/*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of Allegro Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ */ /*- * Copyright (C) 2001 Benno Rice. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * In addition to hardware address maps, this module is called upon to * provide software-use-only maps which may or may not be stored in the * same form as hardware maps. These pseudo-maps are used to store * intermediate results from copy operations to and from address spaces. * * Since the information managed by this module is also stored by the * logical address mapping module, this module may throw away valid virtual * to physical mappings at almost any time. However, invalidations of * mappings must be done as requested. * * In order to cope with hardware architectures which make virtual to * physical map invalidates expensive, this module may delay invalidate * reduced protection operations until such time as they are actually * necessary. This module is given full information as to which processors * are currently using which maps, and to when physical maps must be made * correct. */ #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_oea64.h" #include "mmu_if.h" #include "moea64_if.h" void moea64_release_vsid(uint64_t vsid); uintptr_t moea64_get_unique_vsid(void); #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) #define ENABLE_TRANS(msr) mtmsr(msr) #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) #define VSID_HASH_MASK 0x0000007fffffffffULL #define LOCK_TABLE() mtx_lock(&moea64_table_mutex) #define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex); #define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED) struct ofw_map { cell_t om_va; cell_t om_len; cell_t om_pa_hi; cell_t om_pa_lo; cell_t om_mode; }; /* * Map of physical memory regions. */ static struct mem_region *regions; static struct mem_region *pregions; static u_int phys_avail_count; static int regions_sz, pregions_sz; extern void bs_remap_earlyboot(void); /* * Lock for the pteg and pvo tables. */ struct mtx moea64_table_mutex; struct mtx moea64_slb_mutex; /* * PTEG data. */ u_int moea64_pteg_count; u_int moea64_pteg_mask; /* * PVO data. */ struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */ struct pvo_head moea64_pvo_kunmanaged = /* list of unmanaged pages */ LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged); uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */ uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */ #define BPVO_POOL_SIZE 327680 static struct pvo_entry *moea64_bpvo_pool; static int moea64_bpvo_pool_index = 0; #define VSID_NBPW (sizeof(u_int32_t) * 8) #ifdef __powerpc64__ #define NVSIDS (NPMAPS * 16) #define VSID_HASHMASK 0xffffffffUL #else #define NVSIDS NPMAPS #define VSID_HASHMASK 0xfffffUL #endif static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW]; static boolean_t moea64_initialized = FALSE; /* * Statistics. */ u_int moea64_pte_valid = 0; u_int moea64_pte_overflow = 0; u_int moea64_pvo_entries = 0; u_int moea64_pvo_enter_calls = 0; u_int moea64_pvo_remove_calls = 0; SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, &moea64_pte_valid, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, &moea64_pte_overflow, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, &moea64_pvo_entries, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, &moea64_pvo_enter_calls, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, &moea64_pvo_remove_calls, 0, ""); vm_offset_t moea64_scratchpage_va[2]; struct pvo_entry *moea64_scratchpage_pvo[2]; uintptr_t moea64_scratchpage_pte[2]; struct mtx moea64_scratchpage_mtx; uint64_t moea64_large_page_mask = 0; int moea64_large_page_size = 0; int moea64_large_page_shift = 0; /* * PVO calls. */ static int moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *, vm_offset_t, vm_offset_t, uint64_t, int); static void moea64_pvo_remove(mmu_t, struct pvo_entry *); static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t); /* * Utility routines. */ static void moea64_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); static boolean_t moea64_query_bit(mmu_t, vm_page_t, u_int64_t); static u_int moea64_clear_bit(mmu_t, vm_page_t, u_int64_t); static void moea64_kremove(mmu_t, vm_offset_t); static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz); /* * Kernel MMU interface */ void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); void moea64_clear_modify(mmu_t, vm_page_t); void moea64_clear_reference(mmu_t, vm_page_t); void moea64_copy_page(mmu_t, vm_page_t, vm_page_t); void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t); vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); void moea64_init(mmu_t); boolean_t moea64_is_modified(mmu_t, vm_page_t); boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t); boolean_t moea64_is_referenced(mmu_t, vm_page_t); boolean_t moea64_ts_referenced(mmu_t, vm_page_t); vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int); boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t); int moea64_page_wired_mappings(mmu_t, vm_page_t); void moea64_pinit(mmu_t, pmap_t); void moea64_pinit0(mmu_t, pmap_t); void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int); void moea64_qremove(mmu_t, vm_offset_t, int); void moea64_release(mmu_t, pmap_t); void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); void moea64_remove_all(mmu_t, vm_page_t); void moea64_remove_write(mmu_t, vm_page_t); void moea64_zero_page(mmu_t, vm_page_t); void moea64_zero_page_area(mmu_t, vm_page_t, int, int); void moea64_zero_page_idle(mmu_t, vm_page_t); void moea64_activate(mmu_t, struct thread *); void moea64_deactivate(mmu_t, struct thread *); void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t); void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t); void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t); vm_offset_t moea64_kextract(mmu_t, vm_offset_t); void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma); void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma); void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t); boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t); static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); static mmu_method_t moea64_methods[] = { MMUMETHOD(mmu_change_wiring, moea64_change_wiring), MMUMETHOD(mmu_clear_modify, moea64_clear_modify), MMUMETHOD(mmu_clear_reference, moea64_clear_reference), MMUMETHOD(mmu_copy_page, moea64_copy_page), MMUMETHOD(mmu_enter, moea64_enter), MMUMETHOD(mmu_enter_object, moea64_enter_object), MMUMETHOD(mmu_enter_quick, moea64_enter_quick), MMUMETHOD(mmu_extract, moea64_extract), MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold), MMUMETHOD(mmu_init, moea64_init), MMUMETHOD(mmu_is_modified, moea64_is_modified), MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable), MMUMETHOD(mmu_is_referenced, moea64_is_referenced), MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced), MMUMETHOD(mmu_map, moea64_map), MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick), MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings), MMUMETHOD(mmu_pinit, moea64_pinit), MMUMETHOD(mmu_pinit0, moea64_pinit0), MMUMETHOD(mmu_protect, moea64_protect), MMUMETHOD(mmu_qenter, moea64_qenter), MMUMETHOD(mmu_qremove, moea64_qremove), MMUMETHOD(mmu_release, moea64_release), MMUMETHOD(mmu_remove, moea64_remove), MMUMETHOD(mmu_remove_all, moea64_remove_all), MMUMETHOD(mmu_remove_write, moea64_remove_write), MMUMETHOD(mmu_sync_icache, moea64_sync_icache), MMUMETHOD(mmu_zero_page, moea64_zero_page), MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area), MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle), MMUMETHOD(mmu_activate, moea64_activate), MMUMETHOD(mmu_deactivate, moea64_deactivate), MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr), /* Internal interfaces */ MMUMETHOD(mmu_mapdev, moea64_mapdev), MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr), MMUMETHOD(mmu_unmapdev, moea64_unmapdev), MMUMETHOD(mmu_kextract, moea64_kextract), MMUMETHOD(mmu_kenter, moea64_kenter), MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr), MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped), { 0, 0 } }; MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0); static __inline u_int va_to_pteg(uint64_t vsid, vm_offset_t addr, int large) { uint64_t hash; int shift; shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT; hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >> shift); return (hash & moea64_pteg_mask); } static __inline struct pvo_head * vm_page_to_pvoh(vm_page_t m) { return (&m->md.mdpg_pvoh); } static __inline void moea64_attr_clear(vm_page_t m, u_int64_t ptebit) { mtx_assert(&vm_page_queue_mtx, MA_OWNED); m->md.mdpg_attrs &= ~ptebit; } static __inline u_int64_t moea64_attr_fetch(vm_page_t m) { return (m->md.mdpg_attrs); } static __inline void moea64_attr_save(vm_page_t m, u_int64_t ptebit) { mtx_assert(&vm_page_queue_mtx, MA_OWNED); m->md.mdpg_attrs |= ptebit; } static __inline void moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va, uint64_t pte_lo, int flags) { ASSERT_TABLE_LOCK(); /* * Construct a PTE. Default to IMB initially. Valid bit only gets * set when the real pte is set in memory. * * Note: Don't set the valid bit for correct operation of tlb update. */ pt->pte_hi = (vsid << LPTE_VSID_SHIFT) | (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API); if (flags & PVO_LARGE) pt->pte_hi |= LPTE_BIG; pt->pte_lo = pte_lo; } static __inline uint64_t moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma) { uint64_t pte_lo; int i; if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (LPTE_I | LPTE_G); case VM_MEMATTR_WRITE_COMBINING: case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: return (LPTE_I); case VM_MEMATTR_WRITE_THROUGH: return (LPTE_W | LPTE_M); } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ pte_lo = LPTE_I | LPTE_G; for (i = 0; i < pregions_sz; i++) { if ((pa >= pregions[i].mr_start) && (pa < (pregions[i].mr_start + pregions[i].mr_size))) { pte_lo &= ~(LPTE_I | LPTE_G); pte_lo |= LPTE_M; break; } } return pte_lo; } /* * Quick sort callout for comparing memory regions. */ static int om_cmp(const void *a, const void *b); static int om_cmp(const void *a, const void *b) { const struct ofw_map *mapa; const struct ofw_map *mapb; mapa = a; mapb = b; if (mapa->om_pa_hi < mapb->om_pa_hi) return (-1); else if (mapa->om_pa_hi > mapb->om_pa_hi) return (1); else if (mapa->om_pa_lo < mapb->om_pa_lo) return (-1); else if (mapa->om_pa_lo > mapb->om_pa_lo) return (1); else return (0); } static void moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz) { struct ofw_map translations[sz/sizeof(struct ofw_map)]; register_t msr; vm_offset_t off; vm_paddr_t pa_base; int i; bzero(translations, sz); if (OF_getprop(mmu, "translations", translations, sz) == -1) panic("moea64_bootstrap: can't get ofw translations"); CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); sz /= sizeof(*translations); qsort(translations, sz, sizeof (*translations), om_cmp); for (i = 0; i < sz; i++) { CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", (uint32_t)(translations[i].om_pa_lo), translations[i].om_va, translations[i].om_len); if (translations[i].om_pa_lo % PAGE_SIZE) panic("OFW translation not page-aligned!"); pa_base = translations[i].om_pa_lo; #ifdef __powerpc64__ pa_base += (vm_offset_t)translations[i].om_pa_hi << 32; #else if (translations[i].om_pa_hi) panic("OFW translations above 32-bit boundary!"); #endif /* Now enter the pages for this mapping */ DISABLE_TRANS(msr); for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { if (moea64_pvo_find_va(kernel_pmap, translations[i].om_va + off) != NULL) continue; moea64_kenter(mmup, translations[i].om_va + off, pa_base + off); } ENABLE_TRANS(msr); } } #ifdef __powerpc64__ static void moea64_probe_large_page(void) { uint16_t pvr = mfpvr() >> 16; switch (pvr) { case IBM970: case IBM970FX: case IBM970MP: powerpc_sync(); isync(); mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); powerpc_sync(); isync(); /* FALLTHROUGH */ case IBMCELLBE: moea64_large_page_size = 0x1000000; /* 16 MB */ moea64_large_page_shift = 24; break; default: moea64_large_page_size = 0; } moea64_large_page_mask = moea64_large_page_size - 1; } static void moea64_bootstrap_slb_prefault(vm_offset_t va, int large) { struct slb *cache; struct slb entry; uint64_t esid, slbe; uint64_t i; cache = PCPU_GET(slb); esid = va >> ADDR_SR_SHFT; slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; for (i = 0; i < 64; i++) { if (cache[i].slbe == (slbe | i)) return; } entry.slbe = slbe; entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; if (large) entry.slbv |= SLBV_L; slb_insert_kernel(entry.slbe, entry.slbv); } #endif static void moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { register_t msr; vm_paddr_t pa; vm_offset_t size, off; uint64_t pte_lo; int i; if (moea64_large_page_size == 0) hw_direct_map = 0; DISABLE_TRANS(msr); if (hw_direct_map) { PMAP_LOCK(kernel_pmap); for (i = 0; i < pregions_sz; i++) { for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + pregions[i].mr_size; pa += moea64_large_page_size) { pte_lo = LPTE_M; /* * Set memory access as guarded if prefetch within * the page could exit the available physmem area. */ if (pa & moea64_large_page_mask) { pa &= moea64_large_page_mask; pte_lo |= LPTE_G; } if (pa + moea64_large_page_size > pregions[i].mr_start + pregions[i].mr_size) pte_lo |= LPTE_G; moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone, &moea64_pvo_kunmanaged, pa, pa, pte_lo, PVO_WIRED | PVO_LARGE); } } PMAP_UNLOCK(kernel_pmap); } else { size = sizeof(struct pvo_head) * moea64_pteg_count; off = (vm_offset_t)(moea64_pvo_table); for (pa = off; pa < off + size; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); size = BPVO_POOL_SIZE*sizeof(struct pvo_entry); off = (vm_offset_t)(moea64_bpvo_pool); for (pa = off; pa < off + size; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); /* * Map certain important things, like ourselves. * * NOTE: We do not map the exception vector space. That code is * used only in real mode, and leaving it unmapped allows us to * catch NULL pointer deferences, instead of making NULL a valid * address. */ for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE) moea64_kenter(mmup, pa, pa); } ENABLE_TRANS(msr); } void moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { int i, j; vm_size_t physsz, hwphyssz; #ifndef __powerpc64__ /* We don't have a direct map since there is no BAT */ hw_direct_map = 0; /* Make sure battable is zero, since we have no BAT */ for (i = 0; i < 16; i++) { battable[i].batu = 0; battable[i].batl = 0; } #else moea64_probe_large_page(); /* Use a direct map if we have large page support */ if (moea64_large_page_size > 0) hw_direct_map = 1; else hw_direct_map = 0; #endif /* Get physical memory regions from firmware */ mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) panic("moea64_bootstrap: phys_avail too small"); phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); for (i = 0, j = 0; i < regions_sz; i++, j += 2) { CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, regions[i].mr_start + regions[i].mr_size, regions[i].mr_size); if (hwphyssz != 0 && (physsz + regions[i].mr_size) >= hwphyssz) { if (physsz < hwphyssz) { phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; } break; } phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; phys_avail_count++; physsz += regions[i].mr_size; } /* Check for overlap with the kernel and exception vectors */ for (j = 0; j < 2*phys_avail_count; j+=2) { if (phys_avail[j] < EXC_LAST) phys_avail[j] += EXC_LAST; if (kernelstart >= phys_avail[j] && kernelstart < phys_avail[j+1]) { if (kernelend < phys_avail[j+1]) { phys_avail[2*phys_avail_count] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; phys_avail[2*phys_avail_count + 1] = phys_avail[j+1]; phys_avail_count++; } phys_avail[j+1] = kernelstart & ~PAGE_MASK; } if (kernelend >= phys_avail[j] && kernelend < phys_avail[j+1]) { if (kernelstart > phys_avail[j]) { phys_avail[2*phys_avail_count] = phys_avail[j]; phys_avail[2*phys_avail_count + 1] = kernelstart & ~PAGE_MASK; phys_avail_count++; } phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; } } physmem = btoc(physsz); #ifdef PTEGCOUNT moea64_pteg_count = PTEGCOUNT; #else moea64_pteg_count = 0x1000; while (moea64_pteg_count < physmem) moea64_pteg_count <<= 1; moea64_pteg_count >>= 1; #endif /* PTEGCOUNT */ } void moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { vm_size_t size; register_t msr; int i; /* * Set PTEG mask */ moea64_pteg_mask = moea64_pteg_count - 1; /* * Allocate pv/overflow lists. */ size = sizeof(struct pvo_head) * moea64_pteg_count; moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size, PAGE_SIZE); CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table); DISABLE_TRANS(msr); for (i = 0; i < moea64_pteg_count; i++) LIST_INIT(&moea64_pvo_table[i]); ENABLE_TRANS(msr); /* * Initialize the lock that synchronizes access to the pteg and pvo * tables. */ mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF | MTX_RECURSE); mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); /* * Initialise the unmanaged pvo pool. */ moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); moea64_bpvo_pool_index = 0; /* * Make sure kernel vsid is allocated as well as VSID 0. */ #ifndef __powerpc64__ moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); moea64_vsid_bitmap[0] |= 1; #endif /* * Initialize the kernel pmap (which is statically allocated). */ #ifdef __powerpc64__ for (i = 0; i < 64; i++) { pcpup->pc_slb[i].slbv = 0; pcpup->pc_slb[i].slbe = 0; } #else for (i = 0; i < 16; i++) kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; #endif kernel_pmap->pmap_phys = kernel_pmap; CPU_FILL(&kernel_pmap->pm_active); PMAP_LOCK_INIT(kernel_pmap); /* * Now map in all the other buffers we allocated earlier */ moea64_setup_direct_map(mmup, kernelstart, kernelend); } void moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) { ihandle_t mmui; phandle_t chosen; phandle_t mmu; size_t sz; int i; vm_offset_t pa, va; void *dpcpu; /* * Set up the Open Firmware pmap and add its mappings if not in real * mode. */ chosen = OF_finddevice("/chosen"); if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) { mmu = OF_instance_to_package(mmui); if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1) sz = 0; if (sz > 6144 /* tmpstksz - 2 KB headroom */) panic("moea64_bootstrap: too many ofw translations"); if (sz > 0) moea64_add_ofw_mappings(mmup, mmu, sz); } /* * Calculate the last available physical address. */ for (i = 0; phys_avail[i + 2] != 0; i += 2) ; Maxmem = powerpc_btop(phys_avail[i + 1]); /* * Initialize MMU and remap early physical mappings */ MMU_CPU_BOOTSTRAP(mmup,0); mtmsr(mfmsr() | PSL_DR | PSL_IR); pmap_bootstrapped++; bs_remap_earlyboot(); /* * Set the start and end of kva. */ virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; /* * Map the entire KVA range into the SLB. We must not fault there. */ #ifdef __powerpc64__ for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) moea64_bootstrap_slb_prefault(va, 0); #endif /* * Figure out how far we can extend virtual_end into segment 16 * without running into existing mappings. Segment 16 is guaranteed * to contain neither RAM nor devices (at least on Apple hardware), * but will generally contain some OFW mappings we should not * step on. */ #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ PMAP_LOCK(kernel_pmap); while (virtual_end < VM_MAX_KERNEL_ADDRESS && moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) virtual_end += PAGE_SIZE; PMAP_UNLOCK(kernel_pmap); #endif /* * Allocate a kernel stack with a guard page for thread0 and map it * into the kernel page map. */ pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE); va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; virtual_avail = va + KSTACK_PAGES * PAGE_SIZE; CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); thread0.td_kstack = va; thread0.td_kstack_pages = KSTACK_PAGES; for (i = 0; i < KSTACK_PAGES; i++) { moea64_kenter(mmup, va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the message buffer. */ pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); msgbufp = (struct msgbuf *)virtual_avail; va = virtual_avail; virtual_avail += round_page(msgbufsize); while (va < virtual_avail) { moea64_kenter(mmup, va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the dynamic percpu area. */ pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); dpcpu = (void *)virtual_avail; va = virtual_avail; virtual_avail += DPCPU_SIZE; while (va < virtual_avail) { moea64_kenter(mmup, va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } dpcpu_init(dpcpu, 0); /* * Allocate some things for page zeroing. We put this directly * in the page table, marked with LPTE_LOCKED, to avoid any * of the PVO book-keeping or other parts of the VM system * from even knowing that this hack exists. */ if (!hw_direct_map) { mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF); for (i = 0; i < 2; i++) { moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; virtual_end -= PAGE_SIZE; moea64_kenter(mmup, moea64_scratchpage_va[i], 0); moea64_scratchpage_pvo[i] = moea64_pvo_find_va( kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); LOCK_TABLE(); moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE( mmup, moea64_scratchpage_pvo[i]); moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi |= LPTE_LOCKED; MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i], &moea64_scratchpage_pvo[i]->pvo_pte.lpte, moea64_scratchpage_pvo[i]->pvo_vpn); UNLOCK_TABLE(); } } } /* * Activate a user pmap. The pmap must be activated before its address * space can be accessed in any way. */ void moea64_activate(mmu_t mmu, struct thread *td) { pmap_t pm; pm = &td->td_proc->p_vmspace->vm_pmap; CPU_SET(PCPU_GET(cpuid), &pm->pm_active); #ifdef __powerpc64__ PCPU_SET(userslb, pm->pm_slb); #else PCPU_SET(curpmap, pm->pmap_phys); #endif } void moea64_deactivate(mmu_t mmu, struct thread *td) { pmap_t pm; pm = &td->td_proc->p_vmspace->vm_pmap; CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); #ifdef __powerpc64__ PCPU_SET(userslb, NULL); #else PCPU_SET(curpmap, NULL); #endif } void moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired) { struct pvo_entry *pvo; uintptr_t pt; uint64_t vsid; int i, ptegidx; PMAP_LOCK(pm); pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); if (pvo != NULL) { LOCK_TABLE(); pt = MOEA64_PVO_TO_PTE(mmu, pvo); if (wired) { if ((pvo->pvo_vaddr & PVO_WIRED) == 0) pm->pm_stats.wired_count++; pvo->pvo_vaddr |= PVO_WIRED; pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED; } else { if ((pvo->pvo_vaddr & PVO_WIRED) != 0) pm->pm_stats.wired_count--; pvo->pvo_vaddr &= ~PVO_WIRED; pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED; } if (pt != -1) { /* Update wiring flag in page table. */ MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn); } else if (wired) { /* * If we are wiring the page, and it wasn't in the * page table before, add it. */ vsid = PVO_VSID(pvo); ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo), pvo->pvo_vaddr & PVO_LARGE); i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte); if (i >= 0) { PVO_PTEGIDX_CLR(pvo); PVO_PTEGIDX_SET(pvo, i); } } UNLOCK_TABLE(); } PMAP_UNLOCK(pm); } /* * This goes through and sets the physical address of our * special scratch PTE to the PA we want to zero or copy. Because * of locking issues (this can get called in pvo_enter() by * the UMA allocator), we can't use most other utility functions here */ static __inline void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) { KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &= ~(LPTE_WIMG | LPTE_RPGN); moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |= moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which], &moea64_scratchpage_pvo[which]->pvo_pte.lpte, moea64_scratchpage_pvo[which]->pvo_vpn); isync(); } void moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) { vm_offset_t dst; vm_offset_t src; dst = VM_PAGE_TO_PHYS(mdst); src = VM_PAGE_TO_PHYS(msrc); if (hw_direct_map) { kcopy((void *)src, (void *)dst, PAGE_SIZE); } else { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 0, src); moea64_set_scratchpage_pa(mmu, 1, dst); kcopy((void *)moea64_scratchpage_va[0], (void *)moea64_scratchpage_va[1], PAGE_SIZE); mtx_unlock(&moea64_scratchpage_mtx); } } void moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) { vm_offset_t pa = VM_PAGE_TO_PHYS(m); if (size + off > PAGE_SIZE) panic("moea64_zero_page: size + off > PAGE_SIZE"); if (hw_direct_map) { bzero((caddr_t)pa + off, size); } else { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 0, pa); bzero((caddr_t)moea64_scratchpage_va[0] + off, size); mtx_unlock(&moea64_scratchpage_mtx); } } /* * Zero a page of physical memory by temporarily mapping it */ void moea64_zero_page(mmu_t mmu, vm_page_t m) { vm_offset_t pa = VM_PAGE_TO_PHYS(m); vm_offset_t va, off; if (!hw_direct_map) { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 0, pa); va = moea64_scratchpage_va[0]; } else { va = pa; } for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(va + off)); if (!hw_direct_map) mtx_unlock(&moea64_scratchpage_mtx); } void moea64_zero_page_idle(mmu_t mmu, vm_page_t m) { moea64_zero_page(mmu, m); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. */ void moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, boolean_t wired) { vm_page_lock_queues(); PMAP_LOCK(pmap); moea64_enter_locked(mmu, pmap, va, m, prot, wired); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. * * The page queues and pmap must be locked. */ static void moea64_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, boolean_t wired) { struct pvo_head *pvo_head; uma_zone_t zone; vm_page_t pg; uint64_t pte_lo; u_int pvo_flags; int error; if (!moea64_initialized) { pvo_head = &moea64_pvo_kunmanaged; pg = NULL; zone = moea64_upvo_zone; pvo_flags = 0; } else { pvo_head = vm_page_to_pvoh(m); pg = m; zone = moea64_mpvo_zone; pvo_flags = PVO_MANAGED; } if (pmap_bootstrapped) mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 || VM_OBJECT_LOCKED(m->object), ("moea64_enter_locked: page %p is not busy", m)); /* XXX change the pvo head for fake pages */ if ((m->oflags & VPO_UNMANAGED) != 0) { pvo_flags &= ~PVO_MANAGED; pvo_head = &moea64_pvo_kunmanaged; zone = moea64_upvo_zone; } pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); if (prot & VM_PROT_WRITE) { pte_lo |= LPTE_BW; if (pmap_bootstrapped && (m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); } else pte_lo |= LPTE_BR; if ((prot & VM_PROT_EXECUTE) == 0) pte_lo |= LPTE_NOEXEC; if (wired) pvo_flags |= PVO_WIRED; error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags); /* * Flush the page from the instruction cache if this page is * mapped executable and cacheable. */ if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE); } static void moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz) { /* * This is much trickier than on older systems because * we can't sync the icache on physical addresses directly * without a direct map. Instead we check a couple of cases * where the memory is already mapped in and, failing that, * use the same trick we use for page zeroing to create * a temporary mapping for this physical address. */ if (!pmap_bootstrapped) { /* * If PMAP is not bootstrapped, we are likely to be * in real mode. */ __syncicache((void *)pa, sz); } else if (pmap == kernel_pmap) { __syncicache((void *)va, sz); } else if (hw_direct_map) { __syncicache((void *)pa, sz); } else { /* Use the scratch page to set up a temp mapping */ mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF); __syncicache((void *)(moea64_scratchpage_va[1] + (va & ADDR_POFF)), sz); mtx_unlock(&moea64_scratchpage_mtx); } } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; psize = atop(end - start); m = m_start; vm_page_lock_queues(); PMAP_LOCK(pm); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { moea64_enter_locked(mmu, pm, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); m = TAILQ_NEXT(m, listq); } vm_page_unlock_queues(); PMAP_UNLOCK(pm); } void moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot) { vm_page_lock_queues(); PMAP_LOCK(pm); moea64_enter_locked(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); vm_page_unlock_queues(); PMAP_UNLOCK(pm); } vm_paddr_t moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; PMAP_LOCK(pm); pvo = moea64_pvo_find_va(pm, va); if (pvo == NULL) pa = 0; else pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo)); PMAP_UNLOCK(pm); return (pa); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ vm_page_t moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) { struct pvo_entry *pvo; vm_page_t m; vm_paddr_t pa; m = NULL; pa = 0; PMAP_LOCK(pmap); retry: pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) && ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW || (prot & VM_PROT_WRITE) == 0)) { if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa)) goto retry; m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); vm_page_hold(m); } PA_UNLOCK_COND(pa); PMAP_UNLOCK(pmap); return (m); } static mmu_t installed_mmu; static void * moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) { /* * This entire routine is a horrible hack to avoid bothering kmem * for new KVA addresses. Because this can get called from inside * kmem allocation routines, calling kmem for a new address here * can lead to multiply locking non-recursive mutexes. */ static vm_pindex_t color; vm_offset_t va; vm_page_t m; int pflags, needed_lock; *flags = UMA_SLAB_PRIV; needed_lock = !PMAP_LOCKED(kernel_pmap); if (needed_lock) PMAP_LOCK(kernel_pmap); if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; else pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; if (wait & M_ZERO) pflags |= VM_ALLOC_ZERO; for (;;) { m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ); if (m == NULL) { if (wait & M_NOWAIT) return (NULL); VM_WAIT; } else break; } va = VM_PAGE_TO_PHYS(m); moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone, &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP); if (needed_lock) PMAP_UNLOCK(kernel_pmap); if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) bzero((void *)va, PAGE_SIZE); return (void *)va; } void moea64_init(mmu_t mmu) { CTR0(KTR_PMAP, "moea64_init"); moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); if (!hw_direct_map) { installed_mmu = mmu; uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc); uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc); } moea64_initialized = TRUE; } boolean_t moea64_is_referenced(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_is_referenced: page %p is not managed", m)); return (moea64_query_bit(mmu, m, PTE_REF)); } boolean_t moea64_is_modified(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_is_modified: page %p is not managed", m)); /* * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTEs can have LPTE_CHG set. */ VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) return (FALSE); return (moea64_query_bit(mmu, m, LPTE_CHG)); } boolean_t moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va) { struct pvo_entry *pvo; boolean_t rv; PMAP_LOCK(pmap); pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0; PMAP_UNLOCK(pmap); return (rv); } void moea64_clear_reference(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_clear_reference: page %p is not managed", m)); moea64_clear_bit(mmu, m, LPTE_REF); } void moea64_clear_modify(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_clear_modify: page %p is not managed", m)); VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); KASSERT((m->oflags & VPO_BUSY) == 0, ("moea64_clear_modify: page %p is busy", m)); /* * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG * set. If the object containing the page is locked and the page is * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; moea64_clear_bit(mmu, m, LPTE_CHG); } /* * Clear the write and modified bits in each of the given page's mappings. */ void moea64_remove_write(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo; uintptr_t pt; pmap_t pmap; uint64_t lo; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_remove_write: page %p is not managed", m)); /* * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by * another thread while the object is locked. Thus, if PGA_WRITEABLE * is clear, no page table entries need updating. */ VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) return; vm_page_lock_queues(); lo = moea64_attr_fetch(m); powerpc_sync(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); LOCK_TABLE(); if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) { pt = MOEA64_PVO_TO_PTE(mmu, pvo); pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; if (pt != -1) { MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); lo |= pvo->pvo_pte.lpte.pte_lo; pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG; MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn); if (pvo->pvo_pmap == kernel_pmap) isync(); } } UNLOCK_TABLE(); PMAP_UNLOCK(pmap); } if ((lo & LPTE_CHG) != 0) { moea64_attr_clear(m, LPTE_CHG); vm_page_dirty(m); } vm_page_aflag_clear(m, PGA_WRITEABLE); vm_page_unlock_queues(); } /* * moea64_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ boolean_t moea64_ts_referenced(mmu_t mmu, vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_ts_referenced: page %p is not managed", m)); return (moea64_clear_bit(mmu, m, LPTE_REF)); } /* * Modify the WIMG settings of all mappings for a page. */ void moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma) { struct pvo_entry *pvo; struct pvo_head *pvo_head; uintptr_t pt; pmap_t pmap; uint64_t lo; if ((m->oflags & VPO_UNMANAGED) != 0) { m->md.mdpg_cache_attrs = ma; return; } vm_page_lock_queues(); pvo_head = vm_page_to_pvoh(m); lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); LIST_FOREACH(pvo, pvo_head, pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); LOCK_TABLE(); pt = MOEA64_PVO_TO_PTE(mmu, pvo); pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG; pvo->pvo_pte.lpte.pte_lo |= lo; if (pt != -1) { MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn); if (pvo->pvo_pmap == kernel_pmap) isync(); } UNLOCK_TABLE(); PMAP_UNLOCK(pmap); } m->md.mdpg_cache_attrs = ma; vm_page_unlock_queues(); } /* * Map a wired page into kernel virtual address space. */ void moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma) { uint64_t pte_lo; int error; pte_lo = moea64_calc_wimg(pa, ma); PMAP_LOCK(kernel_pmap); error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone, &moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED); if (error != 0 && error != ENOENT) panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va, pa, error); /* * Flush the memory from the instruction cache. */ if ((pte_lo & (LPTE_I | LPTE_G)) == 0) __syncicache((void *)va, PAGE_SIZE); PMAP_UNLOCK(kernel_pmap); } void moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa) { moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); } /* * Extract the physical page address associated with the given kernel virtual * address. */ vm_offset_t moea64_kextract(mmu_t mmu, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; /* * Shortcut the direct-mapped case when applicable. We never put * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS. */ if (va < VM_MIN_KERNEL_ADDRESS) return (va); PMAP_LOCK(kernel_pmap); pvo = moea64_pvo_find_va(kernel_pmap, va); KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, va)); pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo)); PMAP_UNLOCK(kernel_pmap); return (pa); } /* * Remove a wired page from kernel virtual address space. */ void moea64_kremove(mmu_t mmu, vm_offset_t va) { moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); } /* * Map a range of physical addresses into kernel virtual address space. * * The value passed in *virt is a suggested virtual address for the mapping. * Architectures which can support a direct-mapped physical to virtual region * can return the appropriate address within that region, leaving '*virt' * unchanged. We cannot and therefore do not; *virt is updated with the * first usable address after the mapped region. */ vm_offset_t moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot) { vm_offset_t sva, va; sva = *virt; va = sva; for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) moea64_kenter(mmu, va, pa_start); *virt = va; return (sva); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) { int loops; struct pvo_entry *pvo; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_page_exists_quick: page %p is not managed", m)); loops = 0; rv = FALSE; vm_page_lock_queues(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { if (pvo->pvo_pmap == pmap) { rv = TRUE; break; } if (++loops >= 16) break; } vm_page_unlock_queues(); return (rv); } /* * Return the number of managed mappings to the given physical page * that are wired. */ int moea64_page_wired_mappings(mmu_t mmu, vm_page_t m) { struct pvo_entry *pvo; int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); vm_page_lock_queues(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) if ((pvo->pvo_vaddr & PVO_WIRED) != 0) count++; vm_page_unlock_queues(); return (count); } static uintptr_t moea64_vsidcontext; uintptr_t moea64_get_unique_vsid(void) { u_int entropy; register_t hash; uint32_t mask; int i; entropy = 0; __asm __volatile("mftb %0" : "=r"(entropy)); mtx_lock(&moea64_slb_mutex); for (i = 0; i < NVSIDS; i += VSID_NBPW) { u_int n; /* * Create a new value by mutiplying by a prime and adding in * entropy from the timebase register. This is to make the * VSID more random so that the PT hash function collides * less often. (Note that the prime casues gcc to do shifts * instead of a multiply.) */ moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; hash = moea64_vsidcontext & (NVSIDS - 1); if (hash == 0) /* 0 is special, avoid it */ continue; n = hash >> 5; mask = 1 << (hash & (VSID_NBPW - 1)); hash = (moea64_vsidcontext & VSID_HASHMASK); if (moea64_vsid_bitmap[n] & mask) { /* collision? */ /* anything free in this bucket? */ if (moea64_vsid_bitmap[n] == 0xffffffff) { entropy = (moea64_vsidcontext >> 20); continue; } i = ffs(~moea64_vsid_bitmap[n]) - 1; mask = 1 << i; hash &= VSID_HASHMASK & ~(VSID_NBPW - 1); hash |= i; } KASSERT(!(moea64_vsid_bitmap[n] & mask), ("Allocating in-use VSID %#zx\n", hash)); moea64_vsid_bitmap[n] |= mask; mtx_unlock(&moea64_slb_mutex); return (hash); } mtx_unlock(&moea64_slb_mutex); panic("%s: out of segments",__func__); } #ifdef __powerpc64__ void moea64_pinit(mmu_t mmu, pmap_t pmap) { PMAP_LOCK_INIT(pmap); pmap->pm_slb_tree_root = slb_alloc_tree(); pmap->pm_slb = slb_alloc_user_cache(); pmap->pm_slb_len = 0; } #else void moea64_pinit(mmu_t mmu, pmap_t pmap) { int i; uint32_t hash; PMAP_LOCK_INIT(pmap); if (pmap_bootstrapped) pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, (vm_offset_t)pmap); else pmap->pmap_phys = pmap; /* * Allocate some segment registers for this pmap. */ hash = moea64_get_unique_vsid(); for (i = 0; i < 16; i++) pmap->pm_sr[i] = VSID_MAKE(i, hash); KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); } #endif /* * Initialize the pmap associated with process 0. */ void moea64_pinit0(mmu_t mmu, pmap_t pm) { moea64_pinit(mmu, pm); bzero(&pm->pm_stats, sizeof(pm->pm_stats)); } /* * Set the physical protection on the specified range of this map as requested. */ void moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { struct pvo_entry *pvo; uintptr_t pt; CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva, eva, prot); KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("moea64_protect: non current pmap")); if ((prot & VM_PROT_READ) == VM_PROT_NONE) { moea64_remove(mmu, pm, sva, eva); return; } vm_page_lock_queues(); PMAP_LOCK(pm); for (; sva < eva; sva += PAGE_SIZE) { pvo = moea64_pvo_find_va(pm, sva); if (pvo == NULL) continue; /* * Grab the PTE pointer before we diddle with the cached PTE * copy. */ LOCK_TABLE(); pt = MOEA64_PVO_TO_PTE(mmu, pvo); /* * Change the protection of the page. */ pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC; if ((prot & VM_PROT_EXECUTE) == 0) pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC; /* * If the PVO is in the page table, update that pte as well. */ if (pt != -1) { MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn); if ((pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { moea64_syncicache(mmu, pm, sva, pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE); } } UNLOCK_TABLE(); } vm_page_unlock_queues(); PMAP_UNLOCK(pm); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ void moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count) { while (count-- > 0) { moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by moea64_qenter. */ void moea64_qremove(mmu_t mmu, vm_offset_t va, int count) { while (count-- > 0) { moea64_kremove(mmu, va); va += PAGE_SIZE; } } void moea64_release_vsid(uint64_t vsid) { int idx, mask; mtx_lock(&moea64_slb_mutex); idx = vsid & (NVSIDS-1); mask = 1 << (idx % VSID_NBPW); idx /= VSID_NBPW; KASSERT(moea64_vsid_bitmap[idx] & mask, ("Freeing unallocated VSID %#jx", vsid)); moea64_vsid_bitmap[idx] &= ~mask; mtx_unlock(&moea64_slb_mutex); } void moea64_release(mmu_t mmu, pmap_t pmap) { /* * Free segment registers' VSIDs */ #ifdef __powerpc64__ slb_free_tree(pmap); slb_free_user_cache(pmap->pm_slb); #else KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); #endif PMAP_LOCK_DESTROY(pmap); } /* * Remove the given range of addresses from the specified map. */ void moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry *pvo; vm_page_lock_queues(); PMAP_LOCK(pm); for (; sva < eva; sva += PAGE_SIZE) { pvo = moea64_pvo_find_va(pm, sva); if (pvo != NULL) moea64_pvo_remove(mmu, pvo); } vm_page_unlock_queues(); PMAP_UNLOCK(pm); } /* * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() * will reflect changes in pte's back to the vm_page. */ void moea64_remove_all(mmu_t mmu, vm_page_t m) { struct pvo_head *pvo_head; struct pvo_entry *pvo, *next_pvo; pmap_t pmap; vm_page_lock_queues(); pvo_head = vm_page_to_pvoh(m); for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { next_pvo = LIST_NEXT(pvo, pvo_vlink); pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); moea64_pvo_remove(mmu, pvo); PMAP_UNLOCK(pmap); } if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m)) { moea64_attr_clear(m, LPTE_CHG); vm_page_dirty(m); } vm_page_aflag_clear(m, PGA_WRITEABLE); vm_page_unlock_queues(); } /* * Allocate a physical page of memory directly from the phys_avail map. * Can only be called from moea64_bootstrap before avail start and end are * calculated. */ vm_offset_t moea64_bootstrap_alloc(vm_size_t size, u_int align) { vm_offset_t s, e; int i, j; size = round_page(size); for (i = 0; phys_avail[i + 1] != 0; i += 2) { if (align != 0) s = (phys_avail[i] + align - 1) & ~(align - 1); else s = phys_avail[i]; e = s + size; if (s < phys_avail[i] || e > phys_avail[i + 1]) continue; if (s + size > platform_real_maxaddr()) continue; if (s == phys_avail[i]) { phys_avail[i] += size; } else if (e == phys_avail[i + 1]) { phys_avail[i + 1] -= size; } else { for (j = phys_avail_count * 2; j > i; j -= 2) { phys_avail[j] = phys_avail[j - 2]; phys_avail[j + 1] = phys_avail[j - 1]; } phys_avail[i + 3] = phys_avail[i + 1]; phys_avail[i + 1] = s; phys_avail[i + 2] = e; phys_avail_count++; } return (s); } panic("moea64_bootstrap_alloc: could not allocate memory"); } static int moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags) { struct pvo_entry *pvo; uint64_t vsid; int first; u_int ptegidx; int i; int bootstrap; /* * One nasty thing that can happen here is that the UMA calls to * allocate new PVOs need to map more memory, which calls pvo_enter(), * which calls UMA... * * We break the loop by detecting recursion and allocating out of * the bootstrap pool. */ first = 0; bootstrap = (flags & PVO_BOOTSTRAP); if (!moea64_initialized) bootstrap = 1; /* * Compute the PTE Group index. */ va &= ~ADDR_POFF; vsid = va_to_vsid(pm, va); ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE); /* * Remove any existing mapping for this page. Reuse the pvo entry if * there is a mapping. */ LOCK_TABLE(); moea64_pvo_enter_calls++; LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa && (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP)) == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) { if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) { /* Re-insert if spilled */ i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte); if (i >= 0) PVO_PTEGIDX_SET(pvo, i); moea64_pte_overflow--; } UNLOCK_TABLE(); return (0); } moea64_pvo_remove(mmu, pvo); break; } } /* * If we aren't overwriting a mapping, try to allocate. */ if (bootstrap) { if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) { panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd", moea64_bpvo_pool_index, BPVO_POOL_SIZE, BPVO_POOL_SIZE * sizeof(struct pvo_entry)); } pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index]; moea64_bpvo_pool_index++; bootstrap = 1; } else { /* * Note: drop the table lock around the UMA allocation in * case the UMA allocator needs to manipulate the page * table. The mapping we are working with is already * protected by the PMAP lock. */ UNLOCK_TABLE(); pvo = uma_zalloc(zone, M_NOWAIT); LOCK_TABLE(); } if (pvo == NULL) { UNLOCK_TABLE(); return (ENOMEM); } moea64_pvo_entries++; pvo->pvo_vaddr = va; pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) | (vsid << 16); pvo->pvo_pmap = pm; LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink); pvo->pvo_vaddr &= ~ADDR_POFF; if (flags & PVO_WIRED) pvo->pvo_vaddr |= PVO_WIRED; if (pvo_head != &moea64_pvo_kunmanaged) pvo->pvo_vaddr |= PVO_MANAGED; if (bootstrap) pvo->pvo_vaddr |= PVO_BOOTSTRAP; if (flags & PVO_LARGE) pvo->pvo_vaddr |= PVO_LARGE; moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va, (uint64_t)(pa) | pte_lo, flags); /* * Remember if the list was empty and therefore will be the first * item. */ if (LIST_FIRST(pvo_head) == NULL) first = 1; LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); if (pvo->pvo_vaddr & PVO_WIRED) { pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED; pm->pm_stats.wired_count++; } pm->pm_stats.resident_count++; /* * We hope this succeeds but it isn't required. */ i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte); if (i >= 0) { PVO_PTEGIDX_SET(pvo, i); } else { panic("moea64_pvo_enter: overflow"); moea64_pte_overflow++; } if (pm == kernel_pmap) isync(); UNLOCK_TABLE(); #ifdef __powerpc64__ /* * Make sure all our bootstrap mappings are in the SLB as soon * as virtual memory is switched on. */ if (!pmap_bootstrapped) moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE); #endif return (first ? ENOENT : 0); } static void moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo) { uintptr_t pt; /* * If there is an active pte entry, we need to deactivate it (and * save the ref & cfg bits). */ LOCK_TABLE(); pt = MOEA64_PVO_TO_PTE(mmu, pvo); if (pt != -1) { MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn); PVO_PTEGIDX_CLR(pvo); } else { moea64_pte_overflow--; } /* * Update our statistics. */ pvo->pvo_pmap->pm_stats.resident_count--; if (pvo->pvo_vaddr & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count--; /* * Save the REF/CHG bits into their cache if the page is managed. */ if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) { struct vm_page *pg; pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); if (pg != NULL) { moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo & (LPTE_REF | LPTE_CHG)); } } /* * Remove this PVO from the PV list. */ LIST_REMOVE(pvo, pvo_vlink); /* * Remove this from the overflow list and return it to the pool * if we aren't going to reuse it. */ LIST_REMOVE(pvo, pvo_olink); moea64_pvo_entries--; moea64_pvo_remove_calls++; UNLOCK_TABLE(); if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone : moea64_upvo_zone, pvo); } static struct pvo_entry * moea64_pvo_find_va(pmap_t pm, vm_offset_t va) { struct pvo_entry *pvo; int ptegidx; uint64_t vsid; #ifdef __powerpc64__ uint64_t slbv; if (pm == kernel_pmap) { slbv = kernel_va_to_slbv(va); } else { struct slb *slb; slb = user_va_to_slb_entry(pm, va); /* The page is not mapped if the segment isn't */ if (slb == NULL) return NULL; slbv = slb->slbv; } vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT; if (slbv & SLBV_L) va &= ~moea64_large_page_mask; else va &= ~ADDR_POFF; ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L); #else va &= ~ADDR_POFF; vsid = va_to_vsid(pm, va); ptegidx = va_to_pteg(vsid, va, 0); #endif LOCK_TABLE(); LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) break; } UNLOCK_TABLE(); return (pvo); } static boolean_t moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) { struct pvo_entry *pvo; uintptr_t pt; if (moea64_attr_fetch(m) & ptebit) return (TRUE); vm_page_lock_queues(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { /* * See if we saved the bit off. If so, cache it and return * success. */ if (pvo->pvo_pte.lpte.pte_lo & ptebit) { moea64_attr_save(m, ptebit); vm_page_unlock_queues(); return (TRUE); } } /* * No luck, now go through the hard part of looking at the PTEs * themselves. Sync so that any pending REF/CHG bits are flushed to * the PTEs. */ powerpc_sync(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { /* * See if this pvo has a valid PTE. if so, fetch the * REF/CHG bits from the valid PTE. If the appropriate * ptebit is set, cache it and return success. */ LOCK_TABLE(); pt = MOEA64_PVO_TO_PTE(mmu, pvo); if (pt != -1) { MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); if (pvo->pvo_pte.lpte.pte_lo & ptebit) { UNLOCK_TABLE(); moea64_attr_save(m, ptebit); vm_page_unlock_queues(); return (TRUE); } } UNLOCK_TABLE(); } vm_page_unlock_queues(); return (FALSE); } static u_int moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) { u_int count; struct pvo_entry *pvo; uintptr_t pt; vm_page_lock_queues(); /* * Clear the cached value. */ moea64_attr_clear(m, ptebit); /* * Sync so that any pending REF/CHG bits are flushed to the PTEs (so * we can reset the right ones). note that since the pvo entries and * list heads are accessed via BAT0 and are never placed in the page * table, we don't have to worry about further accesses setting the * REF/CHG bits. */ powerpc_sync(); /* * For each pvo entry, clear the pvo's ptebit. If this pvo has a * valid pte clear the ptebit from the valid pte. */ count = 0; LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { LOCK_TABLE(); pt = MOEA64_PVO_TO_PTE(mmu, pvo); if (pt != -1) { MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); if (pvo->pvo_pte.lpte.pte_lo & ptebit) { count++; MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn, ptebit); } } pvo->pvo_pte.lpte.pte_lo &= ~ptebit; UNLOCK_TABLE(); } vm_page_unlock_queues(); return (count); } boolean_t moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size) { struct pvo_entry *pvo; vm_offset_t ppa; int error = 0; PMAP_LOCK(kernel_pmap); for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) { pvo = moea64_pvo_find_va(kernel_pmap, ppa); if (pvo == NULL || (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) { error = EFAULT; break; } } PMAP_UNLOCK(kernel_pmap); return (error); } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma) { vm_offset_t va, tmpva, ppa, offset; ppa = trunc_page(pa); offset = pa & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); va = kmem_alloc_nofault(kernel_map, size); if (!va) panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0;) { moea64_kenter_attr(mmu, tmpva, ppa, ma); size -= PAGE_SIZE; tmpva += PAGE_SIZE; ppa += PAGE_SIZE; } return ((void *)(va + offset)); } void * moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size) { return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT); } void moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) { vm_offset_t base, offset; base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); kmem_free(kernel_map, base, size); } void moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) { struct pvo_entry *pvo; vm_offset_t lim; vm_paddr_t pa; vm_size_t len; PMAP_LOCK(pm); while (sz > 0) { lim = round_page(va); len = MIN(lim - va, sz); pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) { pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF); moea64_syncicache(mmu, pm, va, pa, len); } va += len; sz -= len; } PMAP_UNLOCK(pm); }