/*- * Copyright (c) 2004 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that * combines a tri-speed ethernet MAC and PHY, with the following * features: * * o Jumbo frame support up to 16K * o Transmit and receive flow control * o IPv4 checksum offload * o VLAN tag insertion and stripping * o TCP large send * o 64-bit multicast hash table filter * o 64 entry CAM filter * o 16K RX FIFO and 48K TX FIFO memory * o Interrupt moderation * * The VT6122 supports up to four transmit DMA queues. The descriptors * in the transmit ring can address up to 7 data fragments; frames which * span more than 7 data buffers must be coalesced, but in general the * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments * long. The receive descriptors address only a single buffer. * * There are two peculiar design issues with the VT6122. One is that * receive data buffers must be aligned on a 32-bit boundary. This is * not a problem where the VT6122 is used as a LOM device in x86-based * systems, but on architectures that generate unaligned access traps, we * have to do some copying. * * The other issue has to do with the way 64-bit addresses are handled. * The DMA descriptors only allow you to specify 48 bits of addressing * information. The remaining 16 bits are specified using one of the * I/O registers. If you only have a 32-bit system, then this isn't * an issue, but if you have a 64-bit system and more than 4GB of * memory, you must have to make sure your network data buffers reside * in the same 48-bit 'segment.' * * Special thanks to Ryan Fu at VIA Networking for providing documentation * and sample NICs for testing. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(vge, pci, 1, 1, 1); MODULE_DEPEND(vge, ether, 1, 1, 1); MODULE_DEPEND(vge, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #include #include #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* Tunables */ static int msi_disable = 0; TUNABLE_INT("hw.vge.msi_disable", &msi_disable); /* * The SQE error counter of MIB seems to report bogus value. * Vendor's workaround does not seem to work on PCIe based * controllers. Disable it until we find better workaround. */ #undef VGE_ENABLE_SQEERR /* * Various supported device vendors/types and their names. */ static struct vge_type vge_devs[] = { { VIA_VENDORID, VIA_DEVICEID_61XX, "VIA Networking Velocity Gigabit Ethernet" }, { 0, 0, NULL } }; static int vge_attach(device_t); static int vge_detach(device_t); static int vge_probe(device_t); static int vge_resume(device_t); static int vge_shutdown(device_t); static int vge_suspend(device_t); static void vge_cam_clear(struct vge_softc *); static int vge_cam_set(struct vge_softc *, uint8_t *); static void vge_clrwol(struct vge_softc *); static void vge_discard_rxbuf(struct vge_softc *, int); static int vge_dma_alloc(struct vge_softc *); static void vge_dma_free(struct vge_softc *); static void vge_dmamap_cb(void *, bus_dma_segment_t *, int, int); #ifdef VGE_EEPROM static void vge_eeprom_getword(struct vge_softc *, int, uint16_t *); #endif static int vge_encap(struct vge_softc *, struct mbuf **); #ifndef __NO_STRICT_ALIGNMENT static __inline void vge_fixup_rx(struct mbuf *); #endif static void vge_freebufs(struct vge_softc *); static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int vge_ifmedia_upd(struct ifnet *); static int vge_ifmedia_upd_locked(struct vge_softc *); static void vge_init(void *); static void vge_init_locked(struct vge_softc *); static void vge_intr(void *); static void vge_intr_holdoff(struct vge_softc *); static int vge_ioctl(struct ifnet *, u_long, caddr_t); static void vge_link_statchg(void *); static int vge_miibus_readreg(device_t, int, int); static int vge_miibus_writereg(device_t, int, int, int); static void vge_miipoll_start(struct vge_softc *); static void vge_miipoll_stop(struct vge_softc *); static int vge_newbuf(struct vge_softc *, int); static void vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int); static void vge_reset(struct vge_softc *); static int vge_rx_list_init(struct vge_softc *); static int vge_rxeof(struct vge_softc *, int); static void vge_rxfilter(struct vge_softc *); static void vge_setmedia(struct vge_softc *); static void vge_setvlan(struct vge_softc *); static void vge_setwol(struct vge_softc *); static void vge_start(struct ifnet *); static void vge_start_locked(struct ifnet *); static void vge_stats_clear(struct vge_softc *); static void vge_stats_update(struct vge_softc *); static void vge_stop(struct vge_softc *); static void vge_sysctl_node(struct vge_softc *); static int vge_tx_list_init(struct vge_softc *); static void vge_txeof(struct vge_softc *); static void vge_watchdog(void *); static device_method_t vge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, vge_probe), DEVMETHOD(device_attach, vge_attach), DEVMETHOD(device_detach, vge_detach), DEVMETHOD(device_suspend, vge_suspend), DEVMETHOD(device_resume, vge_resume), DEVMETHOD(device_shutdown, vge_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, vge_miibus_readreg), DEVMETHOD(miibus_writereg, vge_miibus_writereg), DEVMETHOD_END }; static driver_t vge_driver = { "vge", vge_methods, sizeof(struct vge_softc) }; static devclass_t vge_devclass; DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0); DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0); #ifdef VGE_EEPROM /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest) { int i; uint16_t word = 0; /* * Enter EEPROM embedded programming mode. In order to * access the EEPROM at all, we first have to set the * EELOAD bit in the CHIPCFG2 register. */ CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); /* Select the address of the word we want to read */ CSR_WRITE_1(sc, VGE_EEADDR, addr); /* Issue read command */ CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); /* Wait for the done bit to be set. */ for (i = 0; i < VGE_TIMEOUT; i++) { if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "EEPROM read timed out\n"); *dest = 0; return; } /* Read the result */ word = CSR_READ_2(sc, VGE_EERDDAT); /* Turn off EEPROM access mode. */ CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); *dest = word; } #endif /* * Read a sequence of words from the EEPROM. */ static void vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap) { int i; #ifdef VGE_EEPROM uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { vge_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } #else for (i = 0; i < ETHER_ADDR_LEN; i++) dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); #endif } static void vge_miipoll_stop(struct vge_softc *sc) { int i; CSR_WRITE_1(sc, VGE_MIICMD, 0); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); } static void vge_miipoll_start(struct vge_softc *sc) { int i; /* First, make sure we're idle. */ CSR_WRITE_1(sc, VGE_MIICMD, 0); CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "failed to idle MII autopoll\n"); return; } /* Now enable auto poll mode. */ CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); /* And make sure it started. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) break; } if (i == VGE_TIMEOUT) device_printf(sc->vge_dev, "failed to start MII autopoll\n"); } static int vge_miibus_readreg(device_t dev, int phy, int reg) { struct vge_softc *sc; int i; uint16_t rval = 0; sc = device_get_softc(dev); vge_miipoll_stop(sc); /* Specify the register we want to read. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Issue read command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); /* Wait for the read command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) break; } if (i == VGE_TIMEOUT) device_printf(sc->vge_dev, "MII read timed out\n"); else rval = CSR_READ_2(sc, VGE_MIIDATA); vge_miipoll_start(sc); return (rval); } static int vge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct vge_softc *sc; int i, rval = 0; sc = device_get_softc(dev); vge_miipoll_stop(sc); /* Specify the register we want to write. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Specify the data we want to write. */ CSR_WRITE_2(sc, VGE_MIIDATA, data); /* Issue write command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); /* Wait for the write command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "MII write timed out\n"); rval = EIO; } vge_miipoll_start(sc); return (rval); } static void vge_cam_clear(struct vge_softc *sc) { int i; /* * Turn off all the mask bits. This tells the chip * that none of the entries in the CAM filter are valid. * desired entries will be enabled as we fill the filter in. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); /* Clear the VLAN filter too. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); sc->vge_camidx = 0; } static int vge_cam_set(struct vge_softc *sc, uint8_t *addr) { int i, error = 0; if (sc->vge_camidx == VGE_CAM_MAXADDRS) return (ENOSPC); /* Select the CAM data page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); /* Set the filter entry we want to update and enable writing. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); /* Write the address to the CAM registers */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); /* Issue a write command. */ CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); /* Wake for it to clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "setting CAM filter failed\n"); error = EIO; goto fail; } /* Select the CAM mask page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); /* Set the mask bit that enables this filter. */ CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 1<<(sc->vge_camidx & 7)); sc->vge_camidx++; fail: /* Turn off access to CAM. */ CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); return (error); } static void vge_setvlan(struct vge_softc *sc) { struct ifnet *ifp; uint8_t cfg; VGE_LOCK_ASSERT(sc); ifp = sc->vge_ifp; cfg = CSR_READ_1(sc, VGE_RXCFG); if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) cfg |= VGE_VTAG_OPT2; else cfg &= ~VGE_VTAG_OPT2; CSR_WRITE_1(sc, VGE_RXCFG, cfg); } /* * Program the multicast filter. We use the 64-entry CAM filter * for perfect filtering. If there's more than 64 multicast addresses, * we use the hash filter instead. */ static void vge_rxfilter(struct vge_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t h, hashes[2]; uint8_t rxcfg; int error = 0; VGE_LOCK_ASSERT(sc); /* First, zot all the multicast entries. */ hashes[0] = 0; hashes[1] = 0; rxcfg = CSR_READ_1(sc, VGE_RXCTL); rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_PROMISC); /* * Always allow VLAN oversized frames and frames for * this host. */ rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST; ifp = sc->vge_ifp; if ((ifp->if_flags & IFF_BROADCAST) != 0) rxcfg |= VGE_RXCTL_RX_BCAST; if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if ((ifp->if_flags & IFF_PROMISC) != 0) rxcfg |= VGE_RXCTL_RX_PROMISC; if ((ifp->if_flags & IFF_ALLMULTI) != 0) { hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } goto done; } vge_cam_clear(sc); /* Now program new ones */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; error = vge_cam_set(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (error) break; } /* If there were too many addresses, use the hash filter. */ if (error) { vge_cam_clear(sc); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } } if_maddr_runlock(ifp); done: if (hashes[0] != 0 || hashes[1] != 0) rxcfg |= VGE_RXCTL_RX_MCAST; CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); CSR_WRITE_1(sc, VGE_RXCTL, rxcfg); } static void vge_reset(struct vge_softc *sc) { int i; CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) break; } if (i == VGE_TIMEOUT) { device_printf(sc->vge_dev, "soft reset timed out\n"); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); DELAY(2000); } DELAY(5000); } /* * Probe for a VIA gigabit chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int vge_probe(device_t dev) { struct vge_type *t; t = vge_devs; while (t->vge_name != NULL) { if ((pci_get_vendor(dev) == t->vge_vid) && (pci_get_device(dev) == t->vge_did)) { device_set_desc(dev, t->vge_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } /* * Map a single buffer address. */ struct vge_dmamap_arg { bus_addr_t vge_busaddr; }; static void vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct vge_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct vge_dmamap_arg *)arg; ctx->vge_busaddr = segs[0].ds_addr; } static int vge_dma_alloc(struct vge_softc *sc) { struct vge_dmamap_arg ctx; struct vge_txdesc *txd; struct vge_rxdesc *rxd; bus_addr_t lowaddr, tx_ring_end, rx_ring_end; int error, i; /* * It seems old PCI controllers do not support DAC. DAC * configuration can be enabled by accessing VGE_CHIPCFG3 * register but honor EEPROM configuration instead of * blindly overriding DAC configuration. PCIe based * controllers are supposed to support 64bit DMA so enable * 64bit DMA on these controllers. */ if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) lowaddr = BUS_SPACE_MAXADDR; else lowaddr = BUS_SPACE_MAXADDR_32BIT; again: /* Create parent ring tag. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */ 1, 0, /* algnmnt, boundary */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vge_cdata.vge_ring_tag); if (error != 0) { device_printf(sc->vge_dev, "could not create parent DMA tag.\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */ VGE_TX_RING_ALIGN, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ VGE_TX_LIST_SZ, /* maxsize */ 1, /* nsegments */ VGE_TX_LIST_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vge_cdata.vge_tx_ring_tag); if (error != 0) { device_printf(sc->vge_dev, "could not allocate Tx ring DMA tag.\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */ VGE_RX_RING_ALIGN, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ VGE_RX_LIST_SZ, /* maxsize */ 1, /* nsegments */ VGE_RX_LIST_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vge_cdata.vge_rx_ring_tag); if (error != 0) { device_printf(sc->vge_dev, "could not allocate Rx ring DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag, (void **)&sc->vge_rdata.vge_tx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->vge_cdata.vge_tx_ring_map); if (error != 0) { device_printf(sc->vge_dev, "could not allocate DMA'able memory for Tx ring.\n"); goto fail; } ctx.vge_busaddr = 0; error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag, sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring, VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0 || ctx.vge_busaddr == 0) { device_printf(sc->vge_dev, "could not load DMA'able memory for Tx ring.\n"); goto fail; } sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx ring. */ error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag, (void **)&sc->vge_rdata.vge_rx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->vge_cdata.vge_rx_ring_map); if (error != 0) { device_printf(sc->vge_dev, "could not allocate DMA'able memory for Rx ring.\n"); goto fail; } ctx.vge_busaddr = 0; error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag, sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring, VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0 || ctx.vge_busaddr == 0) { device_printf(sc->vge_dev, "could not load DMA'able memory for Rx ring.\n"); goto fail; } sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr; /* Tx/Rx descriptor queue should reside within 4GB boundary. */ tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ; rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ; if ((VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) || (VGE_ADDR_HI(rx_ring_end) != VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) || VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) { device_printf(sc->vge_dev, "4GB boundary crossed, " "switching to 32bit DMA address mode.\n"); vge_dma_free(sc); /* Limit DMA address space to 32bit and try again. */ lowaddr = BUS_SPACE_MAXADDR_32BIT; goto again; } if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) lowaddr = VGE_BUF_DMA_MAXADDR; else lowaddr = BUS_SPACE_MAXADDR_32BIT; /* Create parent buffer tag. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */ 1, 0, /* algnmnt, boundary */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vge_cdata.vge_buffer_tag); if (error != 0) { device_printf(sc->vge_dev, "could not create parent buffer DMA tag.\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * VGE_MAXTXSEGS, /* maxsize */ VGE_MAXTXSEGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vge_cdata.vge_tx_tag); if (error != 0) { device_printf(sc->vge_dev, "could not create Tx DMA tag.\n"); goto fail; } /* Create tag for Rx buffers. */ error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */ VGE_RX_BUF_ALIGN, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vge_cdata.vge_rx_tag); if (error != 0) { device_printf(sc->vge_dev, "could not create Rx DMA tag.\n"); goto fail; } /* Create DMA maps for Tx buffers. */ for (i = 0; i < VGE_TX_DESC_CNT; i++) { txd = &sc->vge_cdata.vge_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->vge_dev, "could not create Tx dmamap.\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0, &sc->vge_cdata.vge_rx_sparemap)) != 0) { device_printf(sc->vge_dev, "could not create spare Rx dmamap.\n"); goto fail; } for (i = 0; i < VGE_RX_DESC_CNT; i++) { rxd = &sc->vge_cdata.vge_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->vge_dev, "could not create Rx dmamap.\n"); goto fail; } } fail: return (error); } static void vge_dma_free(struct vge_softc *sc) { struct vge_txdesc *txd; struct vge_rxdesc *rxd; int i; /* Tx ring. */ if (sc->vge_cdata.vge_tx_ring_tag != NULL) { if (sc->vge_cdata.vge_tx_ring_map) bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag, sc->vge_cdata.vge_tx_ring_map); if (sc->vge_cdata.vge_tx_ring_map && sc->vge_rdata.vge_tx_ring) bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag, sc->vge_rdata.vge_tx_ring, sc->vge_cdata.vge_tx_ring_map); sc->vge_rdata.vge_tx_ring = NULL; sc->vge_cdata.vge_tx_ring_map = NULL; bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag); sc->vge_cdata.vge_tx_ring_tag = NULL; } /* Rx ring. */ if (sc->vge_cdata.vge_rx_ring_tag != NULL) { if (sc->vge_cdata.vge_rx_ring_map) bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag, sc->vge_cdata.vge_rx_ring_map); if (sc->vge_cdata.vge_rx_ring_map && sc->vge_rdata.vge_rx_ring) bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag, sc->vge_rdata.vge_rx_ring, sc->vge_cdata.vge_rx_ring_map); sc->vge_rdata.vge_rx_ring = NULL; sc->vge_cdata.vge_rx_ring_map = NULL; bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag); sc->vge_cdata.vge_rx_ring_tag = NULL; } /* Tx buffers. */ if (sc->vge_cdata.vge_tx_tag != NULL) { for (i = 0; i < VGE_TX_DESC_CNT; i++) { txd = &sc->vge_cdata.vge_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag); sc->vge_cdata.vge_tx_tag = NULL; } /* Rx buffers. */ if (sc->vge_cdata.vge_rx_tag != NULL) { for (i = 0; i < VGE_RX_DESC_CNT; i++) { rxd = &sc->vge_cdata.vge_rxdesc[i]; if (rxd->rx_dmamap != NULL) { bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->vge_cdata.vge_rx_sparemap != NULL) { bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag, sc->vge_cdata.vge_rx_sparemap); sc->vge_cdata.vge_rx_sparemap = NULL; } bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag); sc->vge_cdata.vge_rx_tag = NULL; } if (sc->vge_cdata.vge_buffer_tag != NULL) { bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag); sc->vge_cdata.vge_buffer_tag = NULL; } if (sc->vge_cdata.vge_ring_tag != NULL) { bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag); sc->vge_cdata.vge_ring_tag = NULL; } } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int vge_attach(device_t dev) { u_char eaddr[ETHER_ADDR_LEN]; struct vge_softc *sc; struct ifnet *ifp; int error = 0, cap, i, msic, rid; sc = device_get_softc(dev); sc->vge_dev = dev; mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0); /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = PCIR_BAR(1); sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->vge_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) { sc->vge_flags |= VGE_FLAG_PCIE; sc->vge_expcap = cap; } else sc->vge_flags |= VGE_FLAG_JUMBO; if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) { sc->vge_flags |= VGE_FLAG_PMCAP; sc->vge_pmcap = cap; } rid = 0; msic = pci_msi_count(dev); if (msi_disable == 0 && msic > 0) { msic = 1; if (pci_alloc_msi(dev, &msic) == 0) { if (msic == 1) { sc->vge_flags |= VGE_FLAG_MSI; device_printf(dev, "Using %d MSI message\n", msic); rid = 1; } else pci_release_msi(dev); } } /* Allocate interrupt */ sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE); if (sc->vge_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Reset the adapter. */ vge_reset(sc); /* Reload EEPROM. */ CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) break; } if (i == VGE_TIMEOUT) device_printf(dev, "EEPROM reload timed out\n"); /* * Clear PACPI as EEPROM reload will set the bit. Otherwise * MAC will receive magic packet which in turn confuses * controller. */ CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); /* * Get station address from the EEPROM. */ vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0); /* * Save configured PHY address. * It seems the PHY address of PCIe controllers just * reflects media jump strapping status so we assume the * internal PHY address of PCIe controller is at 1. */ if ((sc->vge_flags & VGE_FLAG_PCIE) != 0) sc->vge_phyaddr = 1; else sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) & VGE_MIICFG_PHYADDR; /* Clear WOL and take hardware from powerdown. */ vge_clrwol(sc); vge_sysctl_node(sc); error = vge_dma_alloc(sc); if (error) goto fail; ifp = sc->vge_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } vge_miipoll_start(sc); /* Do MII setup */ error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd, vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY, MIIF_DOPAUSE); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vge_ioctl; ifp->if_capabilities = IFCAP_VLAN_MTU; ifp->if_start = vge_start; ifp->if_hwassist = VGE_CSUM_FEATURES; ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTAGGING; if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) ifp->if_capabilities |= IFCAP_WOL; ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif ifp->if_init = vge_init; IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1); ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1; IFQ_SET_READY(&ifp->if_snd); /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE, NULL, vge_intr, sc, &sc->vge_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) vge_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int vge_detach(device_t dev) { struct vge_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized")); ifp = sc->vge_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { ether_ifdetach(ifp); VGE_LOCK(sc); vge_stop(sc); VGE_UNLOCK(sc); callout_drain(&sc->vge_watchdog); } if (sc->vge_miibus) device_delete_child(dev, sc->vge_miibus); bus_generic_detach(dev); if (sc->vge_intrhand) bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand); if (sc->vge_irq) bus_release_resource(dev, SYS_RES_IRQ, sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq); if (sc->vge_flags & VGE_FLAG_MSI) pci_release_msi(dev); if (sc->vge_res) bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(1), sc->vge_res); if (ifp) if_free(ifp); vge_dma_free(sc); mtx_destroy(&sc->vge_mtx); return (0); } static void vge_discard_rxbuf(struct vge_softc *sc, int prod) { struct vge_rxdesc *rxd; int i; rxd = &sc->vge_cdata.vge_rxdesc[prod]; rxd->rx_desc->vge_sts = 0; rxd->rx_desc->vge_ctl = 0; /* * Note: the manual fails to document the fact that for * proper opration, the driver needs to replentish the RX * DMA ring 4 descriptors at a time (rather than one at a * time, like most chips). We can allocate the new buffers * but we should not set the OWN bits until we're ready * to hand back 4 of them in one shot. */ if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) { for (i = VGE_RXCHUNK; i > 0; i--) { rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN); rxd = rxd->rxd_prev; } sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK; } } static int vge_newbuf(struct vge_softc *sc, int prod) { struct vge_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int i, nsegs; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); /* * This is part of an evil trick to deal with strict-alignment * architectures. The VIA chip requires RX buffers to be aligned * on 32-bit boundaries, but that will hose strict-alignment * architectures. To get around this, we leave some empty space * at the start of each buffer and for non-strict-alignment hosts, * we copy the buffer back two bytes to achieve word alignment. * This is slightly more efficient than allocating a new buffer, * copying the contents, and discarding the old buffer. */ m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, VGE_RX_BUF_ALIGN); if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag, sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc->vge_cdata.vge_rxdesc[prod]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap; sc->vge_cdata.vge_rx_sparemap = map; bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; rxd->rx_desc->vge_sts = 0; rxd->rx_desc->vge_ctl = 0; rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) | (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I); /* * Note: the manual fails to document the fact that for * proper operation, the driver needs to replenish the RX * DMA ring 4 descriptors at a time (rather than one at a * time, like most chips). We can allocate the new buffers * but we should not set the OWN bits until we're ready * to hand back 4 of them in one shot. */ if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) { for (i = VGE_RXCHUNK; i > 0; i--) { rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN); rxd = rxd->rxd_prev; } sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK; } return (0); } static int vge_tx_list_init(struct vge_softc *sc) { struct vge_ring_data *rd; struct vge_txdesc *txd; int i; VGE_LOCK_ASSERT(sc); sc->vge_cdata.vge_tx_prodidx = 0; sc->vge_cdata.vge_tx_considx = 0; sc->vge_cdata.vge_tx_cnt = 0; rd = &sc->vge_rdata; bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ); for (i = 0; i < VGE_TX_DESC_CNT; i++) { txd = &sc->vge_cdata.vge_txdesc[i]; txd->tx_m = NULL; txd->tx_desc = &rd->vge_tx_ring[i]; } bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, sc->vge_cdata.vge_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static int vge_rx_list_init(struct vge_softc *sc) { struct vge_ring_data *rd; struct vge_rxdesc *rxd; int i; VGE_LOCK_ASSERT(sc); sc->vge_cdata.vge_rx_prodidx = 0; sc->vge_cdata.vge_head = NULL; sc->vge_cdata.vge_tail = NULL; sc->vge_cdata.vge_rx_commit = 0; rd = &sc->vge_rdata; bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ); for (i = 0; i < VGE_RX_DESC_CNT; i++) { rxd = &sc->vge_cdata.vge_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_desc = &rd->vge_rx_ring[i]; if (i == 0) rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1]; else rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1]; if (vge_newbuf(sc, i) != 0) return (ENOBUFS); } bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, sc->vge_cdata.vge_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->vge_cdata.vge_rx_commit = 0; return (0); } static void vge_freebufs(struct vge_softc *sc) { struct vge_txdesc *txd; struct vge_rxdesc *rxd; struct ifnet *ifp; int i; VGE_LOCK_ASSERT(sc); ifp = sc->vge_ifp; /* * Free RX and TX mbufs still in the queues. */ for (i = 0; i < VGE_RX_DESC_CNT; i++) { rxd = &sc->vge_cdata.vge_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < VGE_TX_DESC_CNT; i++) { txd = &sc->vge_cdata.vge_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; ifp->if_oerrors++; } } } #ifndef __NO_STRICT_ALIGNMENT static __inline void vge_fixup_rx(struct mbuf *m) { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= ETHER_ALIGN; } #endif /* * RX handler. We support the reception of jumbo frames that have * been fragmented across multiple 2K mbuf cluster buffers. */ static int vge_rxeof(struct vge_softc *sc, int count) { struct mbuf *m; struct ifnet *ifp; int prod, prog, total_len; struct vge_rxdesc *rxd; struct vge_rx_desc *cur_rx; uint32_t rxstat, rxctl; VGE_LOCK_ASSERT(sc); ifp = sc->vge_ifp; bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, sc->vge_cdata.vge_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); prod = sc->vge_cdata.vge_rx_prodidx; for (prog = 0; count > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; VGE_RX_DESC_INC(prod)) { cur_rx = &sc->vge_rdata.vge_rx_ring[prod]; rxstat = le32toh(cur_rx->vge_sts); if ((rxstat & VGE_RDSTS_OWN) != 0) break; count--; prog++; rxctl = le32toh(cur_rx->vge_ctl); total_len = VGE_RXBYTES(rxstat); rxd = &sc->vge_cdata.vge_rxdesc[prod]; m = rxd->rx_m; /* * If the 'start of frame' bit is set, this indicates * either the first fragment in a multi-fragment receive, * or an intermediate fragment. Either way, we want to * accumulate the buffers. */ if ((rxstat & VGE_RXPKT_SOF) != 0) { if (vge_newbuf(sc, prod) != 0) { ifp->if_iqdrops++; VGE_CHAIN_RESET(sc); vge_discard_rxbuf(sc, prod); continue; } m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN; if (sc->vge_cdata.vge_head == NULL) { sc->vge_cdata.vge_head = m; sc->vge_cdata.vge_tail = m; } else { m->m_flags &= ~M_PKTHDR; sc->vge_cdata.vge_tail->m_next = m; sc->vge_cdata.vge_tail = m; } continue; } /* * Bad/error frames will have the RXOK bit cleared. * However, there's one error case we want to allow: * if a VLAN tagged frame arrives and the chip can't * match it against the CAM filter, it considers this * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. * We don't want to drop the frame though: our VLAN * filtering is done in software. * We also want to receive bad-checksummed frames and * and frames with bad-length. */ if ((rxstat & VGE_RDSTS_RXOK) == 0 && (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR | VGE_RDSTS_CSUMERR)) == 0) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ VGE_CHAIN_RESET(sc); vge_discard_rxbuf(sc, prod); continue; } if (vge_newbuf(sc, prod) != 0) { ifp->if_iqdrops++; VGE_CHAIN_RESET(sc); vge_discard_rxbuf(sc, prod); continue; } /* Chain received mbufs. */ if (sc->vge_cdata.vge_head != NULL) { m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN); /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->vge_cdata.vge_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->vge_cdata.vge_tail->m_next = m; } m = sc->vge_cdata.vge_head; m->m_flags |= M_PKTHDR; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else { m->m_flags |= M_PKTHDR; m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); } #ifndef __NO_STRICT_ALIGNMENT vge_fixup_rx(m); #endif m->m_pkthdr.rcvif = ifp; /* Do RX checksumming if enabled */ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && (rxctl & VGE_RDCTL_FRAG) == 0) { /* Check IP header checksum */ if ((rxctl & VGE_RDCTL_IPPKT) != 0) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; /* Check TCP/UDP checksum */ if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) && rxctl & VGE_RDCTL_PROTOCSUMOK) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } if ((rxstat & VGE_RDSTS_VTAG) != 0) { /* * The 32-bit rxctl register is stored in little-endian. * However, the 16-bit vlan tag is stored in big-endian, * so we have to byte swap it. */ m->m_pkthdr.ether_vtag = bswap16(rxctl & VGE_RDCTL_VLANID); m->m_flags |= M_VLANTAG; } VGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); VGE_LOCK(sc); sc->vge_cdata.vge_head = NULL; sc->vge_cdata.vge_tail = NULL; } if (prog > 0) { sc->vge_cdata.vge_rx_prodidx = prod; bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag, sc->vge_cdata.vge_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Update residue counter. */ if (sc->vge_cdata.vge_rx_commit != 0) { CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, sc->vge_cdata.vge_rx_commit); sc->vge_cdata.vge_rx_commit = 0; } } return (prog); } static void vge_txeof(struct vge_softc *sc) { struct ifnet *ifp; struct vge_tx_desc *cur_tx; struct vge_txdesc *txd; uint32_t txstat; int cons, prod; VGE_LOCK_ASSERT(sc); ifp = sc->vge_ifp; if (sc->vge_cdata.vge_tx_cnt == 0) return; bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, sc->vge_cdata.vge_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ cons = sc->vge_cdata.vge_tx_considx; prod = sc->vge_cdata.vge_tx_prodidx; for (; cons != prod; VGE_TX_DESC_INC(cons)) { cur_tx = &sc->vge_rdata.vge_tx_ring[cons]; txstat = le32toh(cur_tx->vge_sts); if ((txstat & VGE_TDSTS_OWN) != 0) break; sc->vge_cdata.vge_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; txd = &sc->vge_cdata.vge_txdesc[cons]; bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap); KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n", __func__)); m_freem(txd->tx_m); txd->tx_m = NULL; txd->tx_desc->vge_frag[0].vge_addrhi = 0; } bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, sc->vge_cdata.vge_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->vge_cdata.vge_tx_considx = cons; if (sc->vge_cdata.vge_tx_cnt == 0) sc->vge_timer = 0; } static void vge_link_statchg(void *xsc) { struct vge_softc *sc; struct ifnet *ifp; uint8_t physts; sc = xsc; ifp = sc->vge_ifp; VGE_LOCK_ASSERT(sc); physts = CSR_READ_1(sc, VGE_PHYSTS0); if ((physts & VGE_PHYSTS_RESETSTS) == 0) { if ((physts & VGE_PHYSTS_LINK) == 0) { sc->vge_flags &= ~VGE_FLAG_LINK; if_link_state_change(sc->vge_ifp, LINK_STATE_DOWN); } else { sc->vge_flags |= VGE_FLAG_LINK; if_link_state_change(sc->vge_ifp, LINK_STATE_UP); CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE | VGE_CR2_FDX_RXFLOWCTL_ENABLE); if ((physts & VGE_PHYSTS_FDX) != 0) { if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0) CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_TXFLOWCTL_ENABLE); if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0) CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_RXFLOWCTL_ENABLE); } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) vge_start_locked(ifp); } } /* * Restart MII auto-polling because link state change interrupt * will disable it. */ vge_miipoll_start(sc); } #ifdef DEVICE_POLLING static int vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) { struct vge_softc *sc = ifp->if_softc; int rx_npkts = 0; VGE_LOCK(sc); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) goto done; rx_npkts = vge_rxeof(sc, count); vge_txeof(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) vge_start_locked(ifp); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ uint32_t status; status = CSR_READ_4(sc, VGE_ISR); if (status == 0xFFFFFFFF) goto done; if (status) CSR_WRITE_4(sc, VGE_ISR, status); /* * XXX check behaviour on receiver stalls. */ if (status & VGE_ISR_TXDMA_STALL || status & VGE_ISR_RXDMA_STALL) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vge_init_locked(sc); } if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { vge_rxeof(sc, count); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } } done: VGE_UNLOCK(sc); return (rx_npkts); } #endif /* DEVICE_POLLING */ static void vge_intr(void *arg) { struct vge_softc *sc; struct ifnet *ifp; uint32_t status; sc = arg; VGE_LOCK(sc); ifp = sc->vge_ifp; if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 || (ifp->if_flags & IFF_UP) == 0) { VGE_UNLOCK(sc); return; } #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { status = CSR_READ_4(sc, VGE_ISR); CSR_WRITE_4(sc, VGE_ISR, status); if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0) vge_link_statchg(sc); VGE_UNLOCK(sc); return; } #endif /* Disable interrupts */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); status = CSR_READ_4(sc, VGE_ISR); CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD); /* If the card has gone away the read returns 0xffff. */ if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0) goto done; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) vge_rxeof(sc, VGE_RX_DESC_CNT); if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { vge_rxeof(sc, VGE_RX_DESC_CNT); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO)) vge_txeof(sc); if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vge_init_locked(sc); } if (status & VGE_ISR_LINKSTS) vge_link_statchg(sc); } done: if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { /* Re-enable interrupts */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) vge_start_locked(ifp); } VGE_UNLOCK(sc); } static int vge_encap(struct vge_softc *sc, struct mbuf **m_head) { struct vge_txdesc *txd; struct vge_tx_frag *frag; struct mbuf *m; bus_dma_segment_t txsegs[VGE_MAXTXSEGS]; int error, i, nsegs, padlen; uint32_t cflags; VGE_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); /* Argh. This chip does not autopad short frames. */ if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) { m = *m_head; padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_NOWAIT); m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } if (M_TRAILINGSPACE(m) < padlen) { m = m_defrag(m, M_NOWAIT); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } } /* * Manually pad short frames, and zero the pad space * to avoid leaking data. */ bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); m->m_pkthdr.len += padlen; m->m_len = m->m_pkthdr.len; *m_head = m; } txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx]; error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); m = *m_head; cflags = 0; /* Configure checksum offload. */ if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) cflags |= VGE_TDCTL_IPCSUM; if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) cflags |= VGE_TDCTL_TCPCSUM; if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) cflags |= VGE_TDCTL_UDPCSUM; /* Configure VLAN. */ if ((m->m_flags & M_VLANTAG) != 0) cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG; txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16); /* * XXX * Velocity family seems to support TSO but no information * for MSS configuration is available. Also the number of * fragments supported by a descriptor is too small to hold * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF, * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build * longer chain of buffers but no additional information is * available. * * When telling the chip how many segments there are, we * must use nsegs + 1 instead of just nsegs. Darned if I * know why. This also means we can't use the last fragment * field of Tx descriptor. */ txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) | VGE_TD_LS_NORM); for (i = 0; i < nsegs; i++) { frag = &txd->tx_desc->vge_frag[i]; frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr)); frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) | (VGE_BUFLEN(txsegs[i].ds_len) << 16)); } sc->vge_cdata.vge_tx_cnt++; VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx); /* * Finally request interrupt and give the first descriptor * ownership to hardware. */ txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC); txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN); txd->tx_m = m; return (0); } /* * Main transmit routine. */ static void vge_start(struct ifnet *ifp) { struct vge_softc *sc; sc = ifp->if_softc; VGE_LOCK(sc); vge_start_locked(ifp); VGE_UNLOCK(sc); } static void vge_start_locked(struct ifnet *ifp) { struct vge_softc *sc; struct vge_txdesc *txd; struct mbuf *m_head; int enq, idx; sc = ifp->if_softc; VGE_LOCK_ASSERT(sc); if ((sc->vge_flags & VGE_FLAG_LINK) == 0 || (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; idx = sc->vge_cdata.vge_tx_prodidx; VGE_TX_DESC_DEC(idx); for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (vge_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } txd = &sc->vge_cdata.vge_txdesc[idx]; txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q); VGE_TX_DESC_INC(idx); enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag, sc->vge_cdata.vge_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Issue a transmit command. */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); /* * Set a timeout in case the chip goes out to lunch. */ sc->vge_timer = 5; } } static void vge_init(void *xsc) { struct vge_softc *sc = xsc; VGE_LOCK(sc); vge_init_locked(sc); VGE_UNLOCK(sc); } static void vge_init_locked(struct vge_softc *sc) { struct ifnet *ifp = sc->vge_ifp; struct mii_data *mii; int error, i; VGE_LOCK_ASSERT(sc); mii = device_get_softc(sc->vge_miibus); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel pending I/O and free all RX/TX buffers. */ vge_stop(sc); vge_reset(sc); vge_miipoll_start(sc); /* * Initialize the RX and TX descriptors and mbufs. */ error = vge_rx_list_init(sc); if (error != 0) { device_printf(sc->vge_dev, "no memory for Rx buffers.\n"); return; } vge_tx_list_init(sc); /* Clear MAC statistics. */ vge_stats_clear(sc); /* Set our station address */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]); /* * Set receive FIFO threshold. Also allow transmission and * reception of VLAN tagged frames. */ CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES); /* Set DMA burst length */ CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); /* Set collision backoff algorithm */ CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); /* Disable LPSEL field in priority resolution */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); /* * Load the addresses of the DMA queues into the chip. * Note that we only use one transmit queue. */ CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)); CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr)); CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr)); CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); /* Configure interrupt moderation. */ vge_intr_holdoff(sc); /* Enable and wake up the RX descriptor queue */ CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); /* Enable the TX descriptor queue */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); /* Init the cam filter. */ vge_cam_clear(sc); /* Set up receiver filter. */ vge_rxfilter(sc); vge_setvlan(sc); /* Initialize pause timer. */ CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF); /* * Initialize flow control parameters. * TX XON high threshold : 48 * TX pause low threshold : 24 * Disable hald-duplex flow control */ CSR_WRITE_1(sc, VGE_CRC2, 0xFF); CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B); /* Enable jumbo frame reception (if desired) */ /* Start the MAC. */ CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); #ifdef DEVICE_POLLING /* * Disable interrupts except link state change if we are polling. */ if (ifp->if_capenable & IFCAP_POLLING) { CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING); } else /* otherwise ... */ #endif { /* * Enable interrupts. */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); } CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); sc->vge_flags &= ~VGE_FLAG_LINK; vge_ifmedia_upd_locked(sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc); } /* * Set media options. */ static int vge_ifmedia_upd(struct ifnet *ifp) { struct vge_softc *sc; int error; sc = ifp->if_softc; VGE_LOCK(sc); error = vge_ifmedia_upd_locked(sc); VGE_UNLOCK(sc); return (error); } static int vge_ifmedia_upd_locked(struct vge_softc *sc) { struct mii_data *mii; struct mii_softc *miisc; int error; mii = device_get_softc(sc->vge_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); vge_setmedia(sc); error = mii_mediachg(mii); return (error); } /* * Report current media status. */ static void vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->vge_miibus); VGE_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { VGE_UNLOCK(sc); return; } mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; VGE_UNLOCK(sc); } static void vge_setmedia(struct vge_softc *sc) { struct mii_data *mii; struct ifmedia_entry *ife; mii = device_get_softc(sc->vge_miibus); ife = mii->mii_media.ifm_cur; /* * If the user manually selects a media mode, we need to turn * on the forced MAC mode bit in the DIAGCTL register. If the * user happens to choose a full duplex mode, we also need to * set the 'force full duplex' bit. This applies only to * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC * mode is disabled, and in 1000baseT mode, full duplex is * always implied, so we turn on the forced mode bit but leave * the FDX bit cleared. */ switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_AUTO: CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_1000_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_100_TX: case IFM_10_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } else { CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } break; default: device_printf(sc->vge_dev, "unknown media type: %x\n", IFM_SUBTYPE(ife->ifm_media)); break; } } static int vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct vge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0, mask; switch (command) { case SIOCSIFMTU: VGE_LOCK(sc); if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { if (ifr->ifr_mtu > ETHERMTU && (sc->vge_flags & VGE_FLAG_JUMBO) == 0) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; } VGE_UNLOCK(sc); break; case SIOCSIFFLAGS: VGE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->vge_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) vge_rxfilter(sc); else vge_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) vge_stop(sc); sc->vge_if_flags = ifp->if_flags; VGE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: VGE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) vge_rxfilter(sc); VGE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->vge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(vge_poll, ifp); if (error) return (error); VGE_LOCK(sc); /* Disable interrupts */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); ifp->if_capenable |= IFCAP_POLLING; VGE_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); /* Enable interrupts. */ VGE_LOCK(sc); CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); ifp->if_capenable &= ~IFCAP_POLLING; VGE_UNLOCK(sc); } } #endif /* DEVICE_POLLING */ VGE_LOCK(sc); if ((mask & IFCAP_TXCSUM) != 0 && (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist |= VGE_CSUM_FEATURES; else ifp->if_hwassist &= ~VGE_CSUM_FEATURES; } if ((mask & IFCAP_RXCSUM) != 0 && (ifp->if_capabilities & IFCAP_RXCSUM) != 0) ifp->if_capenable ^= IFCAP_RXCSUM; if ((mask & IFCAP_WOL_UCAST) != 0 && (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_UCAST; if ((mask & IFCAP_WOL_MCAST) != 0 && (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0 && (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; vge_setvlan(sc); } VGE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void vge_watchdog(void *arg) { struct vge_softc *sc; struct ifnet *ifp; sc = arg; VGE_LOCK_ASSERT(sc); vge_stats_update(sc); callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc); if (sc->vge_timer == 0 || --sc->vge_timer > 0) return; ifp = sc->vge_ifp; if_printf(ifp, "watchdog timeout\n"); ifp->if_oerrors++; vge_txeof(sc); vge_rxeof(sc, VGE_RX_DESC_CNT); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vge_init_locked(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void vge_stop(struct vge_softc *sc) { struct ifnet *ifp; VGE_LOCK_ASSERT(sc); ifp = sc->vge_ifp; sc->vge_timer = 0; callout_stop(&sc->vge_watchdog); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); vge_stats_update(sc); VGE_CHAIN_RESET(sc); vge_txeof(sc); vge_freebufs(sc); } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int vge_suspend(device_t dev) { struct vge_softc *sc; sc = device_get_softc(dev); VGE_LOCK(sc); vge_stop(sc); vge_setwol(sc); sc->vge_flags |= VGE_FLAG_SUSPENDED; VGE_UNLOCK(sc); return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int vge_resume(device_t dev) { struct vge_softc *sc; struct ifnet *ifp; uint16_t pmstat; sc = device_get_softc(dev); VGE_LOCK(sc); if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) { /* Disable PME and clear PME status. */ pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS, 2); if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { pmstat &= ~PCIM_PSTAT_PMEENABLE; pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2); } } vge_clrwol(sc); /* Restart MII auto-polling. */ vge_miipoll_start(sc); ifp = sc->vge_ifp; /* Reinitialize interface if necessary. */ if ((ifp->if_flags & IFF_UP) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vge_init_locked(sc); } sc->vge_flags &= ~VGE_FLAG_SUSPENDED; VGE_UNLOCK(sc); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int vge_shutdown(device_t dev) { return (vge_suspend(dev)); } #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void vge_sysctl_node(struct vge_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct vge_hw_stats *stats; stats = &sc->vge_stats; ctx = device_get_sysctl_ctx(sc->vge_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev)); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff", CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt", CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt", CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet"); /* Pull in device tunables. */ sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT; resource_int_value(device_get_name(sc->vge_dev), device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff); sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT; resource_int_value(device_get_name(sc->vge_dev), device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt); sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT; resource_int_value(device_get_name(sc->vge_dev), device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "VGE statistics"); parent = SYSCTL_CHILDREN(tree); /* Rx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, NULL, "RX MAC statistics"); child = SYSCTL_CHILDREN(tree); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames", &stats->rx_frames, "frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->rx_good_frames, "Good frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", &stats->rx_fifo_oflows, "FIFO overflows"); VGE_SYSCTL_STAT_ADD32(ctx, child, "runts", &stats->rx_runts, "Too short frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs", &stats->rx_runts_errs, "Too short frames with errors"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", &stats->rx_pkts_64, "64 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", &stats->rx_pkts_65_127, "65 to 127 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", &stats->rx_pkts_128_255, "128 to 255 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", &stats->rx_pkts_256_511, "256 to 511 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", &stats->rx_pkts_1519_max, "1519 to max frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs", &stats->rx_pkts_1519_max_errs, "1519 to max frames with error"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo", &stats->rx_jumbos, "Jumbo frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->rx_crcerrs, "CRC errors"); VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->rx_pause_frames, "CRC errors"); VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", &stats->rx_alignerrs, "Alignment errors"); VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs", &stats->rx_nobufs, "Frames with no buffer event"); VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs", &stats->rx_symerrs, "Frames with symbol errors"); VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", &stats->rx_lenerrs, "Frames with length mismatched"); /* Tx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, NULL, "TX MAC statistics"); child = SYSCTL_CHILDREN(tree); VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->tx_good_frames, "Good frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64", &stats->tx_pkts_64, "64 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", &stats->tx_pkts_65_127, "65 to 127 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", &stats->tx_pkts_128_255, "128 to 255 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", &stats->tx_pkts_256_511, "256 to 511 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo", &stats->tx_jumbos, "Jumbo frames"); VGE_SYSCTL_STAT_ADD32(ctx, child, "colls", &stats->tx_colls, "Collisions"); VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", &stats->tx_latecolls, "Late collisions"); VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->tx_pause, "Pause frames"); #ifdef VGE_ENABLE_SQEERR VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs", &stats->tx_sqeerrs, "SQE errors"); #endif /* Clear MAC statistics. */ vge_stats_clear(sc); } #undef VGE_SYSCTL_STAT_ADD32 static void vge_stats_clear(struct vge_softc *sc) { int i; CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE); CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR); for (i = VGE_TIMEOUT; i > 0; i--) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0) break; } if (i == 0) device_printf(sc->vge_dev, "MIB clear timed out!\n"); CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) & ~VGE_MIBCSR_FREEZE); } static void vge_stats_update(struct vge_softc *sc) { struct vge_hw_stats *stats; struct ifnet *ifp; uint32_t mib[VGE_MIB_CNT], val; int i; VGE_LOCK_ASSERT(sc); stats = &sc->vge_stats; ifp = sc->vge_ifp; CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH); for (i = VGE_TIMEOUT; i > 0; i--) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0) break; } if (i == 0) { device_printf(sc->vge_dev, "MIB counter dump timed out!\n"); vge_stats_clear(sc); return; } bzero(mib, sizeof(mib)); reset_idx: /* Set MIB read index to 0. */ CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI); for (i = 0; i < VGE_MIB_CNT; i++) { val = CSR_READ_4(sc, VGE_MIBDATA); if (i != VGE_MIB_DATA_IDX(val)) { /* Reading interrupted. */ goto reset_idx; } mib[i] = val & VGE_MIB_DATA_MASK; } /* Rx stats. */ stats->rx_frames += mib[VGE_MIB_RX_FRAMES]; stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES]; stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS]; stats->rx_runts += mib[VGE_MIB_RX_RUNTS]; stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS]; stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64]; stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127]; stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255]; stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511]; stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023]; stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518]; stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX]; stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS]; stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS]; stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS]; stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE]; stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS]; stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS]; stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS]; stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS]; /* Tx stats. */ stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES]; stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64]; stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127]; stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255]; stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511]; stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023]; stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518]; stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS]; stats->tx_colls += mib[VGE_MIB_TX_COLLS]; stats->tx_pause += mib[VGE_MIB_TX_PAUSE]; #ifdef VGE_ENABLE_SQEERR stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS]; #endif stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS]; /* Update counters in ifnet. */ ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES]; ifp->if_collisions += mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]; ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]; ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES]; ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] + mib[VGE_MIB_RX_RUNTS] + mib[VGE_MIB_RX_RUNTS_ERRS] + mib[VGE_MIB_RX_CRCERRS] + mib[VGE_MIB_RX_ALIGNERRS] + mib[VGE_MIB_RX_NOBUFS] + mib[VGE_MIB_RX_SYMERRS] + mib[VGE_MIB_RX_LENERRS]; } static void vge_intr_holdoff(struct vge_softc *sc) { uint8_t intctl; VGE_LOCK_ASSERT(sc); /* * Set Tx interrupt supression threshold. * It's possible to use single-shot timer in VGE_CRS1 register * in Tx path such that driver can remove most of Tx completion * interrupts. However this requires additional access to * VGE_CRS1 register to reload the timer in addintion to * activating Tx kick command. Another downside is we don't know * what single-shot timer value should be used in advance so * reclaiming transmitted mbufs could be delayed a lot which in * turn slows down Tx operation. */ CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR); CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt); /* Set Rx interrupt suppresion threshold. */ CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt); intctl = CSR_READ_1(sc, VGE_INTCTL1); intctl &= ~VGE_INTCTL_SC_RELOAD; intctl |= VGE_INTCTL_HC_RELOAD; if (sc->vge_tx_coal_pkt <= 0) intctl |= VGE_INTCTL_TXINTSUP_DISABLE; else intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE; if (sc->vge_rx_coal_pkt <= 0) intctl |= VGE_INTCTL_RXINTSUP_DISABLE; else intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE; CSR_WRITE_1(sc, VGE_INTCTL1, intctl); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF); if (sc->vge_int_holdoff > 0) { /* Set interrupt holdoff timer. */ CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); CSR_WRITE_1(sc, VGE_INTHOLDOFF, VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff)); /* Enable holdoff timer. */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); } } static void vge_setlinkspeed(struct vge_softc *sc) { struct mii_data *mii; int aneg, i; VGE_LOCK_ASSERT(sc); mii = device_get_softc(sc->vge_miibus); mii_pollstat(mii); aneg = 0; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch IFM_SUBTYPE(mii->mii_media_active) { case IFM_10_T: case IFM_100_TX: return; case IFM_1000_T: aneg++; default: break; } } /* Clear forced MAC speed/duplex configuration. */ CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0); vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); DELAY(1000); if (aneg != 0) { /* Poll link state until vge(4) get a 10/100 link. */ for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { mii_pollstat(mii); if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: return; default: break; } } VGE_UNLOCK(sc); pause("vgelnk", hz); VGE_LOCK(sc); } if (i == MII_ANEGTICKS_GIGE) device_printf(sc->vge_dev, "establishing link failed, " "WOL may not work!"); } /* * No link, force MAC to have 100Mbps, full-duplex link. * This is the last resort and may/may not work. */ mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; } static void vge_setwol(struct vge_softc *sc) { struct ifnet *ifp; uint16_t pmstat; uint8_t val; VGE_LOCK_ASSERT(sc); if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) { /* No PME capability, PHY power down. */ vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR, BMCR_PDOWN); vge_miipoll_stop(sc); return; } ifp = sc->vge_ifp; /* Clear WOL on pattern match. */ CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL); /* Disable WOL on magic/unicast packet. */ CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F); CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM | VGE_WOLCFG_PMEOVR); if ((ifp->if_capenable & IFCAP_WOL) != 0) { vge_setlinkspeed(sc); val = 0; if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) val |= VGE_WOLCR1_UCAST; if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) val |= VGE_WOLCR1_MAGIC; CSR_WRITE_1(sc, VGE_WOLCR1S, val); val = 0; if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB; CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR); /* Disable MII auto-polling. */ vge_miipoll_stop(sc); } CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII); /* Clear WOL status on pattern match. */ CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF); CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF); val = CSR_READ_1(sc, VGE_PWRSTAT); val |= VGE_STICKHW_SWPTAG; CSR_WRITE_1(sc, VGE_PWRSTAT, val); /* Put hardware into sleep. */ val = CSR_READ_1(sc, VGE_PWRSTAT); val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1; CSR_WRITE_1(sc, VGE_PWRSTAT, val); /* Request PME if WOL is requested. */ pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2); } static void vge_clrwol(struct vge_softc *sc) { uint8_t val; val = CSR_READ_1(sc, VGE_PWRSTAT); val &= ~VGE_STICKHW_SWPTAG; CSR_WRITE_1(sc, VGE_PWRSTAT, val); /* Disable WOL and clear power state indicator. */ val = CSR_READ_1(sc, VGE_PWRSTAT); val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1); CSR_WRITE_1(sc, VGE_PWRSTAT, val); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); /* Clear WOL on pattern match. */ CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL); /* Disable WOL on magic/unicast packet. */ CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F); CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM | VGE_WOLCFG_PMEOVR); /* Clear WOL status on pattern match. */ CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF); CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF); }