//===- AArch64RegisterInfo.td - ARM Register defs ----------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains declarations that describe the AArch64 register file // //===----------------------------------------------------------------------===// let Namespace = "AArch64" in { def sub_128 : SubRegIndex; def sub_64 : SubRegIndex; def sub_32 : SubRegIndex; def sub_16 : SubRegIndex; def sub_8 : SubRegIndex; // The VPR registers are handled as sub-registers of FPR equivalents, but // they're really the same thing. We give this concept a special index. def sub_alias : SubRegIndex; } // Registers are identified with 5-bit ID numbers. class AArch64Reg enc, string n> : Register { let HWEncoding = enc; let Namespace = "AArch64"; } class AArch64RegWithSubs enc, string n, list subregs = [], list inds = []> : AArch64Reg { let SubRegs = subregs; let SubRegIndices = inds; } //===----------------------------------------------------------------------===// // Integer registers: w0-w30, wzr, wsp, x0-x30, xzr, sp //===----------------------------------------------------------------------===// foreach Index = 0-30 in { def W#Index : AArch64Reg< Index, "w"#Index>, DwarfRegNum<[Index]>; } def WSP : AArch64Reg<31, "wsp">, DwarfRegNum<[31]>; def WZR : AArch64Reg<31, "wzr">; // Could be combined with previous loop, but this way leaves w and x registers // consecutive as LLVM register numbers, which makes for easier debugging. foreach Index = 0-30 in { def X#Index : AArch64RegWithSubs("W"#Index)], [sub_32]>, DwarfRegNum<[Index]>; } def XSP : AArch64RegWithSubs<31, "sp", [WSP], [sub_32]>, DwarfRegNum<[31]>; def XZR : AArch64RegWithSubs<31, "xzr", [WZR], [sub_32]>; // Most instructions treat register 31 as zero for reads and a black-hole for // writes. // Note that the order of registers is important for the Disassembler here: // tablegen uses it to form MCRegisterClass::getRegister, which we assume can // take an encoding value. def GPR32 : RegisterClass<"AArch64", [i32], 32, (add (sequence "W%u", 0, 30), WZR)> { } def GPR64 : RegisterClass<"AArch64", [i64], 64, (add (sequence "X%u", 0, 30), XZR)> { } def GPR32nowzr : RegisterClass<"AArch64", [i32], 32, (sequence "W%u", 0, 30)> { } def GPR64noxzr : RegisterClass<"AArch64", [i64], 64, (sequence "X%u", 0, 30)> { } // For tail calls, we can't use callee-saved registers or the structure-return // register, as they are supposed to be live across function calls and may be // clobbered by the epilogue. def tcGPR64 : RegisterClass<"AArch64", [i64], 64, (add (sequence "X%u", 0, 7), (sequence "X%u", 9, 18))> { } // Certain addressing-useful instructions accept sp directly. Again the order of // registers is important to the Disassembler. def GPR32wsp : RegisterClass<"AArch64", [i32], 32, (add (sequence "W%u", 0, 30), WSP)> { } def GPR64xsp : RegisterClass<"AArch64", [i64], 64, (add (sequence "X%u", 0, 30), XSP)> { } // Some aliases *only* apply to SP (e.g. MOV uses different encoding for SP and // non-SP variants). We can't use a bare register in those patterns because // TableGen doesn't like it, so we need a class containing just stack registers def Rxsp : RegisterClass<"AArch64", [i64], 64, (add XSP)> { } def Rwsp : RegisterClass<"AArch64", [i32], 32, (add WSP)> { } //===----------------------------------------------------------------------===// // Scalar registers in the vector unit: // b0-b31, h0-h31, s0-s31, d0-d31, q0-q31 //===----------------------------------------------------------------------===// foreach Index = 0-31 in { def B # Index : AArch64Reg< Index, "b" # Index>, DwarfRegNum<[!add(Index, 64)]>; def H # Index : AArch64RegWithSubs("B" # Index)], [sub_8]>, DwarfRegNum<[!add(Index, 64)]>; def S # Index : AArch64RegWithSubs("H" # Index)], [sub_16]>, DwarfRegNum<[!add(Index, 64)]>; def D # Index : AArch64RegWithSubs("S" # Index)], [sub_32]>, DwarfRegNum<[!add(Index, 64)]>; def Q # Index : AArch64RegWithSubs("D" # Index)], [sub_64]>, DwarfRegNum<[!add(Index, 64)]>; } def FPR8 : RegisterClass<"AArch64", [i8], 8, (sequence "B%u", 0, 31)> { } def FPR16 : RegisterClass<"AArch64", [f16], 16, (sequence "H%u", 0, 31)> { } def FPR32 : RegisterClass<"AArch64", [f32], 32, (sequence "S%u", 0, 31)> { } def FPR64 : RegisterClass<"AArch64", [f64], 64, (sequence "D%u", 0, 31)> { } def FPR128 : RegisterClass<"AArch64", [f128], 128, (sequence "Q%u", 0, 31)> { } //===----------------------------------------------------------------------===// // Vector registers: //===----------------------------------------------------------------------===// // NEON registers simply specify the overall vector, and it's expected that // Instructions will individually specify the acceptable data layout. In // principle this leaves two approaches open: // + An operand, giving a single ADDvvv instruction (for example). This turns // out to be unworkable in the assembly parser (without every Instruction // having a "cvt" function, at least) because the constraints can't be // properly enforced. It also complicates specifying patterns since each // instruction will accept many types. // + A bare token (e.g. ".2d"). This means the AsmParser has to know specific // details about NEON registers, but simplifies most other details. // // The second approach was taken. foreach Index = 0-31 in { def V # Index : AArch64RegWithSubs("Q" # Index)], [sub_alias]>, DwarfRegNum<[!add(Index, 64)]>; } // These two classes contain the same registers, which should be reasonably // sensible for MC and allocation purposes, but allows them to be treated // separately for things like stack spilling. def VPR64 : RegisterClass<"AArch64", [v2f32, v2i32, v4i16, v8i8], 64, (sequence "V%u", 0, 31)>; def VPR128 : RegisterClass<"AArch64", [v2f64, v2i64, v4f32, v4i32, v8i16, v16i8], 128, (sequence "V%u", 0, 31)>; // Flags register def NZCV : Register<"nzcv"> { let Namespace = "AArch64"; } def FlagClass : RegisterClass<"AArch64", [i32], 32, (add NZCV)> { let CopyCost = -1; let isAllocatable = 0; }