); } nv = nv_alloc(); nv_add_uint8(nv, cmd, "cmd"); nv_add_uint64(nv, (uint64_t)ggio->gctl_seq, "seq"); nv_add_uint64(nv, offset, "offset"); nv_add_uint64(nv, length, "length"); if (nv_error(nv) != 0) { hio->hio_errors[ncomp] = nv_error(nv); pjdlog_debug(2, "remote_send: (%p) Unable to prepare header to send.", hio); reqlog(LOG_ERR, 0, ggio, "Unable to prepare header to send (%s): ", strerror(nv_error(nv))); /* Move failed request immediately to the done queue. */ goto done_queue; } pjdlog_debug(2, "remote_send: (%p) Moving request to the recv queue.", hio); /* * Protect connection from disappearing. */ rw_rlock(&hio_remote_lock[ncomp]); if (!ISCONNECTED(res, ncomp)) { rw_unlock(&hio_remote_lock[ncomp]); hio->hio_errors[ncomp] = ENOTCONN; goto done_queue; } /* * Move the request to recv queue before sending it, because * in different order we can get reply before we move request * to recv queue. */ mtx_lock(&hio_recv_list_lock[ncomp]); wakeup = TAILQ_EMPTY(&hio_recv_list[ncomp]); TAILQ_INSERT_TAIL(&hio_recv_list[ncomp], hio, hio_next[ncomp]); mtx_unlock(&hio_recv_list_lock[ncomp]); if (hast_proto_send(res, res->hr_remoteout, nv, data, data != NULL ? length : 0) < 0) { hio->hio_errors[ncomp] = errno; rw_unlock(&hio_remote_lock[ncomp]); remote_close(res, ncomp); pjdlog_debug(2, "remote_send: (%p) Unable to send request.", hio); reqlog(LOG_ERR, 0, ggio, "Unable to send request (%s): ", strerror(hio->hio_errors[ncomp])); /* * Take request back from the receive queue and move * it immediately to the done queue. */ mtx_lock(&hio_recv_list_lock[ncomp]); TAILQ_REMOVE(&hio_recv_list[ncomp], hio, hio_next[ncomp]); mtx_unlock(&hio_recv_list_lock[ncomp]); goto done_queue; } rw_unlock(&hio_remote_lock[ncomp]); nv_free(nv); if (wakeup) cv_signal(&hio_recv_list_cond[ncomp]); continue; done_queue: nv_free(nv); if (ISSYNCREQ(hio)) { if (!refcount_release(&hio->hio_countdown)) continue; mtx_lock(&sync_lock); SYNCREQDONE(hio); mtx_unlock(&sync_lock); cv_signal(&sync_cond); continue; } if (ggio->gctl_cmd == BIO_WRITE) { mtx_lock(&res->hr_amp_lock); if (activemap_need_sync(res->hr_amp, ggio->gctl_offset, ggio->gctl_length)) { (void)hast_activemap_flush(res); } mtx_unlock(&res->hr_amp_lock); } if (!refcount_release(&hio->hio_countdown)) continue; pjdlog_debug(2, "remote_send: (%p) Moving request to the done queue.", hio); QUEUE_INSERT2(hio, done); } /* NOTREACHED */ return (NULL); } /* * Thread receives answer from secondary node and passes it to ggate_send * thread. */ static void * remote_recv_thread(void *arg) { struct hast_resource *res = arg; struct g_gate_ctl_io *ggio; struct hio *hio; struct nv *nv; unsigned int ncomp; uint64_t seq; int error; /* Remote component is 1 for now. */ ncomp = 1; for (;;) { /* Wait until there is anything to receive. */ mtx_lock(&hio_recv_list_lock[ncomp]); while (TAILQ_EMPTY(&hio_recv_list[ncomp])) { pjdlog_debug(2, "remote_recv: No requests, waiting."); cv_wait(&hio_recv_list_cond[ncomp], &hio_recv_list_lock[ncomp]); } mtx_unlock(&hio_recv_list_lock[ncomp]); rw_rlock(&hio_remote_lock[ncomp]); if (!ISCONNECTED(res, ncomp)) { rw_unlock(&hio_remote_lock[ncomp]); /* * Connection is dead, so move all pending requests to * the done queue (one-by-one). */ mtx_lock(&hio_recv_list_lock[ncomp]); hio = TAILQ_FIRST(&hio_recv_list[ncomp]); assert(hio != NULL); TAILQ_REMOVE(&hio_recv_list[ncomp], hio, hio_next[ncomp]); mtx_unlock(&hio_recv_list_lock[ncomp]); goto done_queue; } if (hast_proto_recv_hdr(res->hr_remotein, &nv) < 0) { pjdlog_errno(LOG_ERR, "Unable to receive reply header"); rw_unlock(&hio_remote_lock[ncomp]); remote_close(res, ncomp); continue; } rw_unlock(&hio_remote_lock[ncomp]); seq = nv_get_uint64(nv, "seq"); if (seq == 0) { pjdlog_error("Header contains no 'seq' field."); nv_free(nv); continue; } mtx_lock(&hio_recv_list_lock[ncomp]); TAILQ_FOREACH(hio, &hio_recv_list[ncomp], hio_next[ncomp]) { if (hio->hio_ggio.gctl_seq == seq) { TAILQ_REMOVE(&hio_recv_list[ncomp], hio, hio_next[ncomp]); break; } } mtx_unlock(&hio_recv_list_lock[ncomp]); if (hio == NULL) { pjdlog_error("Found no request matching received 'seq' field (%ju).", (uintmax_t)seq); nv_free(nv); continue; } error = nv_get_int16(nv, "error"); if (error != 0) { /* Request failed on remote side. */ hio->hio_errors[ncomp] = 0; nv_free(nv); goto done_queue; } ggio = &hio->hio_ggio; switch (ggio->gctl_cmd) { case BIO_READ: rw_rlock(&hio_remote_lock[ncomp]); if (!ISCONNECTED(res, ncomp)) { rw_unlock(&hio_remote_lock[ncomp]); nv_free(nv); goto done_queue; } if (hast_proto_recv_data(res, res->hr_remotein, nv, ggio->gctl_data, ggio->gctl_length) < 0) { hio->hio_errors[ncomp] = errno; pjdlog_errno(LOG_ERR, "Unable to receive reply data"); rw_unlock(&hio_remote_lock[ncomp]); nv_free(nv); remote_close(res, ncomp); goto done_queue; } rw_unlock(&hio_remote_lock[ncomp]); break; case BIO_WRITE: case BIO_DELETE: case BIO_FLUSH: break; default: assert(!"invalid condition"); abort(); } hio->hio_errors[ncomp] = 0; nv_free(nv); done_queue: if (refcount_release(&hio->hio_countdown)) { if (ISSYNCREQ(hio)) { mtx_lock(&sync_lock); SYNCREQDONE(hio); mtx_unlock(&sync_lock); cv_signal(&sync_cond); } else { pjdlog_debug(2, "remote_recv: (%p) Moving request to the done queue.", hio); QUEUE_INSERT2(hio, done); } } } /* NOTREACHED */ return (NULL); } /* * Thread sends answer to the kernel. */ static void * ggate_send_thread(void *arg) { struct hast_resource *res = arg; struct g_gate_ctl_io *ggio; struct hio *hio; unsigned int ii, ncomp, ncomps; ncomps = HAST_NCOMPONENTS; for (;;) { pjdlog_debug(2, "ggate_send: Taking request."); QUEUE_TAKE2(hio, done); pjdlog_debug(2, "ggate_send: (%p) Got request.", hio); ggio = &hio->hio_ggio; for (ii = 0; ii < ncomps; ii++) { if (hio->hio_errors[ii] == 0) { /* * One successful request is enough to declare * success. */ ggio->gctl_error = 0; break; } } if (ii == ncomps) { /* * None of the requests were successful. * Use first error. */ ggio->gctl_error = hio->hio_errors[0]; } if (ggio->gctl_error == 0 && ggio->gctl_cmd == BIO_WRITE) { mtx_lock(&res->hr_amp_lock); activemap_write_complete(res->hr_amp, ggio->gctl_offset, ggio->gctl_length); mtx_unlock(&res->hr_amp_lock); } if (ggio->gctl_cmd == BIO_WRITE) { /* * Unlock range we locked. */ mtx_lock(&range_lock); rangelock_del(range_regular, ggio->gctl_offset, ggio->gctl_length); if (range_sync_wait) cv_signal(&range_sync_cond); mtx_unlock(&range_lock); /* * Bump local count if this is first write after * connection failure with remote node. */ ncomp = 1; rw_rlock(&hio_remote_lock[ncomp]); if (!ISCONNECTED(res, ncomp)) { mtx_lock(&metadata_lock); if (res->hr_primary_localcnt == res->hr_secondary_remotecnt) { res->hr_primary_localcnt++; pjdlog_debug(1, "Increasing localcnt to %ju.", (uintmax_t)res->hr_primary_localcnt); (void)metadata_write(res); } mtx_unlock(&metadata_lock); } rw_unlock(&hio_remote_lock[ncomp]); } if (ioctl(res->hr_ggatefd, G_GATE_CMD_DONE, ggio) < 0) primary_exit(EX_OSERR, "G_GATE_CMD_DONE failed"); pjdlog_debug(2, "ggate_send: (%p) Moving request to the free queue.", hio); QUEUE_INSERT2(hio, free); } /* NOTREACHED */ return (NULL); } /* * Thread synchronize local and remote components. */ static void * sync_thread(void *arg __unused) { struct hast_resource *res = arg; struct hio *hio; struct g_gate_ctl_io *ggio; unsigned int ii, ncomp, ncomps; off_t offset, length, synced; bool dorewind; int syncext; ncomps = HAST_NCOMPONENTS; dorewind = true; synced = 0; for (;;) { mtx_lock(&sync_lock); while (!sync_inprogress) { dorewind = true; synced = 0; cv_wait(&sync_cond, &sync_lock); } mtx_unlock(&sync_lock); /* * Obtain offset at which we should synchronize. * Rewind synchronization if needed. */ mtx_lock(&res->hr_amp_lock); if (dorewind) activemap_sync_rewind(res->hr_amp); offset = activemap_sync_offset(res->hr_amp, &length, &syncext); if (syncext != -1) { /* * We synchronized entire syncext extent, we can mark * it as clean now. */ if (activemap_extent_complete(res->hr_amp, syncext)) (void)hast_activemap_flush(res); } mtx_unlock(&res->hr_amp_lock); if (dorewind) { dorewind = false; if (offset < 0) pjdlog_info("Nodes are in sync."); else { pjdlog_info("Synchronization started. %ju bytes to go.", (uintmax_t)(res->hr_extentsize * activemap_ndirty(res->hr_amp))); } } if (offset < 0) { mtx_lock(&sync_lock); sync_inprogress = false; mtx_unlock(&sync_lock); pjdlog_debug(1, "Nothing to synchronize."); /* * Synchronization complete, make both localcnt and * remotecnt equal. */ ncomp = 1; rw_rlock(&hio_remote_lock[ncomp]); if (ISCONNECTED(res, ncomp)) { if (synced > 0) { pjdlog_info("Synchronization complete. " "%jd bytes synchronized.", (intmax_t)synced); } mtx_lock(&metadata_lock); res->hr_syncsrc = HAST_SYNCSRC_UNDEF; res->hr_primary_localcnt = res->hr_secondary_localcnt; res->hr_primary_remotecnt = res->hr_secondary_remotecnt; pjdlog_debug(1, "Setting localcnt to %ju and remotecnt to %ju.", (uintmax_t)res->hr_primary_localcnt, (uintmax_t)res->hr_secondary_localcnt); (void)metadata_write(res); mtx_unlock(&metadata_lock); } else if (synced > 0) { pjdlog_info("Synchronization interrupted. " "%jd bytes synchronized so far.", (intmax_t)synced); } rw_unlock(&hio_remote_lock[ncomp]); continue; } pjdlog_debug(2, "sync: Taking free request."); QUEUE_TAKE2(hio, free); pjdlog_debug(2, "sync: (%p) Got free request.", hio); /* * Lock the range we are going to synchronize. We don't want * race where someone writes between our read and write. */ for (;;) { mtx_lock(&range_lock); if (rangelock_islocked(range_regular, offset, length)) { pjdlog_debug(2, "sync: Range offset=%jd length=%jd locked.", (intmax_t)offset, (intmax_t)length); range_sync_wait = true; cv_wait(&range_sync_cond, &range_lock); range_sync_wait = false; mtx_unlock(&range_lock); continue; } if (rangelock_add(range_sync, offset, length) < 0) { mtx_unlock(&range_lock); pjdlog_debug(2, "sync: Range offset=%jd length=%jd is already locked, waiting.", (intmax_t)offset, (intmax_t)length); sleep(1); continue; } mtx_unlock(&range_lock); break; } /* * First read the data from synchronization source. */ SYNCREQ(hio); ggio = &hio->hio_ggio; ggio->gctl_cmd = BIO_READ; ggio->gctl_offset = offset; ggio->gctl_length = length; ggio->gctl_error = 0; for (ii = 0; ii < ncomps; ii++) hio->hio_errors[ii] = EINVAL; reqlog(LOG_DEBUG, 2, ggio, "sync: (%p) Sending sync request: ", hio); pjdlog_debug(2, "sync: (%p) Moving request to the send queue.", hio); mtx_lock(&metadata_lock); if (res->hr_syncsrc == HAST_SYNCSRC_PRIMARY) { /* * This range is up-to-date on local component, * so handle request locally. */ /* Local component is 0 for now. */ ncomp = 0; } else /* if (res->hr_syncsrc == HAST_SYNCSRC_SECONDARY) */ { assert(res->hr_syncsrc == HAST_SYNCSRC_SECONDARY); /* * This range is out-of-date on local component, * so send request to the remote node. */ /* Remote component is 1 for now. */ ncomp = 1; } mtx_unlock(&metadata_lock); refcount_init(&hio->hio_countdown, 1); QUEUE_INSERT1(hio, send, ncomp); /* * Let's wait for READ to finish. */ mtx_lock(&sync_lock); while (!ISSYNCREQDONE(hio)) cv_wait(&sync_cond, &sync_lock); mtx_unlock(&sync_lock); if (hio->hio_errors[ncomp] != 0) { pjdlog_error("Unable to read synchronization data: %s.", strerror(hio->hio_errors[ncomp])); goto free_queue; } /* * We read the data from synchronization source, now write it * to synchronization target. */ SYNCREQ(hio); ggio->gctl_cmd = BIO_WRITE; for (ii = 0; ii < ncomps; ii++) hio->hio_errors[ii] = EINVAL; reqlog(LOG_DEBUG, 2, ggio, "sync: (%p) Sending sync request: ", hio); pjdlog_debug(2, "sync: (%p) Moving request to the send queue.", hio); mtx_lock(&metadata_lock); if (res->hr_syncsrc == HAST_SYNCSRC_PRIMARY) { /* * This range is up-to-date on local component, * so we update remote component. */ /* Remote component is 1 for now. */ ncomp = 1; } else /* if (res->hr_syncsrc == HAST_SYNCSRC_SECONDARY) */ { assert(res->hr_syncsrc == HAST_SYNCSRC_SECONDARY); /* * This range is out-of-date on local component, * so we update it. */ /* Local component is 0 for now. */ ncomp = 0; } mtx_unlock(&metadata_lock); pjdlog_debug(2, "sync: (%p) Moving request to the send queues.", hio); refcount_init(&hio->hio_countdown, 1); QUEUE_INSERT1(hio, send, ncomp); /* * Let's wait for WRITE to finish. */ mtx_lock(&sync_lock); while (!ISSYNCREQDONE(hio)) cv_wait(&sync_cond, &sync_lock); mtx_unlock(&sync_lock); if (hio->hio_errors[ncomp] != 0) { pjdlog_error("Unable to write synchronization data: %s.", strerror(hio->hio_errors[ncomp])); goto free_queue; } free_queue: mtx_lock(&range_lock); rangelock_del(range_sync, offset, length); if (range_regular_wait) cv_signal(&range_regular_cond); mtx_unlock(&range_lock); synced += length; pjdlog_debug(2, "sync: (%p) Moving request to the free queue.", hio); QUEUE_INSERT2(hio, free); } /* NOTREACHED */ return (NULL); } static void sighandler(int sig) { bool unlock; switch (sig) { case SIGINT: case SIGTERM: sigexit_received = true; break; default: assert(!"invalid condition"); } /* * XXX: Racy, but if we cannot obtain hio_guard_lock here, we don't * want to risk deadlock. */ unlock = mtx_trylock(&hio_guard_lock); cv_signal(&hio_guard_cond); if (unlock) mtx_unlock(&hio_guard_lock); } /* * Thread guards remote connections and reconnects when needed, handles * signals, etc. */ static void * guard_thread(void *arg) { struct hast_resource *res = arg; struct proto_conn *in, *out; unsigned int ii, ncomps; int timeout; ncomps = HAST_NCOMPONENTS; /* The is only one remote component for now. */ #define ISREMOTE(no) ((no) == 1) for (;;) { if (sigexit_received) { primary_exitx(EX_OK, "Termination signal received, exiting."); } /* * If all the connection will be fine, we will sleep until * someone wakes us up. * If any of the connections will be broken and we won't be * able to connect, we will sleep only for RECONNECT_SLEEP * seconds so we can retry soon. */ timeout = 0; pjdlog_debug(2, "remote_guard: Checking connections."); mtx_lock(&hio_guard_lock); for (ii = 0; ii < ncomps; ii++) { if (!ISREMOTE(ii)) continue; rw_rlock(&hio_remote_lock[ii]); if (ISCONNECTED(res, ii)) { assert(res->hr_remotein != NULL); assert(res->hr_remoteout != NULL); rw_unlock(&hio_remote_lock[ii]); pjdlog_debug(2, "remote_guard: Connection to %s is ok.", res->hr_remoteaddr); } else { assert(res->hr_remotein == NULL); assert(res->hr_remoteout == NULL); /* * Upgrade the lock. It doesn't have to be * atomic as no other thread can change * connection status from disconnected to * connected. */ rw_unlock(&hio_remote_lock[ii]); pjdlog_debug(2, "remote_guard: Reconnecting to %s.", res->hr_remoteaddr); in = out = NULL; if (init_remote(res, &in, &out)) { rw_wlock(&hio_remote_lock[ii]); assert(res->hr_remotein == NULL); assert(res->hr_remoteout == NULL); assert(in != NULL && out != NULL); res->hr_remotein = in; res->hr_remoteout = out; rw_unlock(&hio_remote_lock[ii]); pjdlog_info("Successfully reconnected to %s.", res->hr_remoteaddr); sync_start(); } else { /* Both connections should be NULL. */ assert(res->hr_remotein == NULL); assert(res->hr_remoteout == NULL); assert(in == NULL && out == NULL); pjdlog_debug(2, "remote_guard: Reconnect to %s failed.", res->hr_remoteaddr); timeout = RECONNECT_SLEEP; } } } (void)cv_timedwait(&hio_guard_cond, &hio_guard_lock, timeout); mtx_unlock(&hio_guard_lock); } #undef ISREMOTE /* NOTREACHED */ return (NULL); }