//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the set of low-level target independent types which various // values in the code generator are. This allows the target specific behavior // of instructions to be described to target independent passes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_VALUETYPES_H #define LLVM_CODEGEN_VALUETYPES_H #include "llvm/Support/DataTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include #include namespace llvm { class Type; class LLVMContext; struct EVT; /// MVT - Machine Value Type. Every type that is supported natively by some /// processor targeted by LLVM occurs here. This means that any legal value /// type can be represented by a MVT. class MVT { public: enum SimpleValueType { // INVALID_SIMPLE_VALUE_TYPE - Simple value types less than zero are // considered extended value types. INVALID_SIMPLE_VALUE_TYPE = -1, // If you change this numbering, you must change the values in // ValueTypes.td as well! Other = 0, // This is a non-standard value i1 = 1, // This is a 1 bit integer value i8 = 2, // This is an 8 bit integer value i16 = 3, // This is a 16 bit integer value i32 = 4, // This is a 32 bit integer value i64 = 5, // This is a 64 bit integer value i128 = 6, // This is a 128 bit integer value FIRST_INTEGER_VALUETYPE = i1, LAST_INTEGER_VALUETYPE = i128, f16 = 7, // This is a 16 bit floating point value f32 = 8, // This is a 32 bit floating point value f64 = 9, // This is a 64 bit floating point value f80 = 10, // This is a 80 bit floating point value f128 = 11, // This is a 128 bit floating point value ppcf128 = 12, // This is a PPC 128-bit floating point value FIRST_FP_VALUETYPE = f16, LAST_FP_VALUETYPE = ppcf128, v2i1 = 13, // 2 x i1 v4i1 = 14, // 4 x i1 v8i1 = 15, // 8 x i1 v16i1 = 16, // 16 x i1 v32i1 = 17, // 32 x i1 v64i1 = 18, // 64 x i1 v2i8 = 19, // 2 x i8 v4i8 = 20, // 4 x i8 v8i8 = 21, // 8 x i8 v16i8 = 22, // 16 x i8 v32i8 = 23, // 32 x i8 v64i8 = 24, // 64 x i8 v1i16 = 25, // 1 x i16 v2i16 = 26, // 2 x i16 v4i16 = 27, // 4 x i16 v8i16 = 28, // 8 x i16 v16i16 = 29, // 16 x i16 v32i16 = 30, // 32 x i16 v1i32 = 31, // 1 x i32 v2i32 = 32, // 2 x i32 v4i32 = 33, // 4 x i32 v8i32 = 34, // 8 x i32 v16i32 = 35, // 16 x i32 v1i64 = 36, // 1 x i64 v2i64 = 37, // 2 x i64 v4i64 = 38, // 4 x i64 v8i64 = 39, // 8 x i64 v16i64 = 40, // 16 x i64 FIRST_INTEGER_VECTOR_VALUETYPE = v2i1, LAST_INTEGER_VECTOR_VALUETYPE = v16i64, v2f16 = 41, // 2 x f16 v2f32 = 42, // 2 x f32 v4f32 = 43, // 4 x f32 v8f32 = 44, // 8 x f32 v16f32 = 45, // 16 x f32 v2f64 = 46, // 2 x f64 v4f64 = 47, // 4 x f64 v8f64 = 48, // 8 x f64 FIRST_FP_VECTOR_VALUETYPE = v2f16, LAST_FP_VECTOR_VALUETYPE = v8f64, FIRST_VECTOR_VALUETYPE = v2i1, LAST_VECTOR_VALUETYPE = v8f64, x86mmx = 49, // This is an X86 MMX value Glue = 50, // This glues nodes together during pre-RA sched isVoid = 51, // This has no value Untyped = 52, // This value takes a register, but has // unspecified type. The register class // will be determined by the opcode. LAST_VALUETYPE = 53, // This always remains at the end of the list. // This is the current maximum for LAST_VALUETYPE. // MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors // This value must be a multiple of 32. MAX_ALLOWED_VALUETYPE = 64, // Metadata - This is MDNode or MDString. Metadata = 250, // iPTRAny - An int value the size of the pointer of the current // target to any address space. This must only be used internal to // tblgen. Other than for overloading, we treat iPTRAny the same as iPTR. iPTRAny = 251, // vAny - A vector with any length and element size. This is used // for intrinsics that have overloadings based on vector types. // This is only for tblgen's consumption! vAny = 252, // fAny - Any floating-point or vector floating-point value. This is used // for intrinsics that have overloadings based on floating-point types. // This is only for tblgen's consumption! fAny = 253, // iAny - An integer or vector integer value of any bit width. This is // used for intrinsics that have overloadings based on integer bit widths. // This is only for tblgen's consumption! iAny = 254, // iPTR - An int value the size of the pointer of the current // target. This should only be used internal to tblgen! iPTR = 255 }; SimpleValueType SimpleTy; MVT() : SimpleTy((SimpleValueType)(INVALID_SIMPLE_VALUE_TYPE)) {} MVT(SimpleValueType SVT) : SimpleTy(SVT) { } bool operator>(const MVT& S) const { return SimpleTy > S.SimpleTy; } bool operator<(const MVT& S) const { return SimpleTy < S.SimpleTy; } bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; } bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; } bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; } bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; } /// isFloatingPoint - Return true if this is a FP, or a vector FP type. bool isFloatingPoint() const { return ((SimpleTy >= MVT::FIRST_FP_VALUETYPE && SimpleTy <= MVT::LAST_FP_VALUETYPE) || (SimpleTy >= MVT::FIRST_FP_VECTOR_VALUETYPE && SimpleTy <= MVT::LAST_FP_VECTOR_VALUETYPE)); } /// isInteger - Return true if this is an integer, or a vector integer type. bool isInteger() const { return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE && SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) || (SimpleTy >= MVT::FIRST_INTEGER_VECTOR_VALUETYPE && SimpleTy <= MVT::LAST_INTEGER_VECTOR_VALUETYPE)); } /// isVector - Return true if this is a vector value type. bool isVector() const { return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE && SimpleTy <= MVT::LAST_VECTOR_VALUETYPE); } /// is16BitVector - Return true if this is a 16-bit vector type. bool is16BitVector() const { return (SimpleTy == MVT::v2i8 || SimpleTy == MVT::v1i16 || SimpleTy == MVT::v16i1); } /// is32BitVector - Return true if this is a 32-bit vector type. bool is32BitVector() const { return (SimpleTy == MVT::v4i8 || SimpleTy == MVT::v2i16 || SimpleTy == MVT::v1i32); } /// is64BitVector - Return true if this is a 64-bit vector type. bool is64BitVector() const { return (SimpleTy == MVT::v8i8 || SimpleTy == MVT::v4i16 || SimpleTy == MVT::v2i32 || SimpleTy == MVT::v1i64 || SimpleTy == MVT::v2f32); } /// is128BitVector - Return true if this is a 128-bit vector type. bool is128BitVector() const { return (SimpleTy == MVT::v16i8 || SimpleTy == MVT::v8i16 || SimpleTy == MVT::v4i32 || SimpleTy == MVT::v2i64 || SimpleTy == MVT::v4f32 || SimpleTy == MVT::v2f64); } /// is256BitVector - Return true if this is a 256-bit vector type. bool is256BitVector() const { return (SimpleTy == MVT::v8f32 || SimpleTy == MVT::v4f64 || SimpleTy == MVT::v32i8 || SimpleTy == MVT::v16i16 || SimpleTy == MVT::v8i32 || SimpleTy == MVT::v4i64); } /// is512BitVector - Return true if this is a 512-bit vector type. bool is512BitVector() const { return (SimpleTy == MVT::v8f64 || SimpleTy == MVT::v16f32 || SimpleTy == MVT::v64i8 || SimpleTy == MVT::v32i16 || SimpleTy == MVT::v8i64 || SimpleTy == MVT::v16i32); } /// is1024BitVector - Return true if this is a 1024-bit vector type. bool is1024BitVector() const { return (SimpleTy == MVT::v16i64); } /// isPow2VectorType - Returns true if the given vector is a power of 2. bool isPow2VectorType() const { unsigned NElts = getVectorNumElements(); return !(NElts & (NElts - 1)); } /// getPow2VectorType - Widens the length of the given vector MVT up to /// the nearest power of 2 and returns that type. MVT getPow2VectorType() const { if (isPow2VectorType()) return *this; unsigned NElts = getVectorNumElements(); unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); return MVT::getVectorVT(getVectorElementType(), Pow2NElts); } /// getScalarType - If this is a vector type, return the element type, /// otherwise return this. MVT getScalarType() const { return isVector() ? getVectorElementType() : *this; } MVT getVectorElementType() const { switch (SimpleTy) { default: llvm_unreachable("Not a vector MVT!"); case v2i1 : case v4i1 : case v8i1 : case v16i1 : case v32i1 : case v64i1: return i1; case v2i8 : case v4i8 : case v8i8 : case v16i8: case v32i8: case v64i8: return i8; case v1i16: case v2i16: case v4i16: case v8i16: case v16i16: case v32i16: return i16; case v1i32: case v2i32: case v4i32: case v8i32: case v16i32: return i32; case v1i64: case v2i64: case v4i64: case v8i64: case v16i64: return i64; case v2f16: return f16; case v2f32: case v4f32: case v8f32: case v16f32: return f32; case v2f64: case v4f64: case v8f64: return f64; } } unsigned getVectorNumElements() const { switch (SimpleTy) { default: llvm_unreachable("Not a vector MVT!"); case v32i1: case v32i8: case v32i16: return 32; case v64i1: case v64i8: return 64; case v16i1: case v16i8: case v16i16: case v16i32: case v16i64: case v16f32: return 16; case v8i1 : case v8i8 : case v8i16: case v8i32: case v8i64: case v8f32: case v8f64: return 8; case v4i1: case v4i8: case v4i16: case v4i32: case v4i64: case v4f32: case v4f64: return 4; case v2i1: case v2i8: case v2i16: case v2i32: case v2i64: case v2f16: case v2f32: case v2f64: return 2; case v1i16: case v1i32: case v1i64: return 1; } } unsigned getSizeInBits() const { switch (SimpleTy) { case iPTR: llvm_unreachable("Value type size is target-dependent. Ask TLI."); case iPTRAny: case iAny: case fAny: case vAny: llvm_unreachable("Value type is overloaded."); case Metadata: llvm_unreachable("Value type is metadata."); default: llvm_unreachable("getSizeInBits called on extended MVT."); case i1 : return 1; case v2i1: return 2; case v4i1: return 4; case i8 : case v8i1: return 8; case i16 : case f16: case v16i1: case v2i8: case v1i16: return 16; case f32 : case i32 : case v32i1: case v4i8: case v2i16: case v2f16: case v1i32: return 32; case x86mmx: case f64 : case i64 : case v64i1: case v8i8: case v4i16: case v2i32: case v1i64: case v2f32: return 64; case f80 : return 80; case f128: case ppcf128: case i128: case v16i8: case v8i16: case v4i32: case v2i64: case v4f32: case v2f64: return 128; case v32i8: case v16i16: case v8i32: case v4i64: case v8f32: case v4f64: return 256; case v64i8: case v32i16: case v16i32: case v8i64: case v16f32: case v8f64: return 512; case v16i64:return 1024; } } /// getStoreSize - Return the number of bytes overwritten by a store /// of the specified value type. unsigned getStoreSize() const { return (getSizeInBits() + 7) / 8; } /// getStoreSizeInBits - Return the number of bits overwritten by a store /// of the specified value type. unsigned getStoreSizeInBits() const { return getStoreSize() * 8; } /// Return true if this has more bits than VT. bool bitsGT(MVT VT) const { return getSizeInBits() > VT.getSizeInBits(); } /// Return true if this has no less bits than VT. bool bitsGE(MVT VT) const { return getSizeInBits() >= VT.getSizeInBits(); } /// Return true if this has less bits than VT. bool bitsLT(MVT VT) const { return getSizeInBits() < VT.getSizeInBits(); } /// Return true if this has no more bits than VT. bool bitsLE(MVT VT) const { return getSizeInBits() <= VT.getSizeInBits(); } static MVT getFloatingPointVT(unsigned BitWidth) { switch (BitWidth) { default: llvm_unreachable("Bad bit width!"); case 16: return MVT::f16; case 32: return MVT::f32; case 64: return MVT::f64; case 80: return MVT::f80; case 128: return MVT::f128; } } static MVT getIntegerVT(unsigned BitWidth) { switch (BitWidth) { default: return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE); case 1: return MVT::i1; case 8: return MVT::i8; case 16: return MVT::i16; case 32: return MVT::i32; case 64: return MVT::i64; case 128: return MVT::i128; } } static MVT getVectorVT(MVT VT, unsigned NumElements) { switch (VT.SimpleTy) { default: break; case MVT::i1: if (NumElements == 2) return MVT::v2i1; if (NumElements == 4) return MVT::v4i1; if (NumElements == 8) return MVT::v8i1; if (NumElements == 16) return MVT::v16i1; if (NumElements == 32) return MVT::v32i1; if (NumElements == 64) return MVT::v64i1; break; case MVT::i8: if (NumElements == 2) return MVT::v2i8; if (NumElements == 4) return MVT::v4i8; if (NumElements == 8) return MVT::v8i8; if (NumElements == 16) return MVT::v16i8; if (NumElements == 32) return MVT::v32i8; if (NumElements == 64) return MVT::v64i8; break; case MVT::i16: if (NumElements == 1) return MVT::v1i16; if (NumElements == 2) return MVT::v2i16; if (NumElements == 4) return MVT::v4i16; if (NumElements == 8) return MVT::v8i16; if (NumElements == 16) return MVT::v16i16; if (NumElements == 32) return MVT::v32i16; break; case MVT::i32: if (NumElements == 1) return MVT::v1i32; if (NumElements == 2) return MVT::v2i32; if (NumElements == 4) return MVT::v4i32; if (NumElements == 8) return MVT::v8i32; if (NumElements == 16) return MVT::v16i32; break; case MVT::i64: if (NumElements == 1) return MVT::v1i64; if (NumElements == 2) return MVT::v2i64; if (NumElements == 4) return MVT::v4i64; if (NumElements == 8) return MVT::v8i64; if (NumElements == 16) return MVT::v16i64; break; case MVT::f16: if (NumElements == 2) return MVT::v2f16; break; case MVT::f32: if (NumElements == 2) return MVT::v2f32; if (NumElements == 4) return MVT::v4f32; if (NumElements == 8) return MVT::v8f32; if (NumElements == 16) return MVT::v16f32; break; case MVT::f64: if (NumElements == 2) return MVT::v2f64; if (NumElements == 4) return MVT::v4f64; if (NumElements == 8) return MVT::v8f64; break; } return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE); } /// Return the value type corresponding to the specified type. This returns /// all pointers as iPTR. If HandleUnknown is true, unknown types are /// returned as Other, otherwise they are invalid. static MVT getVT(Type *Ty, bool HandleUnknown = false); }; /// EVT - Extended Value Type. Capable of holding value types which are not /// native for any processor (such as the i12345 type), as well as the types /// a MVT can represent. struct EVT { private: MVT V; Type *LLVMTy; public: EVT() : V((MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE)), LLVMTy(0) {} EVT(MVT::SimpleValueType SVT) : V(SVT), LLVMTy(0) { } EVT(MVT S) : V(S), LLVMTy(0) {} bool operator==(EVT VT) const { return !(*this != VT); } bool operator!=(EVT VT) const { if (V.SimpleTy != VT.V.SimpleTy) return true; if (V.SimpleTy < 0) return LLVMTy != VT.LLVMTy; return false; } /// getFloatingPointVT - Returns the EVT that represents a floating point /// type with the given number of bits. There are two floating point types /// with 128 bits - this returns f128 rather than ppcf128. static EVT getFloatingPointVT(unsigned BitWidth) { return MVT::getFloatingPointVT(BitWidth); } /// getIntegerVT - Returns the EVT that represents an integer with the given /// number of bits. static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth) { MVT M = MVT::getIntegerVT(BitWidth); if (M.SimpleTy >= 0) return M; return getExtendedIntegerVT(Context, BitWidth); } /// getVectorVT - Returns the EVT that represents a vector NumElements in /// length, where each element is of type VT. static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements) { MVT M = MVT::getVectorVT(VT.V, NumElements); if (M.SimpleTy >= 0) return M; return getExtendedVectorVT(Context, VT, NumElements); } /// changeVectorElementTypeToInteger - Return a vector with the same number /// of elements as this vector, but with the element type converted to an /// integer type with the same bitwidth. EVT changeVectorElementTypeToInteger() const { if (!isSimple()) return changeExtendedVectorElementTypeToInteger(); MVT EltTy = getSimpleVT().getVectorElementType(); unsigned BitWidth = EltTy.getSizeInBits(); MVT IntTy = MVT::getIntegerVT(BitWidth); MVT VecTy = MVT::getVectorVT(IntTy, getVectorNumElements()); assert(VecTy.SimpleTy >= 0 && "Simple vector VT not representable by simple integer vector VT!"); return VecTy; } /// isSimple - Test if the given EVT is simple (as opposed to being /// extended). bool isSimple() const { return V.SimpleTy >= 0; } /// isExtended - Test if the given EVT is extended (as opposed to /// being simple). bool isExtended() const { return !isSimple(); } /// isFloatingPoint - Return true if this is a FP, or a vector FP type. bool isFloatingPoint() const { return isSimple() ? V.isFloatingPoint() : isExtendedFloatingPoint(); } /// isInteger - Return true if this is an integer, or a vector integer type. bool isInteger() const { return isSimple() ? V.isInteger() : isExtendedInteger(); } /// isVector - Return true if this is a vector value type. bool isVector() const { return isSimple() ? V.isVector() : isExtendedVector(); } /// is16BitVector - Return true if this is a 16-bit vector type. bool is16BitVector() const { return isSimple() ? V.is16BitVector() : isExtended16BitVector(); } /// is32BitVector - Return true if this is a 32-bit vector type. bool is32BitVector() const { return isSimple() ? V.is32BitVector() : isExtended32BitVector(); } /// is64BitVector - Return true if this is a 64-bit vector type. bool is64BitVector() const { return isSimple() ? V.is64BitVector() : isExtended64BitVector(); } /// is128BitVector - Return true if this is a 128-bit vector type. bool is128BitVector() const { return isSimple() ? V.is128BitVector() : isExtended128BitVector(); } /// is256BitVector - Return true if this is a 256-bit vector type. bool is256BitVector() const { return isSimple() ? V.is256BitVector() : isExtended256BitVector(); } /// is512BitVector - Return true if this is a 512-bit vector type. bool is512BitVector() const { return isSimple() ? V.is512BitVector() : isExtended512BitVector(); } /// is1024BitVector - Return true if this is a 1024-bit vector type. bool is1024BitVector() const { return isSimple() ? V.is1024BitVector() : isExtended1024BitVector(); } /// isOverloaded - Return true if this is an overloaded type for TableGen. bool isOverloaded() const { return (V==MVT::iAny || V==MVT::fAny || V==MVT::vAny || V==MVT::iPTRAny); } /// isByteSized - Return true if the bit size is a multiple of 8. bool isByteSized() const { return (getSizeInBits() & 7) == 0; } /// isRound - Return true if the size is a power-of-two number of bytes. bool isRound() const { unsigned BitSize = getSizeInBits(); return BitSize >= 8 && !(BitSize & (BitSize - 1)); } /// bitsEq - Return true if this has the same number of bits as VT. bool bitsEq(EVT VT) const { if (EVT::operator==(VT)) return true; return getSizeInBits() == VT.getSizeInBits(); } /// bitsGT - Return true if this has more bits than VT. bool bitsGT(EVT VT) const { if (EVT::operator==(VT)) return false; return getSizeInBits() > VT.getSizeInBits(); } /// bitsGE - Return true if this has no less bits than VT. bool bitsGE(EVT VT) const { if (EVT::operator==(VT)) return true; return getSizeInBits() >= VT.getSizeInBits(); } /// bitsLT - Return true if this has less bits than VT. bool bitsLT(EVT VT) const { if (EVT::operator==(VT)) return false; return getSizeInBits() < VT.getSizeInBits(); } /// bitsLE - Return true if this has no more bits than VT. bool bitsLE(EVT VT) const { if (EVT::operator==(VT)) return true; return getSizeInBits() <= VT.getSizeInBits(); } /// getSimpleVT - Return the SimpleValueType held in the specified /// simple EVT. MVT getSimpleVT() const { assert(isSimple() && "Expected a SimpleValueType!"); return V; } /// getScalarType - If this is a vector type, return the element type, /// otherwise return this. EVT getScalarType() const { return isVector() ? getVectorElementType() : *this; } /// getVectorElementType - Given a vector type, return the type of /// each element. EVT getVectorElementType() const { assert(isVector() && "Invalid vector type!"); if (isSimple()) return V.getVectorElementType(); return getExtendedVectorElementType(); } /// getVectorNumElements - Given a vector type, return the number of /// elements it contains. unsigned getVectorNumElements() const { assert(isVector() && "Invalid vector type!"); if (isSimple()) return V.getVectorNumElements(); return getExtendedVectorNumElements(); } /// getSizeInBits - Return the size of the specified value type in bits. unsigned getSizeInBits() const { if (isSimple()) return V.getSizeInBits(); return getExtendedSizeInBits(); } /// getStoreSize - Return the number of bytes overwritten by a store /// of the specified value type. unsigned getStoreSize() const { return (getSizeInBits() + 7) / 8; } /// getStoreSizeInBits - Return the number of bits overwritten by a store /// of the specified value type. unsigned getStoreSizeInBits() const { return getStoreSize() * 8; } /// getRoundIntegerType - Rounds the bit-width of the given integer EVT up /// to the nearest power of two (and at least to eight), and returns the /// integer EVT with that number of bits. EVT getRoundIntegerType(LLVMContext &Context) const { assert(isInteger() && !isVector() && "Invalid integer type!"); unsigned BitWidth = getSizeInBits(); if (BitWidth <= 8) return EVT(MVT::i8); return getIntegerVT(Context, 1 << Log2_32_Ceil(BitWidth)); } /// getHalfSizedIntegerVT - Finds the smallest simple value type that is /// greater than or equal to half the width of this EVT. If no simple /// value type can be found, an extended integer value type of half the /// size (rounded up) is returned. EVT getHalfSizedIntegerVT(LLVMContext &Context) const { assert(isInteger() && !isVector() && "Invalid integer type!"); unsigned EVTSize = getSizeInBits(); for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; IntVT <= MVT::LAST_INTEGER_VALUETYPE; ++IntVT) { EVT HalfVT = EVT((MVT::SimpleValueType)IntVT); if (HalfVT.getSizeInBits() * 2 >= EVTSize) return HalfVT; } return getIntegerVT(Context, (EVTSize + 1) / 2); } /// isPow2VectorType - Returns true if the given vector is a power of 2. bool isPow2VectorType() const { unsigned NElts = getVectorNumElements(); return !(NElts & (NElts - 1)); } /// getPow2VectorType - Widens the length of the given vector EVT up to /// the nearest power of 2 and returns that type. EVT getPow2VectorType(LLVMContext &Context) const { if (!isPow2VectorType()) { unsigned NElts = getVectorNumElements(); unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); return EVT::getVectorVT(Context, getVectorElementType(), Pow2NElts); } else { return *this; } } /// getEVTString - This function returns value type as a string, /// e.g. "i32". std::string getEVTString() const; /// getTypeForEVT - This method returns an LLVM type corresponding to the /// specified EVT. For integer types, this returns an unsigned type. Note /// that this will abort for types that cannot be represented. Type *getTypeForEVT(LLVMContext &Context) const; /// getEVT - Return the value type corresponding to the specified type. /// This returns all pointers as iPTR. If HandleUnknown is true, unknown /// types are returned as Other, otherwise they are invalid. static EVT getEVT(Type *Ty, bool HandleUnknown = false); intptr_t getRawBits() const { if (isSimple()) return V.SimpleTy; else return (intptr_t)(LLVMTy); } /// compareRawBits - A meaningless but well-behaved order, useful for /// constructing containers. struct compareRawBits { bool operator()(EVT L, EVT R) const { if (L.V.SimpleTy == R.V.SimpleTy) return L.LLVMTy < R.LLVMTy; else return L.V.SimpleTy < R.V.SimpleTy; } }; private: // Methods for handling the Extended-type case in functions above. // These are all out-of-line to prevent users of this header file // from having a dependency on Type.h. EVT changeExtendedVectorElementTypeToInteger() const; static EVT getExtendedIntegerVT(LLVMContext &C, unsigned BitWidth); static EVT getExtendedVectorVT(LLVMContext &C, EVT VT, unsigned NumElements); bool isExtendedFloatingPoint() const; bool isExtendedInteger() const; bool isExtendedVector() const; bool isExtended16BitVector() const; bool isExtended32BitVector() const; bool isExtended64BitVector() const; bool isExtended128BitVector() const; bool isExtended256BitVector() const; bool isExtended512BitVector() const; bool isExtended1024BitVector() const; EVT getExtendedVectorElementType() const; unsigned getExtendedVectorNumElements() const; unsigned getExtendedSizeInBits() const; }; } // End llvm namespace #endif