/* * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #ifdef AH_DEBUG #include "ah_desc.h" /* NB: for HAL_PHYERR* */ #endif #include "ar5416/ar5416.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" /* * Return the wireless modes (a,b,g,n,t) supported by hardware. * * This value is what is actually supported by the hardware * and is unaffected by regulatory/country code settings. * */ u_int ar5416GetWirelessModes(struct ath_hal *ah) { u_int mode; struct ath_hal_private *ahpriv = AH_PRIVATE(ah); HAL_CAPABILITIES *pCap = &ahpriv->ah_caps; mode = ar5212GetWirelessModes(ah); /* Only enable HT modes if the NIC supports HT */ if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11A)) mode |= HAL_MODE_11NA_HT20 | HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS ; if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11G)) mode |= HAL_MODE_11NG_HT20 | HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS ; return mode; } /* * Change the LED blinking pattern to correspond to the connectivity */ void ar5416SetLedState(struct ath_hal *ah, HAL_LED_STATE state) { static const uint32_t ledbits[8] = { AR_MAC_LED_ASSOC_NONE, /* HAL_LED_INIT */ AR_MAC_LED_ASSOC_PEND, /* HAL_LED_SCAN */ AR_MAC_LED_ASSOC_PEND, /* HAL_LED_AUTH */ AR_MAC_LED_ASSOC_ACTIVE, /* HAL_LED_ASSOC*/ AR_MAC_LED_ASSOC_ACTIVE, /* HAL_LED_RUN */ AR_MAC_LED_ASSOC_NONE, AR_MAC_LED_ASSOC_NONE, AR_MAC_LED_ASSOC_NONE, }; uint32_t bits; if (AR_SREV_HOWL(ah)) return; bits = OS_REG_READ(ah, AR_MAC_LED); bits = (bits &~ AR_MAC_LED_MODE) | SM(AR_MAC_LED_MODE_POWON, AR_MAC_LED_MODE) #if 1 | SM(AR_MAC_LED_MODE_NETON, AR_MAC_LED_MODE) #endif ; bits = (bits &~ AR_MAC_LED_ASSOC) | SM(ledbits[state & 0x7], AR_MAC_LED_ASSOC); OS_REG_WRITE(ah, AR_MAC_LED, bits); } /* * Get the current hardware tsf for stamlme */ uint64_t ar5416GetTsf64(struct ath_hal *ah) { uint32_t low1, low2, u32; /* sync multi-word read */ low1 = OS_REG_READ(ah, AR_TSF_L32); u32 = OS_REG_READ(ah, AR_TSF_U32); low2 = OS_REG_READ(ah, AR_TSF_L32); if (low2 < low1) { /* roll over */ /* * If we are not preempted this will work. If we are * then we re-reading AR_TSF_U32 does no good as the * low bits will be meaningless. Likewise reading * L32, U32, U32, then comparing the last two reads * to check for rollover doesn't help if preempted--so * we take this approach as it costs one less PCI read * which can be noticeable when doing things like * timestamping packets in monitor mode. */ u32++; } return (((uint64_t) u32) << 32) | ((uint64_t) low2); } void ar5416SetTsf64(struct ath_hal *ah, uint64_t tsf64) { OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); } /* * Reset the current hardware tsf for stamlme. */ void ar5416ResetTsf(struct ath_hal *ah) { uint32_t v; int i; for (i = 0; i < 10; i++) { v = OS_REG_READ(ah, AR_SLP32_MODE); if ((v & AR_SLP32_TSF_WRITE_STATUS) == 0) break; OS_DELAY(10); } OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); } HAL_BOOL ar5416SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings) { return AH_TRUE; } /* Setup decompression for given key index */ HAL_BOOL ar5416SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en) { return AH_TRUE; } /* Setup coverage class */ void ar5416SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now) { AH_PRIVATE(ah)->ah_coverageClass = coverageclass; } /* * Return approximation of extension channel busy over an time interval * 0% (clear) -> 100% (busy) * */ uint32_t ar5416Get11nExtBusy(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); uint32_t busy; /* percentage */ uint32_t cycleCount, ctlBusy, extBusy; ctlBusy = OS_REG_READ(ah, AR_RCCNT); extBusy = OS_REG_READ(ah, AR_EXTRCCNT); cycleCount = OS_REG_READ(ah, AR_CCCNT); if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cycleCount) { /* * Cycle counter wrap (or initial call); it's not possible * to accurately calculate a value because the registers * right shift rather than wrap--so punt and return 0. */ busy = 0; HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycle counter wrap. ExtBusy = 0\n", __func__); } else { uint32_t cycleDelta = cycleCount - ahp->ah_cycleCount; uint32_t ctlBusyDelta = ctlBusy - ahp->ah_ctlBusy; uint32_t extBusyDelta = extBusy - ahp->ah_extBusy; uint32_t ctlClearDelta = 0; /* Compute control channel rxclear. * The cycle delta may be less than the control channel delta. * This could be solved by freezing the timers (or an atomic read, * if one was available). Checking for the condition should be * sufficient. */ if (cycleDelta > ctlBusyDelta) { ctlClearDelta = cycleDelta - ctlBusyDelta; } /* Compute ratio of extension channel busy to control channel clear * as an approximation to extension channel cleanliness. * * According to the hardware folks, ext rxclear is undefined * if the ctrl rxclear is de-asserted (i.e. busy) */ if (ctlClearDelta) { busy = (extBusyDelta * 100) / ctlClearDelta; } else { busy = 100; } if (busy > 100) { busy = 100; } #if 0 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycleDelta 0x%x, ctlBusyDelta 0x%x, " "extBusyDelta 0x%x, ctlClearDelta 0x%x, " "busy %d\n", __func__, cycleDelta, ctlBusyDelta, extBusyDelta, ctlClearDelta, busy); #endif } ahp->ah_cycleCount = cycleCount; ahp->ah_ctlBusy = ctlBusy; ahp->ah_extBusy = extBusy; return busy; } /* * Configure 20/40 operation * * 20/40 = joint rx clear (control and extension) * 20 = rx clear (control) * * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz when changing * from 20/40 => 20 only */ void ar5416Set11nMac2040(struct ath_hal *ah, HAL_HT_MACMODE mode) { uint32_t macmode; /* Configure MAC for 20/40 operation */ if (mode == HAL_HT_MACMODE_2040) { macmode = AR_2040_JOINED_RX_CLEAR; } else { macmode = 0; } OS_REG_WRITE(ah, AR_2040_MODE, macmode); } /* * Get Rx clear (control/extension channel) * * Returns active low (busy) for ctrl/ext channel * Owl 2.0 */ HAL_HT_RXCLEAR ar5416Get11nRxClear(struct ath_hal *ah) { HAL_HT_RXCLEAR rxclear = 0; uint32_t val; val = OS_REG_READ(ah, AR_DIAG_SW); /* control channel */ if (val & AR_DIAG_RXCLEAR_CTL_LOW) { rxclear |= HAL_RX_CLEAR_CTL_LOW; } /* extension channel */ if (val & AR_DIAG_RXCLEAR_CTL_LOW) { rxclear |= HAL_RX_CLEAR_EXT_LOW; } return rxclear; } /* * Set Rx clear (control/extension channel) * * Useful for forcing the channel to appear busy for * debugging/diagnostics * Owl 2.0 */ void ar5416Set11nRxClear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear) { /* control channel */ if (rxclear & HAL_RX_CLEAR_CTL_LOW) { OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW); } else { OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW); } /* extension channel */ if (rxclear & HAL_RX_CLEAR_EXT_LOW) { OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW); } else { OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW); } } /* XXX shouldn't be here! */ #define TU_TO_USEC(_tu) ((_tu) << 10) HAL_STATUS ar5416SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration, uint32_t nextStart, HAL_QUIET_FLAG flag) { uint32_t period_us = TU_TO_USEC(period); /* convert to us unit */ uint32_t nextStart_us = TU_TO_USEC(nextStart); /* convert to us unit */ if (flag & HAL_QUIET_ENABLE) { if ((!nextStart) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) { /* Add the nextStart offset to the current TSF */ nextStart_us += OS_REG_READ(ah, AR_TSF_L32); } if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) { nextStart_us += ah->ah_config.ah_sw_beacon_response_time; } OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1); OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR)); OS_REG_WRITE(ah, AR_QUIET_PERIOD, period_us); OS_REG_WRITE(ah, AR_NEXT_QUIET, nextStart_us); OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); } else { OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET); } return HAL_OK; } #undef TU_TO_USEC HAL_STATUS ar5416GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t *result) { switch (type) { case HAL_CAP_BB_HANG: switch (capability) { case HAL_BB_HANG_RIFS: return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP; case HAL_BB_HANG_DFS: return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP; case HAL_BB_HANG_RX_CLEAR: return AR_SREV_MERLIN(ah) ? HAL_OK : HAL_ENOTSUPP; } break; case HAL_CAP_MAC_HANG: return ((ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCI) || (ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCIE) || AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP; case HAL_CAP_DIVERSITY: /* disable classic fast diversity */ return HAL_ENXIO; default: break; } return ar5212GetCapability(ah, type, capability, result); } static int ar5416DetectMacHang(struct ath_hal *ah); static int ar5416DetectBBHang(struct ath_hal *ah); HAL_BOOL ar5416GetDiagState(struct ath_hal *ah, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize) { struct ath_hal_5416 *ahp = AH5416(ah); int hangs; if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) return AH_TRUE; switch (request) { case HAL_DIAG_EEPROM: return ath_hal_eepromDiag(ah, request, args, argsize, result, resultsize); case HAL_DIAG_CHECK_HANGS: if (argsize != sizeof(int)) return AH_FALSE; hangs = *(const int *) args; ahp->ah_hangs = 0; if (hangs & HAL_BB_HANGS) ahp->ah_hangs |= ar5416DetectBBHang(ah); /* NB: if BB is hung MAC will be hung too so skip check */ if (ahp->ah_hangs == 0 && (hangs & HAL_MAC_HANGS)) ahp->ah_hangs |= ar5416DetectMacHang(ah); *result = &ahp->ah_hangs; *resultsize = sizeof(ahp->ah_hangs); return AH_TRUE; } return ar5212GetDiagState(ah, request, args, argsize, result, resultsize); } typedef struct { uint32_t dma_dbg_3; uint32_t dma_dbg_4; uint32_t dma_dbg_5; uint32_t dma_dbg_6; } mac_dbg_regs_t; typedef enum { dcu_chain_state = 0x1, dcu_complete_state = 0x2, qcu_state = 0x4, qcu_fsp_ok = 0x8, qcu_fsp_state = 0x10, qcu_stitch_state = 0x20, qcu_fetch_state = 0x40, qcu_complete_state = 0x80 } hal_mac_hangs_t; typedef struct { int states; uint8_t dcu_chain_state; uint8_t dcu_complete_state; uint8_t qcu_state; uint8_t qcu_fsp_ok; uint8_t qcu_fsp_state; uint8_t qcu_stitch_state; uint8_t qcu_fetch_state; uint8_t qcu_complete_state; } hal_mac_hang_check_t; HAL_BOOL ar5416SetRifsDelay(struct ath_hal *ah, const struct ieee80211_channel *chan, HAL_BOOL enable) { uint32_t val; HAL_BOOL is_chan_2g = AH_FALSE; HAL_BOOL is_ht40 = AH_FALSE; if (chan) is_chan_2g = IEEE80211_IS_CHAN_2GHZ(chan); if (chan) is_ht40 = IEEE80211_IS_CHAN_HT40(chan); /* Only support disabling RIFS delay for now */ HALASSERT(enable == AH_FALSE); if (enable == AH_TRUE) return AH_FALSE; /* Change RIFS init delay to 0 */ val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS); val &= ~AR_PHY_RIFS_INIT_DELAY; OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val); /* * For Owl, RIFS RX parameters are controlled differently; * it isn't enabled in the inivals by default. * * For Sowl/Howl, RIFS RX is enabled in the inivals by default; * the following code sets them back to non-RIFS values. * * For > Sowl/Howl, RIFS RX can be left on by default and so * this function shouldn't be called. */ if ((! AR_SREV_SOWL(ah)) && (! AR_SREV_HOWL(ah))) return AH_TRUE; /* Reset search delay to default values */ if (is_chan_2g) if (is_ht40) OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x268); else OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x134); else if (is_ht40) OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x370); else OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x1b8); return AH_TRUE; } static HAL_BOOL ar5416CompareDbgHang(struct ath_hal *ah, const mac_dbg_regs_t *regs, const hal_mac_hang_check_t *check) { int found_states; found_states = 0; if (check->states & dcu_chain_state) { int i; for (i = 0; i < 6; i++) { if (((regs->dma_dbg_4 >> (5*i)) & 0x1f) == check->dcu_chain_state) found_states |= dcu_chain_state; } for (i = 0; i < 4; i++) { if (((regs->dma_dbg_5 >> (5*i)) & 0x1f) == check->dcu_chain_state) found_states |= dcu_chain_state; } } if (check->states & dcu_complete_state) { if ((regs->dma_dbg_6 & 0x3) == check->dcu_complete_state) found_states |= dcu_complete_state; } if (check->states & qcu_stitch_state) { if (((regs->dma_dbg_3 >> 18) & 0xf) == check->qcu_stitch_state) found_states |= qcu_stitch_state; } if (check->states & qcu_fetch_state) { if (((regs->dma_dbg_3 >> 22) & 0xf) == check->qcu_fetch_state) found_states |= qcu_fetch_state; } if (check->states & qcu_complete_state) { if (((regs->dma_dbg_3 >> 26) & 0x7) == check->qcu_complete_state) found_states |= qcu_complete_state; } return (found_states == check->states); } #define NUM_STATUS_READS 50 static int ar5416DetectMacHang(struct ath_hal *ah) { static const hal_mac_hang_check_t hang_sig1 = { .dcu_chain_state = 0x6, .dcu_complete_state = 0x1, .states = dcu_chain_state | dcu_complete_state, }; static const hal_mac_hang_check_t hang_sig2 = { .qcu_stitch_state = 0x9, .qcu_fetch_state = 0x8, .qcu_complete_state = 0x4, .states = qcu_stitch_state | qcu_fetch_state | qcu_complete_state, }; mac_dbg_regs_t mac_dbg; int i; mac_dbg.dma_dbg_3 = OS_REG_READ(ah, AR_DMADBG_3); mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4); mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5); mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6); for (i = 1; i <= NUM_STATUS_READS; i++) { if (mac_dbg.dma_dbg_3 != OS_REG_READ(ah, AR_DMADBG_3) || mac_dbg.dma_dbg_4 != OS_REG_READ(ah, AR_DMADBG_4) || mac_dbg.dma_dbg_5 != OS_REG_READ(ah, AR_DMADBG_5) || mac_dbg.dma_dbg_6 != OS_REG_READ(ah, AR_DMADBG_6)) return 0; } if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig1)) return HAL_MAC_HANG_SIG1; if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig2)) return HAL_MAC_HANG_SIG2; HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown MAC hang signature " "DMADBG_3=0x%x DMADBG_4=0x%x DMADBG_5=0x%x DMADBG_6=0x%x\n", __func__, mac_dbg.dma_dbg_3, mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5, mac_dbg.dma_dbg_6); return 0; } /* * Determine if the baseband using the Observation Bus Register */ static int ar5416DetectBBHang(struct ath_hal *ah) { #define N(a) (sizeof(a)/sizeof(a[0])) /* * Check the PCU Observation Bus 1 register (0x806c) * NUM_STATUS_READS times * * 4 known BB hang signatures - * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E * [2] bits 8,9 are 1, bit 11 is 0. State machine state * (bits 25-31) is 0x52 * [3] bits 8,9 are 1, bit 11 is 0. State machine state * (bits 25-31) is 0x18 * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2, * Rx State (bits 20-24) is 0x7. */ static const struct { uint32_t val; uint32_t mask; int code; } hang_list[] = { /* Reg Value Reg Mask Hang Code XXX */ { 0x1E000000, 0x7E000B00, HAL_BB_HANG_DFS }, { 0x52000B00, 0x7E000B00, HAL_BB_HANG_RIFS }, { 0x18000B00, 0x7E000B00, HAL_BB_HANG_RX_CLEAR }, { 0x00702400, 0x7E7FFFEF, HAL_BB_HANG_RX_CLEAR } }; uint32_t hang_sig; int i; hang_sig = OS_REG_READ(ah, AR_OBSERV_1); for (i = 1; i <= NUM_STATUS_READS; i++) { if (hang_sig != OS_REG_READ(ah, AR_OBSERV_1)) return 0; } for (i = 0; i < N(hang_list); i++) if ((hang_sig & hang_list[i].mask) == hang_list[i].val) { HALDEBUG(ah, HAL_DEBUG_HANG, "%s BB hang, signature 0x%x, code 0x%x\n", __func__, hang_sig, hang_list[i].code); return hang_list[i].code; } HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown BB hang signature! " "<0x806c>=0x%x\n", __func__, hang_sig); return 0; #undef N } #undef NUM_STATUS_READS /* * Get the radar parameter values and return them in the pe * structure */ void ar5416GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe) { uint32_t val, temp; val = OS_REG_READ(ah, AR_PHY_RADAR_0); temp = MS(val,AR_PHY_RADAR_0_FIRPWR); temp |= 0xFFFFFF80; pe->pe_firpwr = temp; pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI); pe->pe_height = MS(val, AR_PHY_RADAR_0_HEIGHT); pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI); pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND); val = OS_REG_READ(ah, AR_PHY_RADAR_1); temp = val & AR_PHY_RADAR_1_RELPWR_ENA; pe->pe_relpwr = MS(val, AR_PHY_RADAR_1_RELPWR_THRESH); if (temp) pe->pe_relpwr |= HAL_PHYERR_PARAM_ENABLE; temp = val & AR_PHY_RADAR_1_RELSTEP_CHECK; pe->pe_relstep = MS(val, AR_PHY_RADAR_1_RELSTEP_THRESH); if (temp) pe->pe_enabled = 1; else pe->pe_enabled = 0; pe->pe_maxlen = MS(val, AR_PHY_RADAR_1_MAXLEN); pe->pe_extchannel = !! (OS_REG_READ(ah, AR_PHY_RADAR_EXT) & AR_PHY_RADAR_EXT_ENA); pe->pe_usefir128 = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) & AR_PHY_RADAR_1_USE_FIR128); pe->pe_blockradar = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) & AR_PHY_RADAR_1_BLOCK_CHECK); pe->pe_enmaxrssi = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) & AR_PHY_RADAR_1_MAX_RRSSI); } /* * Enable radar detection and set the radar parameters per the * values in pe */ void ar5416EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe) { uint32_t val; val = OS_REG_READ(ah, AR_PHY_RADAR_0); if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_FIRPWR; val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR); } if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_RRSSI; val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI); } if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_HEIGHT; val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT); } if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_PRSSI; val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI); } if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) { val &= ~AR_PHY_RADAR_0_INBAND; val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND); } /*Enable FFT data*/ val |= AR_PHY_RADAR_0_FFT_ENA; OS_REG_WRITE(ah, AR_PHY_RADAR_0, val | AR_PHY_RADAR_0_ENA); if (pe->pe_usefir128 == 1) OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128); else if (pe->pe_usefir128 == 0) OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128); if (pe->pe_enmaxrssi == 1) OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI); else if (pe->pe_enmaxrssi == 0) OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI); if (pe->pe_blockradar == 1) OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK); else if (pe->pe_blockradar == 0) OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK); if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL) { val = OS_REG_READ(ah, AR_PHY_RADAR_1); val &= ~AR_PHY_RADAR_1_MAXLEN; val |= SM(pe->pe_maxlen, AR_PHY_RADAR_1_MAXLEN); OS_REG_WRITE(ah, AR_PHY_RADAR_1, val); } /* * Enable HT/40 if the upper layer asks; * it should check the channel is HT/40 and HAL_CAP_EXT_CHAN_DFS * is available. */ if (pe->pe_extchannel == 1) OS_REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); else if (pe->pe_extchannel == 0) OS_REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL) { val = OS_REG_READ(ah, AR_PHY_RADAR_1); val &= ~AR_PHY_RADAR_1_RELSTEP_THRESH; val |= SM(pe->pe_relstep, AR_PHY_RADAR_1_RELSTEP_THRESH); OS_REG_WRITE(ah, AR_PHY_RADAR_1, val); } if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL) { val = OS_REG_READ(ah, AR_PHY_RADAR_1); val &= ~AR_PHY_RADAR_1_RELPWR_THRESH; val |= SM(pe->pe_relpwr, AR_PHY_RADAR_1_RELPWR_THRESH); OS_REG_WRITE(ah, AR_PHY_RADAR_1, val); } } /* * Extract the radar event information from the given phy error. * * Returns AH_TRUE if the phy error was actually a phy error, * AH_FALSE if the phy error wasn't a phy error. */ HAL_BOOL ar5416ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs, uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event) { /* * For now, this isn't implemented. */ return AH_FALSE; } /* * Return whether fast-clock is currently enabled for this * channel. */ HAL_BOOL ar5416IsFastClockEnabled(struct ath_hal *ah) { struct ath_hal_private *ahp = AH_PRIVATE(ah); return IS_5GHZ_FAST_CLOCK_EN(ah, ahp->ah_curchan); }